
C INTERFACE - FUNCTIONS

A.06.03.b

This manual explains all C API (application programming
interface) functions of the ISA Dialog Manager. It contains the
function definitions with their parameters and return values.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 Introduction 9

2 Functions of the DM Interface 10

2.1 Overview of Functions 10
2.2 Initializing and Starting Dialog Manager 14
2.3 Access Functions 14

2.3.1 Access to Dialog Manager Identifiers 14
2.3.2 Access to Object Attributes 15
2.3.3 Handling Vectorial Attributes 15
2.3.4 Handling Complex Vectorial Attributes 16
2.3.5 Creating and Destroying Objects 16
2.3.6 Memory Administration Functions 16
2.3.7 Service Functions (Utilities) 17
2.3.8 Special Functions 18
2.3.9 Linking a Window System 18

2.4 Error Processing 19
2.4.1 Information in the Error Code 19

2.5 Working with Collections 20
2.6 String Functions 20
2.7 Integrating Custom Functions (Handlers) 21
2.8 Handling of String Parameters 21
2.9 Protection in the Programming Interface 22

2.9.1 States of Dialog Manager 22
2.9.2 Transitions between States 23
2.9.3 Permitted States for Functions 23
2.9.4 SetValue from Canvas Functions 26

3 Functions in Alphabetical Order 27

3.1 AppMain 27
3.1.1 AppInit 28
3.1.2 AppFinish 29

A.06.03.b 5

3.2 DM_ApplyFormat 31
3.3 DM_BindCallBacks 33
3.4 DM_BindFunctions 35
3.5 DM_BootStrap 38
3.6 DM_CallFunction 40
3.7 DM_CallMethod 42
3.8 DM_Calloc 44
3.9 DM_CallRule 45
3.10 DM_Control 47
3.11 DM_ControlEx 52
3.12 DM_CreateObject 58
3.13 DM_DataChanged 60
3.14 DM_Destroy 66
3.15 DM_DialogPathToID 68
3.16 DM_DispatchHandler 70
3.17 DM_DumpState 72
3.18 DM_ErrMsgText 75
3.19 DM_ErrorHandler 77
3.20 DM_EventLoop 80
3.21 DM_ExceptionHandler 82
3.22 DM_Execute 84
3.23 DM_FatalAppError 85
3.24 DM_FmtDefaultProc 87
3.25 DM_Free 91
3.26 DM_FreeContent 92
3.27 DM_FreeVectorValue 93
3.28 DM_GetArgv 94
3.29 DM_GetContent 95
3.30 DM_GetMultiValue 98
3.31 DM_GetToolkitData 100

3.31.1 Motif 100
3.31.2 Microsoft Windows 103
3.31.3 Qt 113

3.32 DM_GetToolkitDataEx 115
3.32.1 Motif 115
3.32.2 Microsoft Windows 120
3.32.3 Qt 144

3.33 DM_GetValue 148

6 ISA DialogManager

A.06.03.b 7

3.34 DM_GetValueIndex 150
3.35 DM_GetVectorValue 153
3.36 DM_IndexReturn 157
3.37 DM_Initialize 159
3.38 DM_InitMSW 161
3.39 DM_InputHandler 163

3.39.1 Microsoft Windows 163
3.39.2 Motif 166

3.40 DM_InstallNlsHandler 169
3.41 DM_InstallWSINetHandler 170

3.41.1 User defined functions 171
3.42 DM_LoadDialog 173
3.43 DM_LoadProfile 175
3.44 DM_Malloc 178
3.45 DM_NetHandler 179
3.46 DM_OpenBox 182
3.47 DM_ParsePath 184
3.48 DM_PathToID 186
3.49 DM_PictureHandler 188
3.50 DM_PictureReaderHandler 195
3.51 DM_ProposeInputHandlerArgs 197
3.52 DM_QueryBox 199
3.53 DM_QueryError 201
3.54 DM_QueueExtEvent 202
3.55 DM_Realloc 205
3.56 DM_ResetMultiValue 206
3.57 DM_ResetValue 208
3.58 DM_ResetValueIndex 209
3.59 DM_SaveProfile 210
3.60 DM_SendEvent 212
3.61 DM_SendMethod 214
3.62 DM_SetContent 216
3.63 DM_SetMultiValue 220
3.64 DM_SetToolkitData 222

3.64.1 Motif 222
3.64.2 Microsoft Windows 224

3.65 DM_SetValue 227
3.66 DM_SetValueIndex 230

3.67 DM_SetVectorValue 232
3.68 DM_ShutDown 235
3.69 DM_StartDialog 237
3.70 DM_StopDialog 239
3.71 DM_StrCreate 240
3.72 DM_Strdup 242
3.73 DM_StringChange 243
3.74 DM_StringInit 245
3.75 DM_StringReturn 248
3.76 DM_TraceMessage 250
3.77 DM_ValueChange 252
3.78 DM_ValueCount 256
3.79 DM_ValueGet 259
3.80 DM_ValueIndex 261
3.81 DM_ValueInit 265
3.82 DM_ValueReturn 269
3.83 DM_WaitForInput 271
3.84 YiRegisterUserEventMonitor 273

3.84.1 YI_APP_MONITOR 274
3.84.2 YI_OBJ_MONITOR 274
3.84.3 YI_OBJFRAME_MONITOR 275

4 Options for the Interface Functions 277

Index 283

8 ISA DialogManager

1 Introduction
This manual describes the Application Programming Interface (API), provided by Dialog Manager
(DM) for application programs which have been written in C.

This manual explains how to implement and use the DM-API for C programs which have been written
with the system-specific C compiler.

Apart from certain control functions which influence the complex DM handling the API offers the usual
functionality available in the Rule Language of the application program.

This manual includes only those DM functions which are used to access or manipulate values. The
basic structure of a C program is explained in the manual “C Interface - Basics”.

A.06.03.b 9

10 ISA DialogManager

2 Functions of the DM Interface
In this chapter the functions of the DM interface are described. After a short summary (chapter "Over-
view of Functions") the different function types are introduced (chapter "Access Functions and Error
Handling"). In the chapter "Functions in Alphabetical Order" you will find a complete list including the
functions described in detail.

For the description of the parameters we use the following characters:

-> input parameter

<- output parameter

<-> in- and output parameter

2.1 Overview of Functions

Function Name Short Description

AppFinish finish routine (distributed application)

AppInit start routine (distributed application)

AppMain main routine of application

DM_ApplyFormat formatting a string

DM_BindCallBacks transferring function tables

DM_BindFunctions transferring function tables

DM_BootStrap first initialization of DM

DM_CallFunction calling function in any part of application (distributed application)

DM_CallMethod calling a method of an object

DM_Calloc allocation of memory

DM_CallRule calling rules by parameters

DM_Control triggering an action

DM_ControlEx triggering an action, extended by an additional action

DM_CreateObject creating objects

Function Name Short Description

DM_DataChanged signaling that the value of an attribute has changed on a Data
Model

DM_Destroy deleting any DM objects

DM_DialogPathToID converting external object names into internal DM_ID
deprecated, replaced by DM_ParsePath

DM_DispatchHandler user-defined function for handling XEvents at the X level (IDM FOR

MOTIF only)

DM_DumpState outputs status information into the log or trace file

DM_ErrMsgText text belonging to an error code

DM_ErrorHandler user-defined function for handling errors recognized by the rule
interpreter

DM_EventLoop starting dialog processing

DM_ExceptionHandler user-defined function for handling “asserts” of the IDM

DM_Execute starting another program

DM_FatalAppError error handling

DM_FmtDefaultProc format

DM_Free releasing memory capacity

DM_FreeContent deleting object contents (e.g. listbox)

DM_FreeVectorValue releasing allocated memory

DM_GetContent querying object contents (e.g. listbox)

DM_GetMultiValue querying several DM attributes in one call

DM_GetToolkitData querying toolkit data

DM_GetValue querying DM attributes

DM_GetValueIndex querying DM attributes (indication of index datatype)

DM_GetVectorValue querying vectorial DM attributes

DM_IndexReturn safe returning of local index values from a function

DM_Initialize initialization of DM

A.06.03.b 11

12 ISA DialogManager

Function Name Short Description

DM_InitMSW parsing of command line for Windows

DM_InputHandler querying additional input sources

DM_InstallNlsHandler retrieving text from external text catalog

DM_LoadDialog loading dialog in DM

DM_LoadProfile loading user-specific settings

DM_Malloc allocation of memory

DM_NetHandler user-defined function for manipulating data that the DDM sends
over a network

DM_OpenBox opens a messagebox or dialogbox (window with .dialogbox = true)

DM_ParsePath search for an object in any dialog and return its object ID

DM_PathToID converting external object name into internal DM ID
deprecated, replaced by DM_ParsePath

DM_PictureHandler custom function for loading images in graphic formats not sup-
ported by the IDM (graphic handlers)

DM_PictureReaderHandler registering custom functions for loading images (graphic handlers)

DM_Pro-
poseInputHandlerArgs

querying an unassigned message number (IDM FOR WINDOWS

only)

DM_QueryBox opening messagebox

DM_QueryError querying errors

DM_QueueExtEvent putting external events in the event queue

DM_Realloc allocation of memory

DM_ResetMultiValue resetting of DM objects to model values in one call

DM_ResetValue resetting of DM objects to model or default values

DM_ResetValueIndex resetting tablefield attributes to values of corresponding default
attribute

DM_SaveProfile saves the current values of configurable records and variables in a
configuration file

DM_SendEvent putting external events in the event queue

Function Name Short Description

DM_SendMethod asynchronous method invocation

DM_SetContent setting object contents (e.g. listbox).

DM_SetMultiValue changing several DM object attributes in one call

DM_SetToolkitData setting specific window-system data

DM_SetValue changing DM object attributes

DM_SetValueIndex changing DM attributes (indication of index data type)

DM_SetVectorValue changing vectorial DM attributes

DM_ShutDown regular closing of DM

DM_StartDialog starting actual dialog application

DM_StopDialog finishing a dialog

DM_StrCreate creating a string with a given character encoding

DM_Strdup duplicating strings

DM_StringChange modifying a string that is managed by the IDM

DM_StringInit converting a string into string managed by the IDM

DM_StringReturn safe returning of local strings from a function

DM_TraceMessage writing protocol messages of the application in the DM protocol file

DM_ValueChange replacing the entire value or a single element value of a collection

DM_ValueCount returns the number of values, the index type or the highest index
value of a collection

DM_ValueGet retrieving a single element value that belongs to a defined index
from collections

DM_ValueIndex determines the corresponding index for a position in a collection

DM_ValueInit converting a value reference into a local or global value reference
managed by the IDM

DM_ValueReturn safe returning of local DM_Value values from a function

DM_WaitForInput waiting for a special event

A.06.03.b 13

14 ISA DialogManager

Function Name Short Description

YiRegisterUserEventMonitor installation of event monitors (IDM FOR WINDOWS only)
Use not recommended!

2.2 Initializing and Starting Dialog Manager
The functions which are described next are necessary for initializing and starting a dialog. You have to
install the following functions in your main program:

DM_BindCallBacks
This function transfers all addresses of your functions to Dialog Manager so that Dialog Manager
can call these functions.

DM_BindFunctions
This function transfers all addresses of your functions to the Dialog Manager so that Dialog Man-
ager can call these functions. DM_BindFunctions is needed if the function is defined in modules.

DM_EventLoop
This function starts the processing in Dialog Manager. Without this call no interaction with the user
interface would be possible.

DM_Initialize
This function transfers the parameter from the command line to Dialog Manager and initializes Dia-
log Manager.

DM_LoadDialog
This function loads a dialog into Dialog Manager. This dialog description may be an ASCII file or a
binary file.

DM_LoadProfile
This function loads the user-dependent configuration file with the help of which specifically marked
variables are to be changed.

DM_StartDialog
This function starts the dialog. It initializes the window system and makes visible the windows
defined as visible in the file. The function also executes the dialog-start rule.

2.3 Access Functions
The following functions help you manipulate the objects and object attributes of Dialog Manager. You
should always access the object structures by means of these functions.

2.3.1 Access to Dialog Manager Identifiers
In order to identify the individual objects, you will need the names you have given the objects in the dia-
log script. By these names you can query the object's internal ID of Dialog Manager. You can use this
ID to inform Dialog Manager about the attribute of the object you want to query or change.

DM_DialogPathToID deprecated, replaced by DM_ParsePath
This function returns the Dialog Manager identifier of an object. DM_DialogPathToID has more
abilities than just processing a dialog.

DM_ParsePath
This function searches for an object in any dialog and returns its object ID.

DM_PathToID deprecated, replaced by DM_ParsePath
This function returns the Dialog Manager identifier. This ID has to be used for all other calls to Dia-
log Manager.

2.3.2 Access to Object Attributes
To be able to access any object attribute, you need the object identifier, the data type and the attribute
identifier.

DM_DataChanged
This function is used to signal that the value of the specified attribute (Model attribute) has
changed on a particular Data Model (Model component).

DM_GetMultiValue
This function returns the value of several desired attributes in one call.

DM_GetValueIndex
This function returns the value of the desired attribute of the given object. In contrast to DM_
GetValue this function operates with two indices.

