
AUTOMATIC TESTING ANDACCESSIBILITY

A.06.03.b

This manual explains features that the ISA Dialog Manager
provides to support automatic user interface testing and the
development of accessible applications.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 Introduction 7

2 Mapping of IDM Object Classes to UIA Control Types 8

3 Supported UIA Properties and Control Pattern Methods 11

3.1 Value Pattern 13
3.2 RangeValue Pattern 13
3.3 Scroll Pattern 13
3.4 ScrollItem Pattern 14
3.5 Transform Pattern 14
3.6 Grid Pattern 15
3.7 GridItem Pattern 15
3.8 Selection Pattern 15
3.9 SelectionItem Pattern 15
3.10 Toggle Pattern 16
3.11 ExpandCollapse Pattern 16
3.12 Window Pattern 16
3.13 Dock Pattern 17
3.14 Table Pattern 17
3.15 TableItem Pattern 17

4 UIA Object Identification 18

5 Particularities 19

5.1 Edittext 19
5.2 Poptext 19
5.3 Formatted Input 19
5.4 Client Area 19
5.5 Virtual Areas 19
5.6 Splitbox 20
5.7 Menus 20

A.06.03.b 5

automatisches-testen.htm#Notation%20Conventions
automatisches-testen.htm#Table%20of%20Contents
automatisches-testen.htm#Introduction
automatisches-testen.htm#Mapping%20of%20IDM%20Object%20Classes%20to%20UIA%20Control%20Types
automatisches-testen.htm#Supported%20UIA%20Properties%20and%20Control%20Pattern%20Methods
automatisches-testen.htm#Value%20Pattern
automatisches-testen.htm#RangeValue%20Pattern
automatisches-testen.htm#Scroll%20Pattern
automatisches-testen.htm#ScrollItem%20Pattern
automatisches-testen.htm#Transform%20Pattern
automatisches-testen.htm#Grid%20Pattern
automatisches-testen.htm#GridItem%20Pattern
automatisches-testen.htm#Selection%20Pattern
automatisches-testen.htm#SelectionItem%20Pattern
automatisches-testen.htm#Toggle%20Pattern
automatisches-testen.htm#ExpandCollapse%20Pattern
automatisches-testen.htm#Window%20Pattern
automatisches-testen.htm#Dock%20Pattern
automatisches-testen.htm#Table%20Pattern
automatisches-testen.htm#TableItem%20Pattern
automatisches-testen.htm#UIA%20Object%20Identification
automatisches-testen.htm#Particularities
automatisches-testen.htm#Edittext
automatisches-testen.htm#Poptext
automatisches-testen.htm#Formatted%20Input
automatisches-testen.htm#Client%20Area
automatisches-testen.htm#Virtual%20Areas
automatisches-testen.htm#Splitbox
automatisches-testen.htm#Menus

5.8 Messagebox and Filereq 20
5.9 Image Object 20
5.10 Toolbar Object 20
5.11 Treeview Object 20
5.12 User Interaction vs. Automation 20

6 Notes About HP UFT 12.52 22

7 Attribute .acc_label 25

8 Attribute .acc_text 27

9 Enhancement to the Tile Resource 29

10 Addition to Tracing 30

11 Enhancement to the C Interface 31

Index 33

6 ISA DialogManager

automatisches-testen.htm#Messagebox%20and%20Filereq
automatisches-testen.htm#Image%20Object
automatisches-testen.htm#Toolbar%20Object
automatisches-testen.htm#Treeview%20Object
automatisches-testen.htm#User%20Interaction%20vs.%20Automation
automatisches-testen.htm#Notes%20About%20HP%20UFT%2012.52
automatisches-testen.htm#Attribute%20.acc_label
automatisches-testen.htm#Attribute%20.acc_text
automatisches-testen.htm#Enhancement%20to%20the%20Tile%20Resource
automatisches-testen.htm#Addition%20to%20Tracing
automatisches-testen.htm#Enhancement%20to%20the%20C%20Interface
automatisches-testen.htm#Index

1 Introduction
Availability

IDM FOR WINDOWS only, since IDM version A.06.01.e

UI Automation (hereafter usually abbreviated as UIA) is a MICROSOFT framework to facilitate access-
ibility and automated testing of user interfaces.