DM_GetValue
This function returns the value of the desired attribute of each object.

DM_ResetMultiValue
This function resets several attributes to the value of the object model or object default in one call.

DM_ResetValueIndex
This function resets the tablefield attribute to the value of the relevant default attribute (Index 0).

DM_ResetValue
This function resets the attribute to the value of the object model.

DM_SetMultiValue
This function changes in one call several attributes to the transferred value.

DM_SetValueIndex
This function changes the attribute to the transferred value. In contrast to DM_SetValue this func-
tion operates with two indices.

DM_SetValue
This function changes the attribute to the transferred value.

2.3.3 Handling Vectorial Attributes
These functions help you in using so-called "vector attributes", i.e. attributes occurring several times
at an object.

A.06.03.b 15

16 ISA DialogManager

DM_FreeVectorValue
By using this function you can release allocated memory space.

DM_GetVectorValue
This function can return several attribute values.

DM_SetVectorValue
By using this function you can set several attribute values.

2.3.4 Handling Complex Vectorial Attributes
To process the contents of a tablefield or a listbox efficiently, you can use the following functions:

DM_FreeContent
This function releases the allocated memory space for an object contents which has been
returned due to a call of DM_GetContent.

DM_GetContent
This function returns the present contents of an object.

DM_SetContent
This function replaces the present contents with a new contents.

2.3.5 Creating and Destroying Objects
Objects can be dynamically created or destroyed by using the following two functions.

DM_CreateObject
This function creates an object of a specific class and returns its identifier. After the object having
been successfully created, a DM function can access the object.

DM_Destroy
This function destroys each object. After a call of this function no DM function can access these
objects any more.

2.3.6 Memory Administration Functions
By using the memory administration functions described next you can allocate and release portable
memory without having to access the functions optimal for the relevant operation system. If these func-
tions are used in an application, you absolutely have to take care that the memory space which has
been allocated by the functions described here, may only be released by these function. In principle,
you can mix different methods of memory allocation; once you have allocated memory, you can only
process it by using the same kind of functions.

DM_Calloc
This function allocates memory in the given size and given number.

DM_Free
This function releases allocated memory.

DM_Malloc
This function allocates memory in the given size.

DM_Realloc
This function allocates memory in a given size.

2.3.7 Service Functions (Utilities)
DM_CallMethod
By using this function you can call a method of an object from a program.

DM_CallRule
By using this function you can call named rules with parameters from an application.

DM_Control
By using this function the application can rebuild the screen, switch the code page currently used,
or lock the keyboard.

DM_ControlEx
This function can be used to change general settings in the ISA DIALOG MANAGER or to trigger
actions.

DM_Execute
This function starts another program.

DM_DumpState
This function writes status information into the log or trace file.

DM_FmtDefaultProc
If an editable text has a format, this function will be called for all occurring tasks (e.g. setting the
format, input control, navigation etc.).

DM_IndexReturn
This function is used to safely return local index values (DM_Index) from a function.

DM_OpenBox
This function opens a messagebox or a dialogbox (window with attribute .dialogbox = true).

DM_ProposeInputHandlerArgs
With this function a still unassigned message number for DM_InputHandler can be queried (IDM
FOR WINDOWS only).

DM_QueryBox
By using this function you can open messageboxes.

DM_QueueExtEvent
By using this function you can put an event in a queue processing a rule which is assigned to an
external event.

DM_SaveProfile
This function writes the current values of all configurable record instances and global variables
of a dialog or module into a configuration file (profile).

DM_SendEvent

A.06.03.b 17

18 ISA DialogManager

By using this function you can put an event in a queue processing a rule which is assigned to an
external event.
In contrast to DM_QueueExtEvent, the external event is indicated through a DM_Value structure,
which facilitates the utilization of message resources.

DM_SendMethod
This function puts a method call into the event queue to be executed asynchronously from the
event loop.

DM_TraceMessage
By using this function the application can write strings in the tracefile.

DM_ValueReturn
This function is used to safely return local DM_Value values from a function.

See also

Chapter “Integrating Custom Functions (Handlers)”

2.3.8 Special Functions
These functions are normally not used, i.e. only in exceptions, since they are called automatically by
Dialog Manger via the modules startup.o or startup.obj. Only if one of these modules is replaced
(with one of its own), these functions have to be called.

DM_BootStrap
By using this function you can initialize Dialog Manager. DM_BootStrap has to be the first function
to be called in DM.

DM_InitMSW
By using this function the command line of a Windows program can be broken down into its indi-
vidual constituents.

DM_ShutDown
By using this function DM can be closed properly.

2.3.9 Linking a Window System
To link the application to the window system, the following functions are available:

DM_GetToolkitData
This function returns the window-system-specific data of an attribute.

DM_SetToolkitData
By using this function you can overwrite window-system-specific data of an attribute.

See also

Chapter “Integrating Custom Functions (Handlers)”

2.4 Error Processing
If a function call to Dialog Manager returns FALSE, the application can query the error with help of the
functions which are described in this chapter:

DM_ErrMsgText
This function returns the text string to an error code.

DM_FatalAppError
This function should be called if the application has discovered a serious error and cannot con-
tinue operating any more. It finishes any work in Dialog Manager.

DM_QueryError
This function returns the number of actual fields together with the error codes.

See also

Chapter “Integrating Custom Functions (Handlers)”

2.4.1 Information in the Error Code
The error code is a combination of three kinds of information:

the severity of the error

the error code itself

the module in which the error occurs.

To extract the error from the error code variable, you can use the macro

DM_ExtractSev(ERRNO)

The following error degrees are possible:

DM_SeveritySuccess no error

DM_SeverityWarning warning

DM_SeverityError error

DM_SeverityFatal serious error, DM cannot continue work

DM_SeverityProgErr program error

To extract the module which has caused the error, the macro

DM_ExtractModule(ERRNO)

can be used.

The following modules are possible:

DM_ModuleIDM the error is within DM

A.06.03.b 19

20 ISA DialogManager

DM_ModuleUnix the error occurs on a function call to the operation system UNIX

DM_ModuleMpe the error occurs on a function call to the operation system MPE

DM_ModuleVms the error occurs on a function call to the operation system VMS

To extract the error, the macro

DM_ExtractErrno(ERRNO)

can be used.

The possible error codes are defined in IDMuser.h.

2.5 Working with Collections
DM_ValueChange
With this function a value reference managed by IDM may be manipulated. Either the entire value
can be replaced or a single element value in a collection.

DM_ValueCount
Returns the number of values in a collection (without the default values). It is also possible to
return the index type or the highest index value.

DM_ValueGet
This function allows to retrieve a single element value that belongs to a defined index from col-
lections.

DM_ValueIndex
This function can be used to determine the corresponding index for a position in a collection.

DM_ValueInit
With this function a value reference can be converted into a local or global value reference man-
aged by the IDM. This allows the further manipulation of the value by DM_Value…() functions and
its transfer as parameter or return value.

2.6 String Functions
DM_StrCreate
With this function a text with a given character encoding can be created.

DM_Strdup
By using this function you can duplicate strings.

DM_StringChange
This function allows to modify a string that is managed by the IDM.

DM_StringInit
This function converts a string into a local or global respectively static string managed by the IDM.

DM_StringReturn
This function is used to safely return local strings from a function.

2.7 Integrating Custom Functions (Handlers)
The C interface of the IDM provides the possibility to integrate own “handlers” to individually respond
to events or errors as well as to add own functionality. For these functions that have to be imple-
mented by the user, the IDM specifies the data type and the parameters and provides functions for
registering, unregistering, activating and deactivating the “handlers” with the IDM. The custom “hand-
lers” are then called by the IDM in the respective situations (event, error...) for which they are inten-
ded.

DM_DispatchHandler
Setting up custom functions to process XEvents at the X level (IDM FOR MOTIF only).

DM_ErrorHandler
With this function a handler function, which is invoked with errors recognized by the rule inter-
preter, can be set up.

DM_ExceptionHandler
Setting up custom function for handling “asserts” of the IDM.

DM_InputHandler
Setting up custom functions to handle additional events (messages) of the window system.

DM_InstallNlsHandler
By using this function you can install a function for the administration of external text catalogs.

DM_NetHandler
Installation of a user-defined function for manipulating data that the DDM sends over a network,
e.g. to encrypt the data.

DM_PictureHandler
Custom function (graphics handler, GFX handler) for loading images in graphic formats not sup-
ported by the IDM.

DM_PictureReaderHandler
Setting up graphics handlers (GFX handlers) for loading images in graphic formats not supported
by the IDM.

YiRegisterUserEventMonitor Use not recommended!
Installation of event monitors that can interrupt the event loop of the IDM (IDM FOR WINDOWS

only).

2.8 Handling of String Parameters
If strings are retrieved from the dialog via the interface functions of Dialog Manager out of the applic-
ation, DM will copy the corresponding string in a temporary buffer from which the application can take
the relevant string. It is not allowed to write in this buffer, since the application does not know in which
size the memory space has been allocated for the string. On the next call to Dialog Manager which is
providing again a string as result, this temporary buffer is overwritten. This is not the case, however, if
this function has been called by the option DMF_DontFreeLastStrings. Only by using this option the
value of the string will not be overwritten. If this option is not set, then the string which has been
received before cannot be accessed any more.

A.06.03.b 21

22 ISA DialogManager

Example

DM_GetValue (Obj, AT_text, ...);
=> string is copied into temporary buffer

DM_GetValue (Obj1, AT_text, ...);
=> string is copied, old string is not valid

any more!

DM_GetValue(Obj, AT_text, ...);
=> string is copied in temporary buffer

DM_GetValue(Obj1, AT_text,, DMF_DontFreeLastStrings);
=> text of object is copied and old string

is still valid
DM_GetValueIndex(Obj2, AT_content, ...);

=> string is copied, both of the strings queried
before are no longer valid.

2.9 Protection in the Programming Interface
The programming interface offers functions which may be called by the application. But not every DM
function may be called at any time. For example, DM_Initialize has to be called at the beginning, only
after that DM_LoadDialog may be called. For these constellations there are protection measures
checking whether the call of a function is allowed at a certain time. If this function may not be called,
the error code will be set (DME_WrongRunState).

2.9.1 States of Dialog Manager
Dialog Manager passes different states during the program course. Each DM function may only be
called in certain states. By using certain DM functions, Dialog Manager changes the state or accepts
a different state temporarily.

U uninitialized (initial state)

B booted

I initialized

M in the main loop

W function which is near the window system is presently active

F calling a format function

Q within DM_QueueExtEvent

S stopped (final state)

Figure 1: State transitions in DM

2.9.2 Transitions between States
The following functions cause a transition from one state to another state:

Function before while after

DM_BootStrap U - U, B

DM_EventLoop I M I

DM_Initialize B - B, I

DM_QueueExtEvent I, M, W, F Q I, M, W, F (like before)

DM_SendEvent I, M, W, F Q I, M, W, F (like before)

DM_SendMethod I, M, W, F Q I, M, W, F (like before)

DM_ShutDown B, I, M - S

2.9.3 Permitted States for Functions
The call of the following functions is only permitted in the marked states:

Function U B I M W F Q S

DM_ApplyFormat X X

DM_BindCallBacks X X

A.06.03.b 23

24 ISA DialogManager

Function U B I M W F Q S

DM_BindFunctions X X

DM_BootStrap X

DM_CallFunction X X

DM_CallMethod X X

DM_CallRule X X

DM_Control X X

DM_ControlEx X X

DM_CreateObject X X

DM_DataChanged X X X X

DM_Destroy X X

DM_DialogPathToID X X X X

DM_ErrMsgText X X X X X

DM_EventLoop X X

DM_FmtDefaultProc X X X

DM_FreeContent X X

DM_FreeVectorValue X X

DM_GetContent X X X

DM_GetMultiValue X X X

DM_GetToolkitData X X X

DM_GetValue X X X

DM_GetValueIndex X X X

DM_GetVectorValue X X X

DM_Initialize X

DM_InputHandler X X X

DM_InstallNlsHandler X

Function U B I M W F Q S

DM_LoadDialog X X

DM_LoadProfile X X

DM_OpenBox X X

DM_ParsePath X X X X

DM_PathToID X X X X

DM_PictureReaderHandler X X X

DM_QueryBox X X

DM_QueryError X X X X X

DM_QueueExtEvent X X X X

DM_ResetMultiValue X X

DM_ResetValue X X

DM_ResetValueIndex X X

DM_SaveProfile X X

DM_SendEvent X X X X

DM_SendMethod X X X X

DM_SetContent X X

DM_SetMultiValue X X

DM_SetToolkitData X X X

DM_SetValue X X

DM_SetValueIndex X X

DM_SetVectorValue X X

DM_ShutDown X X X

DM_StartDialog X X

DM_StopDialog X X

DM_TraceMessage X X X X X

There is no checking for the following functions:

A.06.03.b 25

26 ISA DialogManager

DM_Calloc

DM_FatalAppError

DM_Free

DM_Malloc

DM_ProposeInputHandlerArgs

DM_Realloc

DM_Strdup

DM_WaitForInput

2.9.4 SetValue from Canvas Functions
The functions

DM_ResetValue

DM_ResetValueIndex

DM_SetValue

DM_SetValueIndex

are permitted in canvas functions only for changing variables.