The focus of the IDM enhancement is to provide the infrastructure for automated testing.

It makes the user interface elements (UIA Elements) accessible in a tree structure. A UIA Element
has properties, also depending on its type (UIA Control Type). UIA Elements may also have several
UIA Control Patterns that provide additional properties or interaction modes (UIA Control Pattern
Methods). Events indicate whether changes have occurred on a UIA Element.

This documentation serves to illustrate the functionality of the IDM regarding the UI Automation sup-
port and is mostly only interesting for developers of UI Automation Clients. It does not provide “pro-
gramming documentation”, but merely documents the support provided by the IDM. For the use of UI
Automation, please refer to the Microsoft documentation.

A.06.03.b 7

8 ISA DialogManager

2Mapping of IDMObject Classes to
UIAControl Types
The IDM has as a design principle the use of the object classes (controls, widgets) provided by the
system or toolkit to implement the interface objects and thus to keep operation and appearance as
compliant as possible with the system.

Many of the IDM object classes are covered by the “UI Automation Support for Standard Controls”
from MICROSOFT. If possible and required, the IDM adds the necessary properties.

With regard to UI Automation support in the IDM, the following categories can be distinguished:

D Particular object classes cannot be equipped with additional UIA support through the IDM, but
have sufficient support through the Microsoft default implementation. These include e.g.
menubox, menuitem, menusep, messagebox and filereq.

E Most of these object classes get complementary UIA support through the IDM, especially to
facilitate their identification.

X Object classes implemented by the IDM and object classes with inadequate Microsoft default
implementation get individual UIA support. These are mainly the object classes image, table-
field, splitbox, layoutbox, progressbar, poptext and toolbar.

U For special object classes such as control, canvas and USW objects, UIA support lies in the
hands of the application programmer or object implementer.

The following table shall serve as a reference point for the mapping of IDM object classes to UIA Con-
trol Types as well as the functionality provided by the Pattern affiliation:

Category
IDM Object

Class
UIA Control

Type
Supported UIA Control Patterns

U canvas Pane To be implemented by the canvas programmer

E checkbox CheckBox Toggle, Invoke

U control Pane Depends on the OLE/control object

E edittext Edit System-dependent – typically Value, Text,
Text2
Multi-line texts with scrollbars usually also have
the Scroll Pattern

Category
IDM Object

Class
UIA Control

Type
Supported UIA Control Patterns

E edittext with
.options[opt_rf]
= true

Document System-dependent – typically Value, Text,
Text2

D filereq Window System-dependent

X groupbox Pane
Child: Group

Invoke, Scroll (with virtual areas)

X image Button
Children: Text,
Image
(if present)

Invoke, Toggle

X layoutbox Pane Scroll (with virtual areas)

E listbox List
Children:
ListItem

Scroll, Selection, Invoke

D menubox Menu ExpandCollapse

D menuitem MenuItem Toggle, Invoke, ExpandCollapse, SelectionItem
– depending on .style attribute

D menusep Separator –

D messagebox Window System-dependent

E notebook Tab Selection

E notepage TabItem/Pane SelectionItem

X poptext ComboBox
Children: Edit,
List, Text
(according
to .style)

ExpandCollapse, Value sowie Selection –
depending on .style attribute

X progressbar ProgressBar RangeValue

X pushbutton Button Invoke

E radiobutton RadioButton SelectionItem

X rectangle Button Invoke

A.06.03.b 9

10 ISA DialogManager

Category
IDM Object

Class
UIA Control

Type
Supported UIA Control Patterns

X scrollbar ScrollBar RangeValue

X scrollbar
(slider)

Slider RangeValue

X spinbox Spinner RangeValue, Value, Selection – depending
on .style attribute

X splitbox Pane
Children: Pane

Visible split areas are sub-Panes with Trans-
form Pattern

X statictext
(insensitive)

Text Text

X statictext
(sensitive)

Button Invoke

E statusbar StatusBar –

X tablefield Table
Children:
ListItem

Grid, Table, GridItem, TableItem, Invoke, Scroll,
Selection

X toolbar ToolBar Dock, Transform, Window (depending on .dock-
ing attribute), Invoke

E treeview Tree Scroll, Selection

E window Window Window, Transform

UI Automation support may be changed by MICROSOFT anytime, so that changes concerning the map-
ping of UIA ControlTypes, Patterns, Properties and Events are always possible.

3 Supported UIA Properties and
Control PatternMethods
Basically, the Properties, Methods and functionality are defined by the “UI Automation Specification”.
Therefore, this chapter has rather informative character to show the relation to the IDM.

UIA Property/Method IDM Attribute Remarks

AcceleratorKey .accelerator The keyboard shortcut of the accelerator is
returned.

AccessKey .text The Mnemonic character in the text is
returned, for example "Alt+E" for .text "&Edit".

AutomationId .label, .acc_label .acc_label, if set, takes precedence over .label.
The .label may be supplemented by the num-
bering “:[<I>]” to achieve unique identification
on sibling level.

BoundingRectangle .x, .y
.width, .height
.xauto, .yauto

Position and size of the object.

ClassName – Attention
System names or IDM-specific names that may
differ from version to version and have no 1:1
correlation with the IDM object class.

ClickablePoint – Point inside the BoundingRectangle for execut-
ing a mouse click.

ControlType .class
(and other attributes
like
.options, .style,
.arrows)

The mapping to a UIA Control Type does not
solely depend on the object class, but possibly
also on further object attributes.

FrameworkId – Provided through the UIA implementation by
MICROSOFT.

HasKeyboardFocus .focus Returns whether the object has the keyboard
focus.

A.06.03.b 11

12 ISA DialogManager

UIA Property/Method IDM Attribute Remarks

HelpText .toolhelp resp.
.statushelp

If no help text is set in .toolhelp, .statushelp will
be returned.

IsEnabled .sensitive resp. .real_
sensitive

Returns the operability respectively sensitivity
of the UIA Element.

IsKeyboardFocusable – Object is sensitive and can receive keyboard
focus.

IsOffscreen UIA element is visible, but may be covered by
overlying windows or elements

IsPassword .format For a format with hidden formatting (format
string starts with “S”) this Property returns true.

LocalizedControlType – Provided through the UIA implementation by
MICROSOFT.

LabeledBy – If the IDM object is preceded by an insensitive
statictext, the appropriate UIA Element is
returned.

Name .text, .title, .acc_text
With substructures
(listbox, treeview,
content) often also
.content, .content[I],
.content[R,C]

Name of the UIA Element. May be overwritten
by the .acc_text attribute.

NativeWindowHandle AT_WinHandle Usually the same as the HWND that DM_
GetToolkitData() returns for AT_WinHandle.

Orientation .direction, .docking For IDM object classes like splitbox,
scrollbar, toolbar and tablefield the respect-
ive direction is returned here.OrientationType_

Horizontal
.direction = 2

OrientationType_
Vertical

.direction = 1

OrientationType_
Horizontal

.docking = dock_<up|-
down|window>

OrientationType_
Vertical

.docking = dock_
<left|right>

UIA Property/Method IDM Attribute Remarks

ProcessId – Provided through the UIA implementation by
MICROSOFT.

ProviderDescription – Provided through the UIA implementation by
MICROSOFT.

RuntimeId – Usually provided through the UIA imple-
mentation by MICROSOFT.

3.1 Value Pattern

UIA Property/Method IDM Attribute Remarks

ValueIsReadOnly .editable
.editable[R,C]

Input field or table cell is editable.
A listbox always returns true.

Value .content
.content[I]
.content[R,C]

Returns the (formatted) content of an input field,
a poptext, treeview or listbox item, or a table
cell.