3 Functions in Alphabetical Order

3.1 AppMain
This function is the main function of the application. It is called by the DM immediately after the pro-
gram start and is then able to trigger the corresponding actions. It gets the same parameters as the
usual "main" function of a C program.

int DML_c DM_CALLBACK AppMain
(
 int argc,
 char far * far *argv
)

Parameters

-> int argc

In this parameter the number of those command-line arguments which have been indicated at the
program start are transferred.

-> char far * far * argv

In this parameter the arguments indicated on the command line are transferred.

Example

int DML_c DM_CALLBACK AppMain (argc, argv)
int argc;
char far *far *argv;
{
 DM_ID dialogID;

 if (DM_Initialize (&argc, argv, 0) == FALSE)
 return (1);
 if (!(dialogID = DM_LoadDialog ("dialogname", 0)))
 return (1);

 if (!DM_BindCallBacks((DM_FuncMap *) 0, 0, dialogID, 0))
 DM_TraceMessage ("Function binding incomplete", 0);

 DM_StartDialog (dialogID, 0);
 DM_EventLoop (0);
 return (0);
}

If an application not linked to the dialog is to be started/ended in a distributed environment, the func-
tions

A.06.03.b 27

28 ISA DialogManager

AppInit

AppFinish

have to be used instead of the main function.

See Also

Object Application

Chapter “Application Interface” in manual “Distributed Dialog Manager (DDM)”

3.1.1 AppInit
This function is the main function of a distributed DM application. This function starts the application
and executes the steps necessary for the initialization.

int DML_c DM_CALLBACK AppInit
(
 DM_ID applID,
 DM_ID dialogID,
 int argc,
 char far * far *argv
)

Parameters

-> DM_ID applID

Identifier of the application which has been started.

-> DM_ID dialogID

Identifier of the dialog to which the application belongs.

-> int argc

Number of the transferred command-line parameters.

-> char far * far *argv

List of command-line parameters.

Return Value

0 The application has been initialized and started successfully.

!=0 The application could not be initialized and started successfully, and that the
return value contains the error code.

Example

/*
* setup the function table of functions which should be passed
* to Dialog Manager

*/
#define ApplFuncCount

(sizeof(ApplFuncMap)/ sizeof(ApplFuncMap[0]))

static DM_FuncMap ApplFuncMap[] = {
{ "FillListbox", (DM_EntryFunc) FillListbox },
{ "FillContinue", (DM_EntryFunc) FillContinue },
{ "QueryListbox", (DM_EntryFunc) QueryListbox },
{ "CheckFilename", (DM_EntryFunc) CheckFilename }

};

int DML_c DM_CALLBACK AppInit__4(
(DM_ID appl),
(DM_ID dialog),
(int argc)
(char far * far * argv))
{
 if (!DM_BindFunctions(ApplFuncMap, ApplFuncCount,
 appl, 0, DMF_silent))
 DM_TraceMessage ("There are some functions missing", 0);

 return 0;
}

3.1.2 AppFinish
The application is finished by means of this function. It is meant to carry out the necessary steps so
that the applications can be finished correctly.

int DML_c DM_CALLBACK AppFinish
(
 DM_ID applID,
 DM_ID dialogID
)

Parameters

-> DM_ID applID

Identifier of application which has been finished.

-> DM_ID dialogID

Identifier of dialog to which application belongs.

Return Value

0 The application could be finished successfully.

A.06.03.b 29

30 ISA DialogManager

!=0 The application could not be finished successfully and that the return value con-
tains the error code.

Example

int DML_c DM_CALLBACK AppFinish (applID, dialogID)
DM_ID applID;
DM_ID dialogID;

{
 return 0;
}

3.2 DM_ApplyFormat
By using this function a string can be formatted so as it would be displayed with a given format. Usu-
ally, formats are available only in edittexts and tablefields, i.e. only there you can format the output
text by means of defined formats or format functions. With this function you can format any texts you
want.

DM_String DML_default DM_EXPORT DM_ApplyFormat
(
 DM_ID formatOrFunc,
 DM_String formatString,
 DM_String string,
 DM_Options options
)

Parameters

-> DM_ID formatOrFunc

In this parameter the ID of the format or the format function which is to format the string is indic-
ated. If the Null-ID is indicated, a valid format string has to be indicated in the next parameter.

-> DM_String formatString

In this parameter you can indicate any valid format string with the help of which the string is to be
formatted. This parameter will only be considered if you have indicated the parameter "form-
atOrFunc" with the ID of a format function or if you have chosen ID= 0. If in the parameter "form-
atOrFunc" the ID of a format is indicated, this parameter will be ignored.

-> DM_String string

In this parameter you can indicate the string to be formatted by the indicated format.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

The function returns the string which has been formatted by the chosen format; this is exactly that
string which would be displayed in an input field by the chosen format.

Example

A string is to be formatted out of a C function.

void UseDMFormat __0()
{

DM_String format = "NN.NN.NNNN";
DM_String string = "12121995";

DM_TraceMessage("Ergebnis DM_ApplyFormat: %s",DMF_Printf,
DM_ApplyFormat((DM_ID) 0, format, string, 0));

A.06.03.b 31

32 ISA DialogManager

}

In the trace file the formatted string appears as follows:

"12.12.1995"

See Also

Built-in function applyformat in manual “Rule Language”

3.3 DM_BindCallBacks
After having loaded the dialog a table of functions can be passed on to DM by means of this function.
By using this table the DM then calls the functions indicated in the dialog.

DM_Boolean DML_default DM_EXPORT DM_BindCallBacks
(
 DM_FuncMap funcmap,
 DM_UInt funccount,
 DM_ID dialogID,
 DM_Options options
)

Parameters

-> DM_FuncMap funcmap

This parameter is the table of functions which can be called directly by DM. The structure of this
table is described in the chapter on data structures.

-> DM_UInt funccount

This parameter indicates the size of the transferred function tables.

-> DM_ID dialogID

This parameter is the ID of the dialog for which this function table is to be valid. You have received
this ID from the function DM_LoadDialog as return value.

-> DM_Options options

Here the following options are possible:

Option Meaning

DMF_Silent This option means that no error messages are to be output to the user.
Otherwise a difference between superfluous functions and missing functions
will be made.

DMF_Verbose This option means that error messages are to be output to the user.

Example

A table with three functions is to be transferred to DM.

In order to initialize the function table with the addresses of these functions, these functions have to
be declared at least before the table definition.

Declaration in the Header File

DM_boolean DML_c DM_ENTRY ReadZip __((DM_String));
char* DML_c DM_ENTRY QueryZip __((DM_String));
DM_boolean DML_c DM_ENTRY WriteFile __((DM_String, DM_String,

DM_String));

A.06.03.b 33

34 ISA DialogManager

Definition of the Table in the C Program

#define FuncCount (sizeof(FuncMap)/ sizeof(FuncMap[0]))

static DM_FuncMap far FuncMap[] = {
{ "ReadZip", (DM_EntryFunc) ReadZip},
{ "QueryZip", (DM_EntryFunc) QueryZip},
{ "WriteFile", (DM_EntryFunc) WriteFile},
};

/* Install table of application functions */

{

if (!DM_BindCallBacks(FuncMap, FuncCount, dialogID, 0))
DM_TraceMessage ("There are some functions missing.", 0);

return 0;
}

3.4 DM_BindFunctions
By means of this function, a table of functions can be transferred to DM, after having loaded the dia-
log. This function is very similar to the function DM_BindCallBacks; the difference is, however, that
this function has to be used if the relevant dialog is structured in modules and if the functions have
been defined in modules.

By using these functions, other functions defined in modules which have not been loaded yet can be
linked to the dialog so that these functions can be called immediately after having loaded the module.

DM_Boolean DML_default DM_EXPORT DM_BindFunctions
(
 DM_FuncMap funcmap,
 DM_UInt funccount,
 DM_ID objID,
 DM_ID moduleID,
 DM_Options options
)

Parameters

-> DM_FuncMap funcmap

This parameter is the table of functions which can be directly called by DM. The structure of this
table is described in the chapter on data structures. This table can be created automatically by the
simulation program via the option +writefuncmap.

-> DM_UInt funccount

This parameter indicates the size of the transferred function table.

-> DM_ID objID

This parameter is the ID of the object to which this table is to be linked. This ID may be either a dia-
log, a module or an application.

-> DM_ID moduleID

This parameter is the ID of the module which is to supply its function immediately from this table.
This ID has to be specified only if a module has been reloaded and if the functions are only then
linked to the superordinate instance. Usually, the ID has to be specified by 0.

-> DM_Options options

Currently, the following values are possible:

Option Meaning

DMF_ReplaceFunctions This option means that a function table which probably exists has
to be replaced completely by a new table at the indicated object. If
this option is not specified, the new table will be attached at the
end of an existing table of the object.

A.06.03.b 35

36 ISA DialogManager

Example

A C file is created from a module via the +writefuncmap option. The dialog file has the following struc-
ture:

module ModFuncDate
application TimeServer
{

!! Get the current date from the server to synchronize the
!! clients
!! example: CurrentDate(Year, Month, Day) returns true
!! if successful and fills the three variables with the
!! appropriate values
function boolean CurrenDate(integer Year output,

integer Month output, integer Day output);

!! Get the current time, see function CurrentDate
function boolean CurrentTime(integer Hour output,

integer Minute output, integer Second output);
}

The generated C program looks as this:

#include "IDMuser.h"
#include "dateappl.h"

#define FuncCount_TimeServer (sizeof(FuncMap_TimeServer) / sizeof(FuncMap_
TimeServer[0]))

static DM_FuncMap FuncMap_TimeServer[] =
{
/*
** Get the current date from the server to synchronize the
** clients
** example: CurrentDate(Year, Month, Day) returns true
** if successful and fills the three variables with the
** appropriate values
*/

{ "CurrenDate", (DM_EntryFunc) CurrenDate },
/*
** Get the current time, see function CurrentDate
*/

{ "CurrentTime", (DM_EntryFunc) CurrentTime },
}

DM_Boolean DML_default BindFunctions_TimeServer __3(
(DM_ID, dialogID),
(DM_ID, moduleID),

(DM_Options, options))
{
return (DM_BindFunctions (FuncMap_TimeServer,

FuncCount_TimeServer,dialogID,moduleID,options))
}

A.06.03.b 37

38 ISA DialogManager

3.5 DM_BootStrap
With this function, the DM is internally initialized, the arguments of the command line are saved, and
the first action is carried out (-DMerrfile, -DMtracefile). In DM, this function must be the first function to
be called by the application. Usually this call is made by the "Main" program which then calls the real
main program of the application, AppMain. This is why this function may only be called if the Main of
DM is replaced by an application-specific one.

int DML_default DM_EXPORT DM_BootStrap
(
 int *argcp,
 char far * far * far *argvp
)

Parameters

<-> int *argcp

In this parameter the address is given to the number of parameters. If the arguments are already
being processed, this number can then be changed by DM_BootStrap.

<-> char far * far * far *argvp

This parameter works as a pointer to the arguments of the command line. All arguments pro-
cessed by DM_BootStrap are removed from this command line.

Return Value

0 Initialization has been carried out without an error; DM can be started normally.

!=0 An error has occurred during initialization; the program must not be continued.

Example

Excerpt from the file "startup.c" by which the Dialog Manager programs are started:

int cdecl main __2(
(int, argc),
(char far * far *, argv))
{

register int status;
static char running = 0;

if ((status = running++) == 0)
{

if ((status = DM_BootStrap(&argc, &argv)) == 0)
{

DM_InitOptions(&argc, argv, 0);
status = AppMain (argc, argv);

}
}

return (status);
}

A.06.03.b 39

40 ISA DialogManager

3.6 DM_CallFunction
To call any functions known to Dialog Manager in other parts of the application, the function DM_
CallFunction has to be used. The function calls the corresponding function in any application part.

DM_Boolean DML_default DM_EXPORT DM_CallFunction
(
 DM_ID funcID,
 DM_UInt argcount,
 DM_Value *argvec,
 DM_Value *result,
 DM_Options options
)

Parameters

-> DM_ID funcID

Identifier of the function to be called.

-> DM_UInt argcount

Specifies the number of parameters that are to be used when calling the function. The assignment
of parameters can be read from the corresponding element in the argvec parameter. argcount
must correspond exactly to the actual assignment of the argvec parameter. The maximum number
is 8.

<-> DM_Value *argvec

This parameter is an array of DM_Value values which are to be used as parameters for the func-
tion call. The length of the vector has to correspond exactly to the value of argcount.

<- DM_Value *result

This returns the return value of the function, if the function call could be carried out.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

TRUE Function has been called successfully.

FALSE Function could not be called.

Example

A function defined in the dialog is to be called by means of an integer parameter.

void DML_default DM_ENTRY CALLFUNC __((DM_ID Funktion))
{

DM_Value argv;
DM_Value retval;

argv.type = DT_integer;
argv.value.integer = 888;
if (DM_CallFunction (Funktion, 1, &argv, &retval, 0))

if (retval.type == DT_integer)
printf(Erhaltener Wert: %ld", retval.value.integer);

}

See Also

Object Application

Manual “Distributed Dialog Manager (DDM)”

A.06.03.b 41

42 ISA DialogManager

3.7 DM_CallMethod
With this function you can call object methods from the application. The parameter values depend on
the method and the object at which this method is to be called.