SetValue() .content
.content[I]
.content[R,C]

Modifies the value of the input field or table cell.

3.2 RangeValue Pattern

UIA Property/Method IDM Attribute Remarks

ValueIsReadOnly – Range value may be changed via SetValue().

Value .curvalue Range value of a spinbox or scrollbar.

Minimum .minvalue Lower Range limit.

Maximum .maxvalue Upper Range limit.

SetValue() – Modifies the Range value.

3.3 Scroll Pattern

UIA Property/Method IDM Attribute Remarks

HorizontallyScrollable – Horizontal scrolling is possible.

A.06.03.b 13

14 ISA DialogManager

UIA Property/Method IDM Attribute Remarks

HorizonalScrollPercent – Computed value from .vwidth and real width in
%.

HorizontalViewSize – Computed value from .vwidth and real width in
%.

VerticallyScrollable – Vertical scrolling is possible.

VericalScrollPercent – Computed value from .vheight and real height
in %.

VericalViewSize – Computed value from .vheight and real height
in %.

Scroll() – Scrolls relatively.

SetScrollPercent() – Scrolls to a specific % position.

3.4 ScrollItem Pattern

UIA Property/Method IDM Attribute Remarks

ScrollIntoView() – Scrolls the element into the visible area.

3.5 Transform Pattern

UIA Property/Method IDM Attribute Remarks

CanMove .moveable Window or toolbar can be moved.

CanResize .sizeable Window or toolbar can be decreased and
increased in size.
Or the splibox area can be decreased and
increased in size.

CanRotate – Not covered by the IDM.

Move() – Allows moving a window or toolbar.

Resize() – Allows resizing a window, toolbar or splibox
area.

Rotate() – –

3.6 Grid Pattern

UIA Property/Method IDM Attribute Remarks

ColumnCount .colcount Returns the number of visible columns in a table.

RowCount .rowcount Returns the number of visible rows in a table.

GetItem() – Returns the UIA Element of a cell.

3.7 GridItem Pattern

UIA Property/Method IDM Attribute Remarks

GridItemColumn – Column index (from 0 and without invisible
columns).

GridItemColumnSpan – Is always 1 because cells cannot be merged in
the IDM.

GridItemRowCount – Row index (from 0 and without invisible rows).

GridItemRowSpan – Is always 1 because cells cannot be merged in
the IDM.

3.8 Selection Pattern

UIA Property/Method IDM Attribute Remarks

SelectionCanSelectMultiple .multisel
.selstyle
.selection[]

Listboxes and tables may support multiple
selection.

SelectionIsRequired – Is a selection required?

GetSelection() – Returns the selected UIA Elements.

3.9 SelectionItem Pattern

UIA Property/Method IDM Attribute Remarks

SelectionItemIsSelected .active
.activeitem

Returns true for an active item.

A.06.03.b 15

16 ISA DialogManager

UIA Property/Method IDM Attribute Remarks

AddToSelection() – Adds an item to a multiple selection.

RemoveFromSelect() – Removes a selected item from a multiple
selection.

Select() – Selects this item.

3.10 Toggle Pattern

UIA Property/Method IDM Attribute Remarks

ToggleState .active
.state

Activation or state of a checkbox, image object
or menuitem in checkbox style.

Toggle() – Toggles the states between checked,
unchecked and indeterminate.

3.11 ExpandCollapse Pattern

UIA Property/Method IDM Attribute Remarks

ExpandCollapseState .open (Treeview) –

Collapse() – Close a subtree.

Expand() – Open a subtree.

3.12 Window Pattern

UIA Property/Method IDM Attribute Remarks

CanMinimize .iconifyable Window can be minimized.

CanMaximize .maximizable Window can be maximized.

IsTopmost .top_most Window is always in front of all other win-
dows.

WindowIsModal .dialogbox Windows with .dialogbox = true are modal
windows.

WindowInteractionState – –

UIA Property/Method IDM Attribute Remarks

WindowVisualState – Window state (minimized, maximized, etc.).

Close() – Close the window.

SetWindowVisualState() – Enables to minimize or maximize the
window.

WaitForInputIdle() – –

3.13 Dock Pattern

UIA Property/Method IDM Attribute Remarks

DockDockPosition .docking Returns the docking position of a toolbar.

SetDockPosition() – Allows to change the docking of a toolbar.

3.14 Table Pattern

UIA Property/Method IDM Attribute Remarks

TableRowOrColumnMajor .direction Indicates the orientation of the table.

GetColumnHeaders() – Returns the UIA Elements of the visible
column header cells.

GetRowHeaders() – Returns the UIA Elements of the visible row
header cells.

3.15 TableItem Pattern

UIA Property/Method IDM Attribute Remarks

GetColumnHeaderItems() – Returns the corresponding UIA Elements in
the header range [row,1] … [row,.colheader]
of the table.

GetRowHeaderItems() – Returns the corresponding UIA Elements in
the header range [1,col] … [.rowheader,col] of
the table.

A.06.03.b 17

18 ISA DialogManager

4 UIAObject Identification
The key Properties defined by UI Automation for the identification of UIA Elements are AutomationId,
Name, ControlType and RuntimeId.

In order to enable the most consistent and language-independent identification possible, the IDM
object label is therefore assigned as AutomationId for most IDM objects. In case of ambiguities, the
IDM-typical indexing “:[<No>]” after the label for No >= 2 is used for inherited identifiers. The Auto-
mationId may be overwritten via the .acc_label attribute. In this case, however, the application pro-
grammer must ensure uniqueness.

Often the Name Property is also used, which typically represents the visible static text string (not the
dynamic content). This may also be overwritten by the application programmer with the .acc_text
attribute.

Through these Properties, objects in a UI Automation Element Tree usually are uniquely recog-
nizable.

The RuntimeId is generally based on the Window Handle and may therefore change when attributes
are modified. This makes it less suitable for reliable object identification.

5 Particularities

5.1 Edittext
To change the text, the SetValue() method of the Value Pattern has to be used. This triggers a char-
input event in the IDM. However, the modified event to signal a change is not sent until the edittext
loses focus. More consistent with normal operation is the “simulation” of keystrokes. In general, the
focus should be directed to the input field via the SetFocus() method of UIA.

5.2 Poptext
In addition to the usual method of changing the selection with the Select() method of the Selec-
tionItem Pattern, the SetValue() method of the Value Pattern may also be used. For an editable pop-
text, if the value is listed in the poptext list, selection is carried out and the corresponding select and
activate events are generated. Otherwise, the content of the input field is changed and the events
charinput and modified are triggered.

5.3 Formatted Input
If a format is applied to an input field, Text and Value always return the displayed text including format-
ting characters. Therefore access to the contents of password fields with a hidden format is not pos-
sible. A complete modification should also happen through the SetValue() method and must not
contain any formatting characters. Otherwise, test tools should execute the “simulation” of keyboard
inputs.

5.4 Client Area
IDM object classes may consist of multiple UIA Elements. Grouping objects typically have a parent
element and a client area which gets the suffix “#client” as AutomationId.

5.5 Virtual Areas
Grouping objects obtain a virtual area and optional scrollbars by setting the attributes .vwidth and
.vheight. The Client UIA Element then additionally gets the Control Patterns Scroll and ScrollItem on
the child objects to enable changing the visible area and scrolling a child into the visible area.

The UIA Methods Scroll() and ScrollIntoView() allow to control the displayed pane. It is not possible to
control scrolling through the inside ScrollBar UIA Elements.

A.06.03.b 19

20 ISA DialogManager

5.6 Splitbox
The individual visible areas are accessible as UIA Child Elements of type Pane with the name suffix
“#client[1]” … “#client[n]” and can be changed in size using the Resize() Control Pattern Method.