DM_boolean DML_default DM_EXPORT DM_CallMethod
(
 DM_ID object,
 DM_Method method,
 DM_UInt argc,
 DM_Value *argvc,
 DM_Value *retval,
 DM_Options options
)

Parameters

-> DM_ID object

This parameter describes the object whose method is to be called.

-> DM_Method method

This parameter describes the method which is to be called at this object. The following parameters
of this function are assigned according to this value.

-> DM_UInt argc

This parameter specifies the number of valid method parameters.

-> DM_Value *argv

Array of DM_Value structures which include the valid parameters of the called method.

The length of this parameters has to correspond absolutely to the number given at the parameter
"argc". The maximal length of this array is 8.

<- DM_Value *retval

Pointer to a DM_Value structure which is used by this function as return value.

An element is set in this structure according to the called method.

-> DM_Options options

You can specify the option DMF_DontFreeLastStrings to keep the memory of the string para-
meters valid.

Return Value

TRUE Method was carried out successfully.

FALSE Method was not carried out successfully.

At present, the following methods exist:

Object Method C Constant

tablefield clear MT_clear

insert MT_insert

delete MT_delete

exchange MT_exchange

Example

Unloading a tablefield in a reloading function .

void DM_CALLBACK ContFunc (DM_ContentArgs* args)
{

DM_Value methArgs[2];
DM_Value retval;
DM_Value first, last;
ushort ldStart, ldCount;
ushort visStart;

ldStart = args->loadfirst - args->header;
ldCount = args->loadlast - args->loadfirst + 1;

visStart = args->visfirst - args->header;

if (visStart > 20)
{

/*
* On loading, two parameters have to be
* specified for the method.The start has to
* take place and end index between which the
* deletion has to take place. Both of them
* have the datatype integer.
*/
methArgs[0].type = DT_integer;
methArgs[1].type = DT_integer;
methArgs[0].value.integer = args->header + 1;
methArgs[1].value.integer = visStart - 20;
DM_CallMethod(args->object, MT_clear, 2, methArgs,

&retval, 0);
}

}

A.06.03.b 43

44 ISA DialogManager

3.8 DM_Calloc
With this function you can allocate memory. DM_Calloc is carried out in dependence of the used oper-
ating system with the relevant available functions.

Memory allocated with DM_Calloc must be released with DM_Free or modified with DM_Realloc only!

DM_Pointer DML_default DM_EXPORT DM_Calloc
(
 DM_UInt4 nelem,
 DM_UInt4 elsize
)

Parameters

-> DM_UInt4 nelem

This parameter specifies the number of elements to be allocated.

-> DM_UInt4 elsize

This parameter specifies the size of an element to be allocated.

Warning

Please note that, on MS Windows, nelem * elsize is not > 64 KByte.

Return Value

Pointer is on the allocated memory. If the memory could not be allocated, the NULL pointer is
returned.

In contrast to DM_Malloc, the memory is initialized at 0.

Example

For 10 elements memory is to be allocated for the structure DM_Content.

DM_Content *content;

if ((content = DM_Calloc (10, sizeof (DM_Content))
{
 ...
}

3.9 DM_CallRule
Specified rules and parameters can be called from the application with this function.

DM_Boolean DML_default DM_EXPORT DM_CallRule
(
 DM_ID ruleID,
 DM_ID objectID,
 DM_UInt argc,
 DM_Value *argv,
 DM_Value *retval,
 DM_Options options
)

Parameters

-> DM_ID ruleID

Identifies the rule to be executed.

-> DM_ID objectID

Corresponds to this in the corresponding rule, i.e. this in the rule gets the object you have spe-
cified here.

-> DM_UInt argc

Number of rule parameters.

-> DM_Value *argv

Parameter as an array of DM_Value structures. This parameter has to correspond exactly to the
number given in argc. The maximum number of parameters is 16.

<- DM_Value *retval

Pointer to a DM_Value structure which is filled as the return value.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

TRUE Rule was executed successfully.

FALSE Rule could not be executed.

Example

Call of a rule in the dialog. The rule is defined as follows:

rule integer Callrule (integer I input)
{
 I := I + atoi(Et.content);
 Et.content := itoa(I);

A.06.03.b 45

46 ISA DialogManager

 print I;
 return(I);
}

The C program here looks as this:

void DML_default DM_ENTRY CALLRULE __((DM_ID Rule))
{

DM_Value argv;
DM_Value retval;

argv.type = DT_integer;
argv.value.integer = 888;
if (DM_CallRule (Rule, Rule, 1, &argv, &retval, 0))

if (retval.type == DT_integer)
printf(Received Value: %ld", retval.value.integer);

}

3.10 DM_Control
This function can be used to change general settings in the ISA DIALOG MANAGER or to trigger actions.

DM_boolean DML_default DM_EXPORT DM_Control
(

DM_ID objectID,
DM_UInt action,
DM_Options options

)

Parameters

-> DM_ID objectID

Object for which the specified action shall be performed.

-> DM_UInt action

Action to be performed by the IDM. For this purpose, several constants are defined in the include
file IDMuser.h. These constants are explained in the table below.

-> DM_Options options

Contains an argument for the action, if required (see table below).

Return value

DM_TRUE The action has beeen executed successfully.

DM_FALSE The action could not be executed.

The following table shows the valid assignments of the individual parameters and explains their mean-
ing. When nothing else is stated with the action, the objectID has to be 0.

action options Meaning

DMF_UpdateScreen 0 All internal SetVal calls shall be displayed on the
screen. In this case, the first parameter has to be
assigned with the dialog.

A.06.03.b 47

48 ISA DialogManager

action options Meaning

DMF_UIAutomationMode With this action the specific UI Automation support of
the IDM for its specific objects can be disabled.
However, the UI Automation support provided by
Microsoft for the standard controls remains active.
UI Automation support is active by default.
The switching must happen before calling DM_Ini-
tialize() and after bootstrapping.

0 Disables the UI Automation support of the IDM.

1 Enables the UI Automation support of the IDM.

DMF_PCREBinding 0 Disables the linking to the PCRE library, thus Regular
Expressions are no longer possible.

1 Linking to statically present PCRE functions in the
executable (linking type E).

2 Only dynamic linking of PCRE libraries relative to the
application (linking type A).

3 Linking to PCRE libraries relative to the application or
from the system (linking sequence A – S).

4 Linking with priority for functions in the executable
(linking sequence E – A – S), this is the standard for
self-built IDM applications.

5 Linking analog to 4 but in reverse order, i.e. pre-
cedence for the PCRE library installed in the system
(linking sequence S – A – E).

See also
Chapter “PCRE Library for Support of Regular Expressions” at the
built-in function regex

DMF_SignalMode 0 The signals are intercepted by the function signal.

1 The signals are intercepted by the function sigaction.

action options Meaning

DMF_SetSearchPath 0 This action sets the search path for IDM files (dialog,
module, interface, and binary files). The semicolon-
separated directories have to be passed as string
pointers in the data parameter.

See also
Command line option -IDMsearchpath

DMF_SetUsepathModifier 0 This action controls the converter that turns Use
Paths into file paths. The control happens through a
string as data parameter.

Value range

"" – empty string

"L" – conversion to lower case

"F" – conversion of the first letter in each path seg-
ment to lower case

"U" – conversion to upper case

"u" – conversion to upper case except for the file
extension

DMF_SetCodePage With this action the code page for the transfer of
strings between application and IDM can be set.
Usually, IDM expects and returns strings that are
encoded according to the ISO 8859-1 standard. With
this action a different character encoding can be
defined.

As of IDM version A.06.01.d, it is possible to specify
an Application object in the objectID parameter. This
changes the application-specific code page that is
required for processing strings. The change of an
application-specific code page within one of the func-
tions of the corresponding application has an imme-
diate effect.
However, the call on a DDM server side does not sup-
port changing the application code page, but only
affects the network application anyway.

A.06.03.b 49

50 ISA DialogManager

action options Meaning

DMF_SetFormatCodePage Defines the code page in which format functions inter-
pret and return strings.

The options below apply to DMF_SetCodePage and DMF_SetFormatCodePage

CP_ascii ASCII character encoding.

CP_iso8859 Western European Latin-1 encoding according to ISO
8859-1.

CP_cp437 English character encoding according IBM code page
437 (MS-DOS).

CP_cp850 Western European character encoding according to
IBM code page 850 (MS-DOS).

CP_iso6937 Western European character encoding with variable
length according to ISO 6937.

CP_winansi MICROSOFT WINDOWS character encoding.

CP_dec169 Character encoding according to DEC code page
169.

CP_roman8 8-bit character encoding according to HP code page
Roman-8.

CP_utf8 8-bit Unicode encoding with variable length, cor-
responds to ASCII encoding in the range 0 – 127.

CP_utf16
CP_utf16b
CP_utf16l

16-bit Unicode encoding with character widths from 2
up to 4 bytes.
There are two variants:

BE – big-endian, bytes with higher numerical sig-
nificance first.

LE – little-endian, bytes with lower numerical sig-
nificance first.

UTF-16 without a specified byte order corresponds to
the LE variant on Microsoft Windows and to the BE
variant on Unix systems.

CP_cp1252 Western European character encoding according to
Microsoft Windows code page 1252.

action options Meaning

CP_acp Currently used ANSI code page of an application on
Microsoft Windows.
Can only be used on Microsoft Windows.

CP_hp15 Western European 16-bit character encoding used by
HP systems.

CP_jap15 Japanese 16-bit character encoding used by HP sys-
tems.

CP_roc15 Simplified Chinese 16-bit character encoding used by
HP systems.

CP_prc15 Traditional Chinese 16-bit character encoding used
by HP systems.

CP_ucp Custom code page ("User Code Page"). Convert to
any code page with iconv().

Remarks

Switching to a code page is valid until another code page is set. All strings have to be transferred
in this code page and all strings that IDM transfers to the application are converted into this code
page.

The function DM_Control must not be called from a canvas callback function.

Example

Setting the application code page to “Roman 8”.

DM_TraceMessage ("This application will use roman-8 codepage", 0);
DM_Control (0, DMF_SetCodePage, CP_roman8);

See also

Function DM_ControlEx

A.06.03.b 51

52 ISA DialogManager

3.11 DM_ControlEx
This function can be used to change general settings in the ISA DIALOG MANAGER or to trigger actions.

Compared to the function DM_Control, this function provides the additional action DMF_SetUser-
CodePage. Using DMF_SetUserCodePage a code page system string can be set for the iconv con-
version which is only active if an IDM code page is set to CP_ucp. A setting to CP_ucp is done e.g. by
the action DMF_SetCodePage. When using this code page, a code page conversion of char-
acters/strings is performed by means of the iconv routines available on UNIX/LINUX. The user can
freely choose the codepage. Since the iconv functionality is not available on MS-Windows or VMS
this is not supported on these platforms (default conversion to ?-characters).
From/to which codepage is actually converted can be determined by the user. It is only necessary that
iconv supports the conversion from/to UTF-8! By default the user codepage "8859-1" is set. By means
of the action DMF_SetUserCodePage the application programmer can set the code page in which his
strings are.

DM_boolean DML_default DM_EXPORT DM_ControlEx
(

DM_ID objectID,
DM_UInt action,
DM_Pointer data,
DM_Options options

)

Parameters

-> DM_ID objectID

Object for which the specified action shall be performed.

-> DM_UInt action

Action to be performed by the IDM. For this purpose, several constants are defined in the include
file IDMuser.h. These constants are explained in the table below.

-> DM_Pointer data

Parameter for passing arbitrary data to the function.

For the action DMF_SetUserCodePage, a pointer to a string containing code page code must be
given in this parameter.

-> DM_Options options

Contains an argument for the action, if required (see table below).

Return value

DM_TRUE The action has beeen executed successfully.

DM_FALSE The action could not be executed.

The following table shows the valid assignments of the individual parameters and explains their mean-
ing. When nothing else is stated with the action, the objectID has to be 0.

action options Meaning

DMF_UpdateScreen 0 All internal SetVal calls shall be displayed on the
screen. In this case, the first parameter has to be
assigned with the dialog.

DMF_UIAutomationMode With this action the specific UI Automation support of
the IDM for its specific objects can be disabled.
However, the UI Automation support provided by
Microsoft for the standard controls remains active.
UI Automation support is active by default.
The switching must happen before calling DM_Ini-
tialize() and after bootstrapping.

0 Disables the UI Automation support of the IDM.

1 Enables the UI Automation support of the IDM.

DMF_PCREBinding 0 Disables the linking to the PCRE library, thus Regular
Expressions are no longer possible.

1 Linking to statically present PCRE functions in the
executable (linking type E).

2 Only dynamic linking of PCRE libraries relative to the
application (linking type A).

3 Linking to PCRE libraries relative to the application or
from the system (linking sequence A – S).

4 Linking with priority for functions in the executable
(linking sequence E – A – S), this is the standard for
self-built IDM applications.

5 Linking analog to 4 but in reverse order, i.e. pre-
cedence for the PCRE library installed in the system
(linking sequence S – A – E).