5.7 Menus
Menus in the menu bar as well as pop-up menus are not redefined by the IDM but covered by the Win-
dows standard implementation. Typically, the UIA Elements of the menus, submenus and menu items
are only accessible when they are opened. Context menus are located under the Desktop UIA Ele-
ment. The menus of menu bars after opening can be found directly under the UIA Window Element.

5.8 Messagebox and Filereq
With the querybox() call these are constructed from the standard controls and can typically be found
as UIA Control Type Dialog or Window with the set window title.

5.9 Image Object
To enable recognition of the displayed image, the image object is represented in UI Automation
through the UI Element Button with the child elements Image and Text. The Image element gets, if
present, the alternative text of the used tile resource as UIA Name Property.

5.10 Toolbar Object
A docked toolbar does not possess the Transform Pattern, hence it cannot be altered in size and pos-
ition.

5.11 Treeview Object
Reselecting the same element with the Select() method of the SelectionItem pattern does not gen-
erate a new select event.

5.12 User Interaction vs. Automation
The functionality available in UI Automation for automating a user interface does not cover all the pos-
sibilities offered to users by mouse and keyboard operation.

Keyboard inputs as well as the activation of accelerators and mnemonics are not directly
provided. However, this also means that actions or event rules e.g. based on Enter (Return), Esc,
cursor keys, etc. or a function key cannot be invoked directly by UIA Methods. Therefore the sim-
ulation of special keys might be recommended, e.g. to enable the triggering of deselect_enter

event rules.

The interaction patterns of the mouse (moving, pressing and releasing a mouse button) are
neither part of the UIA methods. An interaction of the form “Click on poptext – move down with the
mouse button pressed – release over the 3rd item” can e.g. hardly or not at all be simulated. A
mouse click usually corresponds to the UIA Methods Invoke() or Select(), but sometimes also to
Expand() or Collapse() or many more. Thus user interaction depends on the Control Type.

In general, user interaction and automation differ in possible actions, atomicity, and state depend-
encies.

A.06.03.b 21

22 ISA DialogManager

6 Notes About HP UFT 12.52
The test tool HP UNIFIED FUNCTIONAL TESTING (UFT) provides support for UI Automation testing as of
version 12.52. However, UFT does not fully support all UIA Control Types, but is limited to the most
important Control Types and Control Patterns. Therefore, this chapter is only informative and should
not replace reading the UFT documentation.

The UIA (UI Automation) support of UFT can be outlined as follows:

The “UI Automation” add-in must be activated.

For identification with the Object Spy, the “UI Automation Mode” must be enabled.

Object identification is based on the UIA Properties Name and AutomationId.

The following UIA Control Types are recognized and converted into an appropriate UFT Object
Model:

UIA Control Type UFT Object Model

Button UIAButton

Calendar UIACalendar

CheckBox UIACheckBox

ComboBox UIAComboBox

Edit UIAEdit

HyperLink UIAHyperLink

List UIAList

RadioButton UIARadioButton

Slider UIASlider

Tab UIATab

DataGrid UIATable

SplitButton UIASplitButton

Window UIAWindow

Table UIATable

... andere ... UIAObject

The following UIA Control Patterns are supported by UFT via special methods on the UIA Objects:

UIA Control Pattern UFT Methods

ExpandCollapse .Expand
.Collapse

Grid .GetItem

Invoke .Click

RangeValue .Decrement
.Increment
.SetValue

Scroll .Scroll
.ScrollDown
.ScrollUp
.ScrollLeft
.ScrollRight
.SetScrollPercent

ScrollItem .ScrollIntoView

Selection .Select
.AddToSelection
.RemoveFromSelection
.GetSelection

SelectionItem .Select
.AddToSelection
.RemoveFromSelection

Table .GetRowHeaders
.GetColumnHeaders

TableItem .GetRowHeaderItems
.GetColumnHeaderItems

Transform .Move
.Resize
.Rotate

Toggle .Set

Value .SetValue

Window .Maximize
.Minimize
.Restore
.Close

A.06.03.b 23

24 ISA DialogManager

This means that not all IDM object classes are “distinguishably” recognized as test objects with own
UIA Class by UFT. This includes the IDM object classes:

toolbar

statusbar

scrollbar

splitbox

menubox, menuitem, menusep

spinbox

progressbar

image

rectangle

control

layoutbox, groupbox, splitbox

edittext (RTF)

However, these should be recognized by UFT as generic UIAObjects and capable of being sufficiently
tested and manipulated by the supported Pattern Methods.