See also
Chapter “PCRE Library for Support of Regular Expressions” at the
built-in function regex

DMF_SignalMode 0 The signals are intercepted by the function signal.

1 The signals are intercepted by the function sigaction.

A.06.03.b 53

54 ISA DialogManager

action options Meaning

DMF_SetSearchPath 0 This action sets the search path for IDM files (dialog,
module, interface, and binary files). The semicolon-
separated directories have to be passed as string
pointers in the data parameter.

See also
Command line option -IDMsearchpath

DMF_SetUsepathModifier 0 This action controls the converter that turns Use
Paths into file paths. The control happens through a
string as data parameter.

Value range

"" – empty string

"L" – conversion to lower case

"F" – conversion of the first letter in each path seg-
ment to lower case

"U" – conversion to upper case

"u" – conversion to upper case except for the file
extension

DMF_SetCodePage With this action the code page for the transfer of
strings between application and IDM can be set.
Usually, IDM expects and returns strings that are
encoded according to the ISO 8859-1 standard. With
this action a different character encoding can be
defined.

As of IDM version A.06.01.d, it is possible to specify
an Application object in the objectID parameter. This
changes the application-specific code page that is
required for processing strings. The change of an
application-specific code page within one of the func-
tions of the corresponding application has an imme-
diate effect.
However, the call on a DDM server side does not sup-
port changing the application code page, but only
affects the network application anyway.

action options Meaning

DMF_SetFormatCodePage Defines the code page in which format functions inter-
pret and return strings.

DMF_SetUserCodePage Sets the character code for iconv, and thus indirectly
influences the IDM code page CP_ucp, which is activ-
ated by DMF_SetCodePage. (Only on platforms that
support iconv).
The code page code is passed in the data parameter
(pointer to a string containing code page code).

The options below apply to DMF_SetCodePage and DMF_SetFormatCodePage

CP_ascii ASCII character encoding.

CP_iso8859 Western European Latin-1 encoding according to ISO
8859-1.

CP_cp437 English character encoding according IBM code page
437 (MS-DOS).

CP_cp850 Western European character encoding according to
IBM code page 850 (MS-DOS).

CP_iso6937 Western European character encoding with variable
length according to ISO 6937.

CP_winansi MICROSOFT WINDOWS character encoding.

CP_dec169 Character encoding according to DEC code page
169.

CP_roman8 8-bit character encoding according to HP code page
Roman-8.

CP_utf8 8-bit Unicode encoding with variable length, cor-
responds to ASCII encoding in the range 0 – 127.

A.06.03.b 55

56 ISA DialogManager

action options Meaning

CP_utf16
CP_utf16b
CP_utf16l

16-bit Unicode encoding with character widths from 2
up to 4 bytes.
There are two variants:

BE – big-endian, bytes with higher numerical sig-
nificance first.

LE – little-endian, bytes with lower numerical sig-
nificance first.

UTF-16 without a specified byte order corresponds to
the LE variant on Microsoft Windows and to the BE
variant on Unix systems.

CP_cp1252 Western European character encoding according to
Microsoft Windows code page 1252.

CP_acp Currently used ANSI code page of an application on
Microsoft Windows.
Can only be used on Microsoft Windows.

CP_hp15 Western European 16-bit character encoding used by
HP systems.

CP_jap15 Japanese 16-bit character encoding used by HP sys-
tems.

CP_roc15 Simplified Chinese 16-bit character encoding used by
HP systems.

CP_prc15 Traditional Chinese 16-bit character encoding used
by HP systems.

CP_ucp Custom code page ("User Code Page"). Convert to
any code page with iconv().

Remarks

Switching to a code page is valid until another code page is set. All strings have to be transferred
in this code page and all strings that IDM transfers to the application are converted into this code
page.

The function DM_ControlEx must not be called from a canvas callback function.

Example

Setting the application code page using CP_ucp and DMF_SetUserCodePage.

/* Set application code page to CP_ucp and use CP1250. */
...
DM_Control((DM_ID)0, DMF_SetCodePage, CP_ucp);
DM_ControlEx((DM_ID)0, DMF_SetUserCodePage, "CP1250", 0)
...

See also

Function DM_Control

A.06.03.b 57

58 ISA DialogManager

3.12 DM_CreateObject
Any object or model within a dialog can be created with this function. The first parameter describes
the type of the object (pushbutton, window, etc.), the second parameter describes the type of the
object parent, and the last parameter describes the scope (object/model) of the new object.

DM_ID DML_default DM_EXPORT DM_CreateObject
(
 DM_ID classtagOrModel,
 DM_ID parentID,
 DM_Options options
)

Parameters

-> DM_ID classtagOrModel

This parameter describes the type of the new object. The necessary definitions are included in
IDMuser.h.

The following definitions are accepted:

DM_ClassCanvas

DM_ClassCheck

DM_ClassEditext

DM_ClassGroupbox

DM_ClassImage

DM_ClassImport

DM_ClassListbox

DM_ClassMenubox

DM_ClassMenuitem

DM_ClassMenusep

DM_ClassMessagebox

DM_ClassModule

DM_ClassNotebook

DM_ClassNotepage

DM_ClassPoptext

DM_ClassPush

DM_ClassRadio

DM_ClassRecord

DM_ClassRect

DM_ClassScroll

DM_ClassStatext

DM_ClassTablefield

DM_ClassTimer

DM_ClassWindow

-> DM_ID parentID

Parent of the object to be newly generated.

-> DM_Options options

For these functions different options are possible which can be indicated in connection with an "or"
(|).

Option Meaning

DMF_CreateModel If this option is set, a new model is to be created by means of this
function.

DMF_CreateInvisible If this option is set, the object to be newly generated is to be cre-
ated independently of the definition in the specified model.

DMF_InheritFromModel This option has to be set if a DM_ID of a model is indicated in the
parameter classtagOrModel. In doing so, the function will know
that a new instance has to be generated from this model. If it is a
hierachical model, also its children will be created in the new
object.

Return Value

ID!=0 Object was successfully created.

ID=0 Object could not be created.

Example

A new instance of a window model is to be generated out of a C function.

void DML_default DM_ENTRY CreateNewInstance
(

DM_ID Modell,
DM_ID DialogID

)
{

DM_ID NewObject;
DM_Value data;

if ((NewObject = DM_CreateObject (Modell, DialogID,
DMF_InheritFromModel | DMF_CreateInvisible) != (DM_ID) 0)

A.06.03.b 59

60 ISA DialogManager

{
/* Setting the data in a newly generated window */

/* Finally making windows invisible */
data.type = DT_boolean;
data.value.boolean = TRUE;
DM_SetValue(NewObject, AT_visible, 0, &data, 0);

}
}

See Also

Built-in function create() in manual “Rule Language”

Method :create()

3.13 DM_DataChanged
This function is used to signal that the value of the specified attribute (Model attribute) has changed
on a particular Data Model (Model component). This change is put into event processing as a
datachanged event. Not until further event processing the linked presentation objects (View com-
ponents) are triggered to fetch the new data values and have them displayed.

DM_Boolean DML_default DM_EXPORT DM_DataChanged
(

DM_ID object,
DM_Attribute attribute,
DM_Value * index,
DM_Options options

)

Parameters

-> DM_ID object

This is the object ID of the Data Model object where a data value has changed.

-> DM_Attribute attribute

This parameter indicates the attribute of the Data Model that has changed.

-> DM_Value *index

This parameter defines the index of the modified attribute. If it is NULL, this indicates a change of
all single values.

-> DM_Options options

Option Meaning

0 There will be no tracing of this function.

DMF_Verbose Activates tracing of this function.

Return value

DM_TRUE Modification has been successfully stored as datachanged event.

DM_FALSE No event could be created.

Example

Dialog File

dialog D
function datafunc FuncData();
function void Reverse(integer Idx);

window Wi
{

.title "Datafunc demo";

.width 200; .height 300;

edittext Et
{

.datamodel FuncData;

.dataget .text;

.dataset .text;

.xauto 0;

.xright 80;
}

pushbutton PbAdd
{

.text "Add";

.xauto -1;

.width 80;

on select
{

this.window:apply();
}

}

listbox Lb

A.06.03.b 61

62 ISA DialogManager

{
.xauto 0; .yauto 0;
.ytop 30; .ybottom 30;
.datamodel FuncData;
.dataget .content;

on select
{

PbReverse.sensitive := true;
}

}

pushbutton PbReverse
{

.xauto 0; .yauto -1;

.text "Reverse element";

.sensitive false;

on select
{

Reverse(Lb.activeitem);
}

}

on close { exit(); }
}

C File

#ifdef VMS
define EXITOK 1
define EXITERROR 0
#else
define EXITOK 0
define EXITERROR 1
#endif

#include <IDMuser.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "datafuncfm.h"

#define DIALOGFILE "~:datafunc.dlg"

static DM_ID data_id = (DM_ID)0;
static DM_Value data_vec;

static DM_String data_str;

void DML_default DM_CALLBACK FuncData __1((DM_DataArgs *, args))
{

if (!data_id)
data_id = args->object;

switch (args->task)
{
case MT_get:

switch(args->attribute)
{
case AT_text:

args->retval.type = DT_string;
args->retval.value.string = data_str;
break;

case AT_content:
if (args->index.type == DT_void)
{

args->retval = data_vec;
}
else if (args->index.type == DT_integer)
{

DM_ValueGet(&data_vec, &args->index, &args->retval, 0);
}
break;

default:
break;

}
break;

case MT_set:
switch(args->attribute)
{
case AT_text:

if (args->data.type == DT_string)
{

if (DM_ValueChange(&data_vec, NULL, &args->data, DMF_AppendValue))
DM_DataChanged(data_id, AT_content, NULL, DMF_Verbose);

}
break;

default:
break;

}
break;

default:
break;

}
}

A.06.03.b 63

64 ISA DialogManager

void DML_default DM_ENTRY Reverse __1((DM_Integer, Idx))
{

DM_Value index, data;
char *cp, ch;
size_t len, i;

DM_ValueInit(&data, DT_void, NULL, 0);
index.type = DT_integer;
index.value.integer = Idx;
if (DM_ValueGet(&data_vec, &index, &data, 0) && data.type == DT_string)
{

if (DM_StringChange(&data_str, data.value.string, 0))
DM_DataChanged(data_id, AT_text, NULL, DMF_Verbose);

/* reverse the string */
cp = data.value.string;
if (cp)
{

len = strlen(cp);
if (len>2)
{

len--;
for (i=0; len>0 && i<len/2; i++)
{

ch = cp[i];
cp[i] = cp[len-i];
cp[len-i] = ch;

}
}

}
if (DM_ValueChange(&data_vec, &index, &data, 0) && data_id)

DM_DataChanged(data_id, AT_content, &index, DMF_Verbose);
}

}

int DML_c AppMain __2((int, argc), (char **,argv))
{

DM_ID dialogID;
DM_Value data;

/* initialize the Dialog Manager */
if (!DM_Initialize (&argc, argv, 0))
{

DM_TraceMessage("Could not initialize.", 0);
return (1);

}

/* load the dialog file */
switch(argc)
{
case 1:

dialogID = DM_LoadDialog (DIALOGFILE,0);
break;

case 2:
dialogID = DM_LoadDialog (argv[1],0);
break;

default:
DM_TraceMessage("Too many arguments.", 0);
return(EXITERROR);
break;

}
if (!dialogID)
{

DM_TraceMessage("Could not load dialog.", 0);
return(EXITERROR);

}

data.type = DT_type;
data.value.type = DT_string;
DM_ValueInit(&data_vec, DT_vector, &data, DMF_StaticValue);

data.type = DT_string;
data.value.string = "^ Enter a string";
DM_ValueChange(&data_vec, NULL, &data, DMF_AppendValue);
data.value.string = "and press 'Add'";
DM_ValueChange(&data_vec, NULL, &data, DMF_AppendValue);

DM_StringInit(&data_str, DMF_StaticValue);
DM_StringChange(&data_str, "Change me!", 0);

/* install table of application functions */
if (!BindFunctions_D (dialogID, dialogID, 0))

DM_TraceMessage ("There are some functions missing.", 0);

/* start the dialog and enter event loop */
if (DM_StartDialog (dialogID, 0))

DM_EventLoop (0);
else

return (EXITERROR);

return (EXITOK);
}

A.06.03.b 65

66 ISA DialogManager

3.14 DM_Destroy
Any object or model and their children within the dialog can be deleted with this function. The second
parameter controls what exactly is to be deleted.

DM_Boolean DML_default DM_EXPORT DM_Destroy
(
 DM_ID objectID,
 DM_Options options
)

Parameters

-> DM_ID objectID

The ID of the object to be deleted.

-> DM_Options options

Controls the function behavior while deleting. There are the following possibilities

Option Meaning

DMF_ForceDestroy If you specify DMF_ForceDestroy as option, the object will be
deleted and all rule parts using this object are changed. As a result
the corresponding instructions will be removed. If the object to be
deleted is a model and the parameter DMF_ForceDestroy is not
specified here, only the repeated referencing of the model will be
prohibited, but it will remain a model. However, if you indicate
DMF_ForceDestroy, all models used by the objects will be
removed, and the objects will take the values of the next higher
model or default.

Return Value

TRUE Object was successfully deleted.