It should be noted that with UI Automation Microsof covers the domains of “accessibility” and “test
automation”, but does not provide full and correct capturing of user interaction. In this respect, the
“recording” of user interaction by UFT in UI Automation Mode is often incomplete and may also be
faulty.

This can be seen, for instance, when “recording” a menu interaction on a submenu. UFT generates
the following malfunctioning script, which does not contain a “Click” on the menu:

UIAWindow("Main window").UIAMenu("Application menu").UIAObject("File").Expand
UIAWindow("Main window").UIAMenu("File").UIAObject("Submenu").Expand

A working script however would look like this:

UIAWindow("Main window").UIAMenu("Application menu").UIAObject("File").Click
UIAWindow("Main window").UIAMenu("File").UIAObject("Submenu").Click
UIAWindow("Main window").UIAMenu("File").Select "Submenu;Menu A"

“Recording” in Windows Mode produces the following working script:

Window("Main window").WinMenu("File").Select "File;Submenu;Menu A"

7 Attribute .acc_label
With this attribute, the Automation Identifier that is queried for a user interface object from the IDM via
the MICROSOFT UIA Interface can be overwritten. With an empty string, a meaningful Automation Iden-
tifier is usually predefined by the Windows Control or the UIA support in the IDM.

Definition

Data type
string, object [text]

Access
get, set

changed event
yes

C
Identifier: AT_acc_label
Data type: DT_string, DT_text

COBOL
Identifier: AT-acc-label
Data type: DT-string, DT-text

Inheritance
yes

Default value
""

Classification
standard attribute

S

u
pport of attribute by objects

Object Support of the Attribute

filereq, messagebox Attribute has no effect

menubox, menuitem, menusep

canvas, spinbox, statusbar, tablefield Attribute is supported

groupbox, notebook, notepage, splitbox

image, layoutbox, window

rectangle, scrollbar

checkbox, pushbutton, radiobutton

edittext, poptext, statictext

control, listbox, treeview

other object classes Attribute is not supported

A.06.03.b 25

26 ISA DialogManager

Remark

This attribute is only relevant for automated external control with active MICROSOFT UIA support. The
attribute is without function on QT and MOTIF.

When overwriting, the rules given for the AutomationId in the MICROSOFT UI Automation doc-
umentation should be followed.

8 Attribute .acc_text
With this attribute, the Automation Name that is queried for a user interface object from the IDM via
the Microsoft UIA Interface can be overwritten. When the value is null, then a meaningful name is usu-
ally predefined by the Windows Control or the UIA support in the IDM.

Definition

Data type
object [text], string

Access
get, set

changed event
yes

C
Identifier: AT_acc_text
Data type: DT_text, DT_string

COBOL
Identifier: AT-acc-text
Data type: DT-text, DT-string

Inheritance
yes

Default value
null

Classification
standard attribute

S

u
pport of attribute by objects

Object Support of the Attribute

filereq, messagebox Attribute has no effect

menubox, menuitem, menusep

canvas, spinbox, statusbar, tablefield Attribute is supported

groupbox, notebook, notepage, splitbox

image, layoutbox, window

rectangle, scrollbar

checkbox, pushbutton, radiobutton

edittext, poptext, statictext

control, listbox, treeview

other object classes Attribute is not supported

A.06.03.b 27

28 ISA DialogManager

Remark

This attribute is only relevant for automated external control with active MICROSOFT UIA support. The
attribute is without function on QT and MOTIF.