FALSE Object could not be deleted.

DM_Destroy() invokes the :clean() method of the object to be destroyed.

Example

Destroying an object out of a C function.

DM_Boolean DML_default DM_ENTRY DestroyObject
(
 DM_ID ObjID
)
{
 return (DM_Destroy(ObjID, DMF_ForceDestroy));

}

See Also

Built-in function destroy() in manual “Rule Language”

Method :destroy()

A.06.03.b 67

68 ISA DialogManager

3.15 DM_DialogPathToID

Attention

The function DM_DialogPathToID is deprecated and is only supported for compatibility reasons.
Please use DM_ParsePath instead.

By using this function you can query the identifier of an object if you have loaded more than one dialog
and the desired object is not contained in the dialog loaded first.

DM_ID DML_default DM_EXPORT DM_DialogPathToID
(
 DM_ID dialogid,
 DM_ID rootid,
 DM_String path
)

Parameters

-> DM_ID dialogid

This is the identifier of the dialog in which the object is to be searched.

-> DM_ID rootid

By using this parameter you can control from which Dialog Manager object on the search for the
desired object begins. There are the following possibilities:

rootid = 0
The Dialog Manager searches for the specified object in the entire dialog definition.
This is the usual case. You can also query the identifiers of rules, functions, variables and
resources.

rootid != 0
The Dialog Manager will search only on the next lower hierarchy level from the specified object
on; the DM will not search on lower hierarchy levels.
This procedure is suitable only if an object name appears more than once in a dialog.

-> DM_String path

This path describes the object being searched. The path has to describe an object unam-
biguously. If the object identifier exists only once in the dialog, it is enough if you specify the name
to get the desired reference. If the object identifier is not unambiguous, the object has to be
described by a path of object identifiers, separated by a dot.

Return Value

0 The object was not found or its identifier is not unique.

!= 0 Identifier of the searched object.

Annotation

If "setup" is specified as path and both dialogid and rootid are 0, then the setup object is returned.

Example

void DML_default DM_ENTRY OkButtonCallback __1((DM_ID, dialogID))
{
 DM_ID ID1;
 DM_ID ID2;

/* Querying an object in the dialog globally */
 ID1 = DM_DialogPathToID(dialogID, 0, "FirstObject");

/* Querying via a path */
 ID2 = DM_DialogPathToID(dialogID, 0, "FirstObject.Child1");
}

See Also

Function DM_ParsePath

Built-in function parsepath in manual “Rule Language”

A.06.03.b 69

70 ISA DialogManager

3.16 DM_DispatchHandler
Using the DM_DispatchHandler function, a user-defined function (handler) can be registered with
the IDM FOR MOTIF, which is called before the XtDispatchEvent function. This allows XEvents to be
processed at the X level (and not just at the X toolkit level).

DM_Boolean DML_default DM_EXPORT DM_DispatchHandler
(

DM_DispatchHandlerProc funcp,
DM_UInt chain_pos,
DM_UInt operation,
DM_Options options

)

Parameter

-> DM_DispatchHandlerProc funcp

Function pointer to the custom handler function. This function receives the XEvent as a para-
meter.

The passed function must be defined as follows:

DM_Boolean DML_default DM_EXPORT MyHandler
(

XEvent * event
)

-> DM_UInt chain_pos

This parameter determines whether the handler function is inserted at the beginning (DMF_
InstallHead) or at the end (DMF_InstallTail) of the list of handler functions.

chain_pos is only evaluated if the parameter operation is set to DMF_RegisterHandler.

-> DM_UInt operation

This parameter defines the actual operation to be performed by the function. The following con-
stants are defined for this:

operation Meaning

DMF_RegisterHandler This value is used to install a handler.

DMF_WithdrawHandler This value uninstalls a previously installed handler.

DMF_DisableHandler This value temporarily disables a handler.

DMF_EnableHandler With the help of this value, a disabled handler is reactivated.

-> DM_Options options

If options is set to the value DMF_DontTrace, the function call is not logged in the trace file.

Return Value

DM_TRUE The XEvent has been completely processed.
No further “DispatchHandler” will be called, nor will the XtDispatchEvent function be
called.

DM_
FALSE

The next registered “DispatchHandler”, or lastly the function XtDispatchEvent, is
called.

A.06.03.b 71

72 ISA DialogManager

3.17 DM_DumpState
With this function IDM status information is written into the log or trace file.

Syntax

void DML_default DM_EXPORT DM_DumpState
(
 DM_Enum state,
 DM_Options options
)

Parameter

-> DM_Enum state

This parameter influences which sections of the status information are written out.

The dumpstate is a status information of IDM-relevant information in order to simplify error ana-
lysis within an IDM application.

The content of the dumpstate is divided into different sections that are variable and that are adap-
ted to the error situation. In addition, the dumpstate is influenced by the errors that have previously
occurred. For example, an unsuccessful memory allocation leads to information concerning the
memory usage by the IDM in the next dumpstate output. If no IDM objects or identifiers can be cre-
ated, then the utilization of IDM objects and identifiers is dumped.

The dumpstate information is always encased between “*** DUMP STATE BEGIN ***” and “***
DUMP STATE END ***” and can have the following sections, which are described in detail in the
paragraphs below:

PROCESS: Process and thread number, date/time.

ERRORS: Complete content of the error codes set.

CALLSTACK: Contains rules, DM interface functions and application functions directly called
by the IDM.

THISEVENTS and EVENT QUEUE: Currently processed thisevent objects and their values as
well as events that are still in the queue.

USAGE: The number of created objects, modules and identifiers and the size of the memory
that is used by the rule interpreter and for string transfer.

MEMORY: Memory usage as far as it can be detected by the IDM.

SLOTS: Hints about IDM objects that have not been correctly released.

VISIBLE OBJECTS: A list of the visible objects and their respective values.

In order to keep the output to a minimum, this is usually displayed in a shortened form. Generally,
IDM strings (in "…") are always shortened to a maximum of 40 characters. Their entire length is
attached in []. Byte size information is given in kilo, mega or gigabytes (k/m/g).

Value Range

Value (enum) Meaning

DM_DUMP_all All sections are written out in an abbreviated form.
This corresponds to the output in case of a FATAL ERROR.

DM_DUMP_error The sections ERRORS, CALLSTACK and EVENTS are written
out in an abbreviated form.
This is the normal output in the case of EVAL ERRORS.

DM_DUMP_events The sections THISEVENTS and EVENT QUEUE are written out in
full.

DM_DUMP_full All sections are written out in full.

DM_DUMP_locked The section SLOTS is written out in full. In addition, for locked
objects their attribute values are written out.

DM_DUMP_memory The section MEMORY is written out in full.

DM_DUMP_none No action (nothing is written out).

DM_DUMP_process The section PROCESS is written out in full.

DM_DUMP_short All sections (excluding SLOTS) are written out in an abbreviated
form.

DM_DUMP_slots The section SLOTS is written out in full.

DM_DUMP_stack The section CALLSTACK is written out in full.

DM_DUMP_usage The section USAGE is written out in full.

DM_DUMP_uservisible The section VISIBLE OBJECTS is written out in full for all visible
top-level objects including their children, the pre-defined and user-
defined attributes.

DM_DUMP_visible The section VISIBLE OBJECTS is completely written out.

Combinations out of multiple sections are not possible.

-> DM_Options options

This parameter is reserved for future versions. At present pass only 0.

The output of the dumpstate also can be triggered with the built-in function dumpstate, as well as
through the command line options -IDMdumpstate and -IDMdumpstateseverity <string>.

Availability

IDM versions A.05.01.g3, A.05.01.h, as well as A.05.02.e and above

A.06.03.b 73

74 ISA DialogManager

See Also

Chapter “Dumpstate (Status Information)” in manual “Development Environment”

3.18 DM_ErrMsgText
This function returns the errorstring belonging to an errorcode.

DM_String DML_default DM_EXPORT DM_ErrMsgText
(
 DM_ErrorCode eno,
 DM_Options options
)

Parameters

-> DM_ErrorCode eno

Error code to which the error message is to be returned.

-> DM_Options options

Via the various options you can control which information is to be integrated in the error text. To do
so, you have the following possibilities which can be specified with "or" in combination.

Option Meaning

DMF_IncludeIdent The name of the part which has produced the error is to be
included in the error message. This can be the operating system,
the window system or DM.

DMF_IncludeModule The name of the module in which the error has occurred is to be
included in the error message.

DMF_IncludeSeverity The severity of the error (warning, error, fatal error) is to be
included in the message text.

DMF_IncludeText The actual error text is to be included in the error message.

Example

/* error handling function for dialog manager errors*/

static void QueryError ()
{

/*buffer for the errors occurred*/
DM_ErrorCode errorbuffer[32];
register int i;

/*number of errors*/
int errors;

if ((errors = DM_QueryError(errorbuffer, 32, 0)))
for (i = 0, i < errors; i++)

DM_TraceMessage(DM_ErrMsgText(errorbuffer[i],
0), 0);

A.06.03.b 75

76 ISA DialogManager

}

3.19 DM_ErrorHandler
This function allows for handler functions to be set up that are then called when an error, which is
recognized by the rule interpreter, occurs.

DM_Boolean DML_default DM_EXPORT DM_ErrorHandler
(

DM_ErrorHandlerProc funcp,
DM_UInt operation,
DM_Options options

)

Parameter

-> DM_ErrorHandlerProc funcp

This is a pointer to the function that shall be installed as an error handler.

-> DM_UInt operation

This parameter defines the action that shall be carried out. The following values are possible:

DMF_RegisterHandler Handler function shall be registered

DMF_EnableHandler Handler function shall be enabled

DMF_DisableHandler Handler function shall be disabled

DMF_WithdrawHandler Handler function shall be withdrawn

-> DM_Options options

Currently unused, must be 0.

Return Value

DM_
TRUE

Action was successful.

DM_
FALSE

Action could not be carried out.
This may happen when the action would cause the same handler to exist twice, when
the function pointer is NULL or when the handler that the action addresses cannot be
found

A non-intercepted error in the rule code of the application (i.e. faulty parameter types, dynamic access
to a non-existing attribute or relative child, each of them not caught by fail()) is noted by the rule
interpreter, as “EVAL ERROR” in the log file or the trace file. Messages in “[]” that begin with “W:”, “E:”
or “I:” such as a module or interface loading errors do not belong to the rule interpreter and are there-
fore not passed on to the error handler.

A.06.03.b 77

78 ISA DialogManager

The error handler serves as a way of informing the IDM applications in advance of these application
errors. Numerous, not identical, error handlers are possible, which are invoked in reverse order of
registration. Only the activated error handlers are called and receive the same information structure
(DM_ErrorInfo) as parameter. These calls are logged in the trace file. Recursive calls of error hand-
lers are suppressed. When the DM_ErrorHandler function is called within an error handler it is not
allowed to install a new or uninstall an existing handler.

Bear in mind that the error handler is synchronously called and insofar the design and coding must
take place with great care and under consideration of the special constellations and restrictions.
Calling the handler before starting the dialog is possible (e.g. when there are errors in :init() methods)
as is by improper use in an unsuitable run state (i.e. forced loading of a faulty rule via DM_CallRule
within a format function). Avoiding such constellations is recommended. Furthermore, when the IDM
is used to display an error box then an independent error dialog, which is started before the applic-
ation, should be used.

The error handler function to be installed must be defined as follows:

typedef void (DML_default DM_CALLBACK *DM_ErrorHandlerProc) __((DM_ErrorInfo
*info));

The transferred information structure provides information about the error:

define EITK_rule_engine 1

typedef struct {
/* user info, not changeable */
DM_UInt1 task; /* task/component which detects the error */
DM_ErrorCode errcode; /* error code */
DM_ID object; /* this object or null-ID */
DM_ID rule; /* rule where error occured */
DM_String file; /* module/dialgo filename or NULL */
DM_String message; /* error message or NULL*/

} DM_ErrorInfo;

Under no circumstance this information must be changed by any error handler.

Principally, strings are encoded using the application code page.

The task entry reveals information about the IDM component that reports the error. Due to possible
future changes it should always be checked. Currently, only errors from the rule interpreter are
passed on as EITK_rule_engine.

The entries reveal information about the error code, about the rule in which the error occurred as well
as the error text that belongs to it. When possible, the this object and the file name of the module or
dialog, in which the faulty rule can be found, are made available.

Example

#include <IDMuser.h>
void DML_default DM_CALLBACK ErrorHandler __1((DM_ErrorInfo *, info))

{
if (info->task == EITK_rule_engine)
{

DM_TraceMessage("ERROR: errcode=%d message=\"%s\" rule=\"$I\"",
DMF_LogFile|DMF_Printf,
info->errcode, info->message,
info->rule);

}
}
int DML_c DM_CALLBACK AppMain (int argc, char **argv)
{

DM_ID dialogID = (DM_ID)0;
if (DM_Initialize (&argc, argv, 0) == FALSE)

return (1);
if (argc>1)
{

if (!(dialogID = DM_LoadDialog (argv[1], 0)))
return (1);

DM_ErrorHandler(ErrorHandler, DMF_RegisterHandler, 0);
DM_StartDialog (dialogID, 0);
DM_EventLoop (0);
return (0);

}
return 1;

}

A.06.03.b 79

80 ISA DialogManager

3.20 DM_EventLoop
This function starts the processing of the dialog. It enables the user to work with the dialog. After this
function call events are processed only by DM, because this function takes over the handling of the
dialog. The following steps are necessary:

DM_Boolean DML_default DM_EXPORT DM_EventLoop
(
 DM_Options options
)

Parameters

-> DM_Options options

By using this parameter you can control whether the event processing is to be interrupted if no
event exists any more or if the processing is to be executed until the end of the dialog.

Option Meaning

0 This is the normal case. Dialog Manager is responsible for the pro-
cessing of all events and is to exit this function only at the end of
the program.

DMF_DontWait By using this option Dialog Manager will be informed that it will not
go in a passive waiting loop, if no event exists. It is to return imme-
diately to the application so that the application can execute any
actions. Then the application has to call the function DM_
EventLoop again for further processing.

DMF_WaitForEvent By using this constant DM will be informed that it can wait pass-
ively for a user event in the window system. After having pro-
cessed it, DM is to return to the application so that any actions can
be performed and the function DM_EventLoop can be called
again.

Return Value

TRUE Processing of event was cancelled because no further event was
scheduled to be processed at the moment.

FALSE Processing of event was cancelled because the end of the dialog has
been reached.

Example

Passing over the processing to DM in the main program:

int DML_c DM_CALLBACK AppMain __2(
(int, argc),

(char far * far *, argv))
{

DM_ID dialogID;
static char * dialogfile = "format.dlg";

DM_Initialize(&argc, argv, 0);

dialogID = DM_LoadDialog (dialogfile, 0);

if (!dialogID)
return(1);

(void) DM_BindCallBacks(funcmap, NFUNCS, dialogID, 0);

DM_StartDialog(dialogID, 0);

DM_EventLoop(0);

return (0);
}

A.06.03.b 81

82 ISA DialogManager

3.21 DM_ExceptionHandler
With this function a handler can be installed. This handler can capture possible “asserts” in Dialog
Manager and output an appropriate message to the user. Furthermore databases and files can be
closed and thus leave DM in a defined state.

DM_Boolean DML_default DM_EXPORT DM_ExceptionHandler
(
 DM_ExceptionHandlerProc funcp,
 DM_UInt operation,
 DM_Options options
)

Parameter

-> DM_ExceptionHandlerProc funcp

This is a pointer on the function to be installed as Exception-Handler.

-> DM_Uint operation

This parameter is used to specify the action to be carried out. The following values are valid:

DMF_RegisterHandler handler function is to be installed

DMF_WithdrawHandler handler function is to be quit

DMF_EnableHandler handler function is to be recalled

DMF_DisableHandler handler function is not to be recalled any more

-> DM_Options options

Currently not used, please specify with 0.

Return Value

TRUE handler function has been installed successfully

FALSE handler function has not been installed

The call is logged in the logfile. The first call will be traced. The following recursive calls won't be writ-
ten into the tracefile, because they might cause endless loops. The ExceptionHandler is no longer
called in case of an assert in the assfail function. The trace/logfile contains file, line and assertion. The
end of the call will also be logged (with the parameter DM_ExceptionInfo).

If several functions are active, these will be called one after the other. The order will be the other way
round to the order of registering. The functions work on the same DM_ExceptionInfo, i.e. if a function
sets a message it can be overwritten by another function. The same applies to showmessage.

The function to be installed must be defined as follows:

typedef void (DML_default DM_CALLBACK *DM_ExceptionHandlerProc) __((DM_
ExceptionInfo *info))

typedef DM_ExceptionInfo
{
 // user info, not changeable
 DM_String file;
 DM_Integer line;
 DM_String assertion;
 // output, changeable
 DM_String message; // default (char *)0
 DM_Boolean showMessage; // default TRUE
} DM_ExceptionInfo;

The items of the structure correspond to those of the assertion. You cannot change these values.

message is passed on with NULL pointer. Instead of using the message “Contact your local…” you
may use any other message. If the message is NULL pointer, the standard message will be output.

showMessage defines whether a message is to be output.

A.06.03.b 83

84 ISA DialogManager

3.22 DM_Execute
This function is used to start another program from the dialog script. Depending on the used operation
system different types of programs to be started are supported.

DM_Boolean DML_default DM_EXPORT DM_Execute
(
 DM_String command,
 DM_String arguments,
 DM_Boolean synchronous,
 DM_Enum exetype,
 DM_Enum windowtype,
 DM_ID object,
 DM_Value * event,
 DM_Value * replydata,
 DM_Options options
)

The parameters correspond to the parameters for the built-in function execute (see built-in function
execute in manual “Rule Language”). In the Rule Language not all the parameters have to be spe-
cified. In C, however, all parameters must have a value.

The additional parameter options is currently not used and must be specified with 0.

3.23 DM_FatalAppError
This function should be called if the application has found an error and is unable to continue. This func-
tion finishes the DM, closes all files and displays, and then returns the control, if required, to the applic-
ation.

void DML_default DM_EXPORT DM_FatalAppError
(
 DM_String reason,
 DM_Int reaction,
 DM_Options options
)

Parameters

-> DM_String reason

Message which should be written into the tracefile. This is the cause why the application finishes.

-> DM_Int reaction

This is the action that should be carried out by the DM. The following values are valid:

-1 DM calls the function abort() to write a core dump.

0 DM closes the display and all open files, and returns to the application.

> 0 DM closes the display and all open files, and exits with these values.

Warning

When calling the function DM_FatalAppError with reaction = 0, you should make sure that the con-
trol will not return to Dialog Manager and that no DM function will be called any more.

-> DM_Options options

Currently not used. Please specify with 0.

Example

In the actual DM main program a DM_FatalAppError is called in the file startup.c, if the main program
has been called for the second time within one process.

int cdecl main __2(
(int, argc),
(char far * far *, argv))
{

register int status;
static char running = 0;

if ((status = running++) == 0)
{

if ((status = DM_BootStrap(&argc, &argv)) == 0)

A.06.03.b 85

86 ISA DialogManager

{
DM_InitOptions(&argc, argv, 0);

status = AppMain (argc, argv);
DM_ShutDown();

}
else

DM_TraceMessage ("Bootstrap failed", DMF_LogFile);
}

else
DM_FatalAppError ("Unexpected restart", -1, 0);

return (status);
}

3.24 DM_FmtDefaultProc
This function takes on all tasks when processing an edittext, e.g. setting a format, the input control,
the navigation, etc. as soon as a format is set for the editable text.

Usually, the Dialog Manager does then automatically call this default format function without involving
the actual application.

If, however, the edittext has its own format function, Dialog Manager will call this application-specific
function instead of the default format function. This function then has to perform the tasks demanded
by Dialog Manager. To do so, it can call the function DM_FmtDefaultProc by various tasks, if these
are not to be changed application-specifically.

DM_boolean DML_default DM_EXPORT DM_FmtDefaultProc
(
 DM_FmtRequest *req,
 DM_FmtFormat *fmt,
 DM_FmtFormatDef **fmtDef,
 DM_FmtContent *cont,
 DM_FmtContentDef **contDef,
 DM_FmtDisplay *dpy
)

Parameters

-> DM_FmtRequest *req

This parameter defines the demand for the formatting routine. To do so, a structure element is
assigned to the task and - according to the task - a union is filled with the necessary data (e.g. with
the new contents as string when setting a new contents).

<-> DM_FmtFormat *fmt

This structure includes description data about the format string which are needed independent of
the format function and the chosen kind of format.

<-> DM_FmtFormatDef **fmtDef

With this parameter, a structure is transferred which includes the format-specific data for a format
string. If a foreign format function is to use the default format, it has to provide an entry for this in its
private data and pass it on there.

<-> DM_FmtContent *cont

This structure includes description data about the contents string to be formatted which are
needed independent of the format function and the chosen kind of format

<-> DM_FmtContentDef **contDef

With this parameter, a structure is passed on which includes the format-specific data for a con-
tents string. If a foreign format function is to fall back to the default formats, it has to provide an
entry for this in its private data and pass it there.

A.06.03.b 87

88 ISA DialogManager

<-> DM_FmtDisplay *dpy

This structure includes description data about the display string to be formatted which are needed
independently of the format function and the chosen kind of format.

Example

Realization of a format function which, itself, assumes only few tasks. The function makes it possible
for the user to input a date.

/*
** The number to be inputted depends on the cursor position
** so that a valid date results.
*/
char GetMax __1(
(DM_FmtDisplay far *, dpy))
{

char max;

switch (dpy->curpos)
{

case 0:
max = '3';

break;
case 1:

if (dpy->string[0] == '3')
max = '1';

else
max = '9';

break;
case 3:

max = '1';
break;
case 4:

if (dpy->string[3] == '1')
max = '2';

else
max = '9';

break;
default:
max = '9';
break;

}
return (max);

}

/*
** actual format function

**
*/
DM_Boolean DML_c DM_CALLBACK My_Formatter __6(
(DM_FmtRequest far *, req),
(DM_FmtFormat far *, fmt),
(FPTR *, fmtPriv),
(DM_FmtContent far *, cont),
(FPTR *, contPriv),
(DM_FmtDisplay far *, dpy))
{

DM_Boolean retval;

switch (req->task)
{

/*
** The date shall be inputable only in the format
** dd.mm.yy. This function is realized only rudimentarily.
** BackSpace and DEL shall also be intercepted.

*/
case FMTK_modify:
{

char max = GetMax(dpy);

if ((!req->targs.modify.strlength
&& (dpy->curpos == dpy->length))
|| ((req->targs.modify.strlength == 1)

&& (req->targs.modify.string[0] >= '0')
&& (req->targs.modify.string[0] <= max)))

{
retval = DM_FmtDefaultProc(req, fmt,

(DM_FmtFormatDef **) (FPTR) fmtPriv, cont,
(DM_FmtContentDef **) (FPTR) contPriv, dpy);

}
else

retval = FALSE;
}
break;

default:
/*
** Calling the default format function
*/
retval = DM_FmtDefaultProc(req, fmt, (DM_FmtFormatDef **)

(FPTR) fmtPriv,cont,
(DM_FmtContentDef **) (FPTR) contPriv, dpy);

break;

A.06.03.b 89

90 ISA DialogManager

}
return (retval);

}

See Also

Chapter “Structures and Definitions for the Formatting of Input” in manual “C Interface - Basics”

Resource format

Chapter “Format Function” in manual “Rule Language”

3.25 DM_Free
With the help of this function, memory allocated with DM_Malloc or DM_Realloc can be released.

void DML_default DM_EXPORT DM_Free
(
 DM_Pointer ptr
)

Parameters

-> DM_Pointer ptr

Pointer to the memory which is to be released.

Example

char *string;
if ((string = (char *) DM_Malloc (5)))
{
 strcpy (string, "1234");
 ...
 DM_Free (string);
}

A.06.03.b 91

92 ISA DialogManager

3.26 DM_FreeContent
This function releases the memory allocated by DM_GetContent. Every time DM_GetContent is
called, DM_FreeContent has to follow, after the data has been processed in the application.

void DML_default DM_EXPORT DM_FreeContent
(
 DM_Content *content,
 DM_Options options
)

Parameters

-> DM_Content *content

Pointer to the contents structure of an object (e.g. listbox) whose memory is to be released. You
have received this pointer from DM_GetContent.

-> DM_Options options

Currently not used. Please specify with 0.

Example

Query of the tablefield contents.

void DML_default DM_ENTRY GetContent __1(
(DM_ID, tablefieldID))
{

int i;
DM_Integer count;
DM_Content *vec;
DM_GetContent(tablefieldID, (DM_Value *) 0, (DM_Value *) 0,

&vec, &count, 0);
for (i = 0; i < count; i++)
{

printf("vec[%d].sensitive = %d\n",i, vec[i].sensitive);
printf("vec[%d].string = %s\n",i, vec[i].string);

}
DM_FreeContent(vec, 0);

}

3.27 DM_FreeVectorValue
By using this function the memory allocated on calling DM_GetVectorValue can be released again.

void DML_default DM_EXPORT DM_FreeVectorValue
(
 DM_VectorValue *values,
 DM_Options options
)

Parameters

-> DM_VectorValue *values

In this parameter the vector contained in Dialog Manager is transferred.

-> DM_Options options

Currently not used. Please specify with 0.

Example

Querying the tablefield contents and releasing attribute vector.

DM_Boolean DML_default DM_ENTRY ReplaceName__3(
(DM_ID, table),
(char *, from),
(char *, to))
{

DM_VectorValue *oldData;
DM_Value count;
DM_Value lastidx;
DM_boolean retval = true;

if (!DM_GetValue(table, AT_rowcount, 0, &count, 0)
|| (count.type != DT_integer))
return FALSE;

lastidx.type = DT_index;
lastidx.value.index.first = count.value.integer;
lastidx.value.index.second = 2;

if DM_GetVectorValue(table, AT_content, (DM_Value *) 0,
&lastidx, &oldData, 0))

return FALSE;

DM_FreeVectorValue(oldData, 0);

return retval;
}

A.06.03.b 93

94 ISA DialogManager

3.28 DM_GetArgv
This internal function converts the arguments of the program call into the internally used code page. It
may only be called exactly once before the call of DM_BootStrap (see also the supplied startup.c or
IDMuser.h).