9 Enhancement to the Tile Resource
For the access of IDM user interface objects via the UI-Automation Interface on MICROSOFT WINDOWS,
the tile resource has been enhanced. Image objects that use a tile resource as picture get an altern-
ative text to facilitate automation and accessibility.

This alternative text in can be defined like this:

{ export | reexport } tile <Identifier> <x>, <y>,
<Tilestring1>

[, <Tilestring>]
{ scale } { text(<alternative text>) };

{ export | reexport } tile <Identifier> <file name>
{ scale } { text(<alternative text>) };

<alternative text> := (<string> | <text object path>)

Examples

text TxBreak "Break"
{

2: "Pause";
}
tile TiCoffeeBreak "coffeemug.gif" text("Break");
tile TiCoffeeBreak "coffeemug.gif" text(TxBreak);

A.06.03.b 29

30 ISA DialogManager

10 Addition to Tracing
To activate trace output for the UIA Interface of the IDM FOR WINDOWS, UI Automation tracing must be
turned on explicitly (for example, in the on dialog start rule):

setup.tracing["AU"] ::= true; /* "AU" = Automation */

11 Enhancement to theC Interface
The functions DM_Control() and DM_ControlEx() have been enhanced with an additional action. UI
Automation support is active by default. With this action the specific support of the IDM for its specific
objects can be disabled. However, the UI Automation support provided by Microsoft for the standard
controls remains active.

The switching must happen before calling DM_Initialize() and after bootstrapping. Successful switch-
ing will be indicated by the return of DM_TRUE.

Action Argument

DMF_UIAutomationMode 0 disables or
1 enables the UI Automation support of the IDM

A.06.03.b 31

32 ISA DialogManager

A

.acc_label 18, 25

.acc_text 18, 27

AT-acc-label 25

AT-acc-text 27

AT_acc_label 25

AT_acc_text 27

AU 30

C

Control Pattern 11

Control Type 8

D

DM_Control 31

DM_ControlEx 31

DMF_UIAutomationMode 31

Dock Pattern 17

E

ExpandCollapse Pattern 16

G

Grid Pattern 15

GridItem Pattern 15

H

HP UFT 22

I

identifier 3

O

object identification 18

P

Property 11

R

RangeValue Pattern 13

S

Scroll Pattern 13

ScrollItem Pattern 14

Selection Pattern 15

SelectionItem Pattern 15

T

Table Pattern 17

TableItem Pattern 17

tile

text 29

Toggle Pattern 16

tracing 30

Transform Pattern 14

Index

A.06.03.b 33

U

UI Automation 7

Control Pattern 8

V

Value Pattern 13

W

Window Pattern 16

34 ISA DialogManager

	Notation Conventions
	Table of Contents
	1 Introduction
	2 Mapping of IDM Object Classes to UIA Control Types
	3 Supported UIA Properties and Control Pattern Methods
	3.1 Value Pattern
	3.2 RangeValue Pattern
	3.3 Scroll Pattern
	3.4 ScrollItem Pattern
	3.5 Transform Pattern
	3.6 Grid Pattern
	3.7 GridItem Pattern
	3.8 Selection Pattern
	3.9 SelectionItem Pattern
	3.10 Toggle Pattern
	3.11 ExpandCollapse Pattern
	3.12 Window Pattern
	3.13 Dock Pattern
	3.14 Table Pattern
	3.15 TableItem Pattern

	4 UIA Object Identification
	5 Particularities
	5.1 Edittext
	5.2 Poptext
	5.3 Formatted Input
	5.4 Client Area
	5.5 Virtual Areas
	5.6 Splitbox
	5.7 Menus
	5.8 Messagebox and Filereq
	5.9 Image Object
	5.10 Toolbar Object
	5.11 Treeview Object
	5.12 User Interaction vs. Automation

	6 Notes About HP UFT 12.52
	7 Attribute .acc_label
	8 Attribute .acc_text
	9 Enhancement to the Tile Resource
	10 Addition to Tracing
	11 Enhancement to the C Interface
	Index