This function is necessary for the Unicode support

char ** DML_default DM_EXPORT DM_GetArgv
(
 int *argc,
 char ** argv,
 DM_Options options
)

Parameters

-> int *argc

In this parameter a pointer to the number of command line arguments is passed.

-> char ** argv

Vector on the argument list.

-> DM_Options options

This parameter is reserved for future versions. Therefore, please enter a 0 here.

Return value

The argument list converts to the application code page used by Dialog Manager.

Remark

The function is only intended for use in startup.c and its call may only be made there (see also the
supplied startup.c module).

3.29 DM_GetContent
With this function you can query the actual object contents (listbox, poptext, tablefield) from the applic-
ation in one function call. In doing so, you can query the actual state (contents and selected items) by
one access.

DM_Boolean DML_default DM_EXPORT DM_GetContent
(
 DM_ID object,
 DM_Value *firstindex,
 DM_Value *lastindex,
 DM_Content **contentvec,
 DM_UInt *count,
 DM_Options options
)

Parameters

-> DM_ID object

Indicates the object which is to be filled with the new contents.

-> DM_Value *firstindex

Controls which range of the contents is queried by this function. This parameter defines the start-
ing point of the range. On querying the contents of a listbox or a poptext the type in the DM_Value
structure is always set to DT_integer and the integer value in the union is assigned the starting
value. In a tablefield, however, the type in the DM_Value structure is set to DT_index and the
index value in the union is assigned the starting value. Here the row is specified in index.first, the
column is specified in index.second.

Note

If this parameter is a NULL pointer, the starting point has the following defaults:

listbox integer = 1

poptext integer = 1

tablefield index.first = 1, index.second = 1

-> DM_Value *lastindex

Controls which range of the contents is queried by this function. This parameter then defines the
ending point of the range. On querying the contents of a listbox or a poptext the type in the DM_
Value structure is always set to DT_integer and the integer value in the union is assigned the start-
ing value. In a tablefield, however, the type in the DM_Value structure is set to DT_index and the
index value in the union is assigned the starting value. Here the row is specified in index.first, the
column is specified in index.second.

Note

If this parameter is a NULL pointer, the ending point has the following defaults:

A.06.03.b 95

96 ISA DialogManager

listbox: integer = object.itemcount

poptext: integer = object.itemcount

tablefield: index.first = object.rowcount, index.second = object.colcount

<- DM_Content **contentvec

The pointer to the structure filled by the DM is returned. This structure must not be changed by the
application.

<- DM_UInt *count

DM specifies how many items are indexed and therefore the size of the returned structure con-
tentvec is returned.

-> DM_Options options

This parameter controls which information the Dialog Manager is to return. To do so, you have the
following possibilities which may also be combined ("or" in bits).

Option Meaning

DMF_OmitActive This option specifies that the attribute .active in the vector is not to
be provided with values, since the application is not interested in
this attribute.

DMF_OmitSensitive This option specifies that the attribute .sensitive in the vector is not
to be provided with values.

DMF_OmitStrings This option specifies that the attribute .content in the vector is not
to be provided with values, since the application is not interested in
this attribute. If the strings are not really needed, setting this option
will bring along considerable advantages of performance.

DMF_OmitUserData This option specifies that the attribute .userdata in the vector is not
to be provided with values, since the application is not interested in
this attribute. If the userdata are not really needed, setting this
option will bring along considerable advantages of performance.

Note

The contents vector which you receive in the contentvec parameter is allocated by DM and has to be
released by means of DM_FreeContent.

Example

Querying rows 2 to 5 in a listbox.

void DML_default DM_ENTRY GetContent __1((DM_ID, lb))
{

int i;

DM_Integer count;
DM_Value first, last;
DM_Content *vec;

first.type = DT_integer;
first.value.integer = 2;

last.type = DT_integer;
last.value.integer = 5;

DM_GetContent(lb, &first, &last, &vec, &count, 0);

for (i = 0; i < count; i++)
{

printf("vec[%d].sensitive = %d\n",i, vec[i].sensitive);
printf("vec[%d].active = %d\n",i, vec[i].active);
printf("vec[%d].string = %s\n",i, vec[i].string);

}

DM_FreeContent(vec, 0);
}

A.06.03.b 97

98 ISA DialogManager

3.30 DM_GetMultiValue
With this function you can query various attributes of different DM objects in one function call. These
functions should thus be used with the distributed DM, since they reduce the network traffic con-
siderably.

DM_Boolean DML_default DM_EXPORT DM_GetMultiValue
(
 DM_MultiValue * values,
 DM_UInt count,
 DM_ID dialogID,
 DM_String pathname,
 DM_Options options
)

Parameters

<-> DM_MultiValue *values

List of attributes and objects to be queried. If the element in the structure for the object is set to 0,
the object described in the parameter path name is taken. The list has to have at least the length
given in the parameter "count".

-> DM_UInt count

Specifies the length of the object-attribute vector given in the parameter "values".

-> DM_ID dialogID

This parameter describes the dialog to which the given objects belong. It has to be specified only if
the object identifier the attributes of which are to be queried is not known and thus the name of the
object is specified in the parameter "pathname".

-> DM_String pathname

Describes the object the attributes of which are to be queried. It is only allocated if the object's
internal identifier is not known yet.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

TRUE The attributes were queried successfully

FALSE At least one attribute could not be queried

Example

The following C function is to query coordinates at different objects.

void DML_default DM_ENTRY Get __3((DM_ID, o1),
(DM_ID, o2),

(DM_ID, o3))
{

DM_MultiValue val[3];

/* Setting the relevant object ID */
val[0].object = o1;
val[1].object = o2;
val[2].object = o3;

/* Setting the relevant index type */
val[0].index.type = DT_void;
val[1].index.type = DT_void;
val[2].index.type = DT_void;

/* Setting the relevant attribute */
val[0].attribute = AT_xleft;
val[1].attribute = AT_width;
val[2].attribute = AT_xright;

DM_GetMultiValue(val, 3, dialogID, (char *)0, 0);

if (val[0].data.type == DT_integer)
printf("%d %d %d\n",

(int) val[0].data.value.integer,
(int) val[1].data.value.integer,
(int) val[2].data.value.integer);

}

See Also

“Object Reference” for the attributes permitted for the relevant object type

A.06.03.b 99

100 ISA DialogManager

3.31 DM_GetToolkitData
You can query window system-specific data by using this function.

FPTR DML_default DM_EXPORT DM_GetToolkitData
(
 DM_ID objectID,
 DM_Attribute attr
)

Parameters

-> DM_ID objectID

Identifier of the object whose window system-specific data is to be queried.

-> DM_Attribute attr

This parameter defines which window system attribute is to be queried.

The valid assignments of the parameter attr depend on the window system and can be taken from
the following chapters.

Return value

Depending on the type of the queried value, this function returns the corresponding values converted
to FPTR.

Remarks

The function DM_GetToolkitData does not exist for the server side and should not be called there!

3.31.1 Motif
Using this function you can query the data necessary for X-Windows, such as "window-id", "widget"
and "color". The meanings of these datatypes are explained in the corresponding X-Windows manual.

The following values are permitted for the atttributes:

attribute Meaning

AT_CanvasData Returns the user-specific data of a canvas. This data have
been set by a canvas callback function and contains any
user-specific data (see also chapter „Strukturen für Can-
vas-Funktionen“ in the „C Interface - Basics“ manual).

AT_IsNull Returns a value<>0 if the font is a UI_NULL_FONT.

AT_Tile See also AT_XTile

attribute Meaning

AT_XColor Returns the X Windows-specific structure for the specified
color. The return value of the function is of the type “pixel”.
The specified object must be a color.

AT_XColormap Dieser Wert liefert die Colormap des Default-Screens
zurück.
Returns a colormap of the default screen.

AT_XCursor Returns the X Windows-specific structure for the specified
cursor. The return value of the function is of the type
“Cursor”. The specified object must be a cursor.

AT_XDepth Dieser Wert liefert die Farbtiefe des Default-Screens als
int.
Returns the color depth of the default screen as int.

AT_XDisplay Returns the display for the specified dialog. The return
value of the function is of the type “display *”.

AT_XFont Returns the X Windows-specific structure for the specified
font. The return value of the function is of the type
“XFontStruct *”, if supported by the font defintion. Other-
wise NULL.

AT_XFontSet Dieser Wert liefert die X-Windows-spezifische Struktur für
den angegebenen Zeichensatz zurück. Der Rückgabewert
der Funktion ist vom Typ “XFontSet”, sofern zur Font-Defin-
ition passend. Andernfalls NULL.
Returns the X Windows-specific structure for the specified
font. The return value of the function is of the type
“XFontSet”, if supported by the font defintion. Otherwise
NULL.

AT_XmFontList Dieser Wert liefert die X-Windows-spezifische Struktur für
den angegebenen Zeichensatz zurück. Der Rückgabewert
der Funktion ist vom Typ “XmFontList”, sofern zur Font-
Definition passend. Andernfalls NULL.
Returns the X Windows-specific structure for the specified
font. The return value of the function is of the type
“XFontSet”, if supported by the font defintion. Otherwise
NULL.

Returns the default font typically used by the IDM when the
font attribute is not set.

A.06.03.b 101

102 ISA DialogManager

attribute Meaning

AT_XScreen Returns the screen for the specified dialog. The return
value of the function is of the type “screen”.

AT_XShell Returns the shell widget of an object. The return value of
the function is a widget.

AT_XtAp-
pContext

Liefert den Application Context.
Returns the Application Context.

AT_XTile Returns the X Windows-specific structure for a tile. The
return value of this function depends on how the tile was
defined. If it was stored in an external "“.gif”"-format file,
"“XImage *”" is returned. If it was defined directly in the Dia-
log Manager file, “Pixmap” is returned.
It ist recommended to better query AT_XTile with function
DM_GetToolkitDataEx.

AT_XVisual Dieser Wert liefert eine Visual Struktur für den Default-
Screen.
Returns a visual structure for the default screen.

AT_XWidget Returns the widget of the specified object. The return value
of the function is of the type “widget”.

AT_XWindow Is the window belonging to the object. The return value of
the function is of the type “window”.

To be noted for multiscreen dialogs

The call with AT_ XTile or AT_XColor always returns only the tile or color of the default screen (see
also chapter „Multiscreen Ssupport untder Motif“ in manual „Programmiertechniken“).

Example

int DML_c AppMain (argc, argv)
int argc;
char far * far *argv;
{

DM_ID dialogID;
Widget toplevel; /* Application shell obtained from

XtInitialize(). */
static char * dialogfile = "xres.dlg";

/* Initialize the dialog manager */
DM_Initialize (&argc, argv, 0);

dialogID = DM_LoadDialog (dialogfile, 0);

if (!dialogID)
{

DM_TraceMessage("%s: Could not load dialog \"%s\"",
DMF_LogFile | DMF_InhibitTag | DMF_Printf,
argv[0], dialogfile);

return(1);
}

/* Querying the application shell */
if ((toplevel = (Widget) DM_GetToolkitData (dialogID,

AT_XWidget)) != 0)
{

DM_ID my_bgc;
DM_ID my_font;
DM_ID my_FontOfExit;

/* further, own statements */ }

3.31.2 Microsoft Windows
Using this function, the data necessary for MICROSOFT WINDOWS such as “window-handle”, “instance
handle” and “color” can be queried.

The meanings of these data types are explained in the corresponding Microsoft Windows manuals.

The following values are permitted for these attributes:

attribute object Return value Meaning

AT_CanvasData canvas FPTR This attribute can be used to retrieve
the user-specific data of a canvas
object. This data was set by DM_
SetToolkitData or a canvas callback
function and contains any user-specific
data (See also chapter „Structures for
Canvas Functions“).

A.06.03.b 103

104 ISA DialogManager

attribute object Return value Meaning

AT_ClipboardText setup or 0 DM_String This attribute returns the string content
of the Microsoft Windows clipboard.
The return value is buffered and is
valid until the attribute is queried again.
Setting the attribute also invalidates
the buffer. To release the string without
changing the clipboard, invoke:
DM_SetToolkitData(0, AT_
ClipboardText, (FPTR) 0, 0);

AT_Color color COLORREF See also AT_XColor

tile HPALETTE See also AT_XColor

AT_DataType tile int The query is only available for com-
patibility reasons. The attribute AT_
Tile with set “data” parameter should
be used with DM_GetToolkitDataEx.
This attribute returns the type of the
pattern. The assignment is described
at AT_XTile.

AT_DPI IDM Objects int See also AT_GetDPI

AT_Font font HFONT See also AT_XFont

IDM Objects HFONT See also AT_XFont

setup HFONT See also AT_XFont

AT_GetDPI setup or 0 int This attribute returns the system DPI
value. See the note below.

IDM Objects int This attribute returns the DPI value of
the object. This depends on which mon-
itor the object is assigned to. See note
below.

attribute object Return value Meaning

AT_IsNull font or color int Hiermit kann abgefragt werden, ob die
Resource auf NULL definiert wurde
(UI_NULL_FONT bzw. UI_NULL_
COLOR). Die Resource wurde auf
NULL definiert, wenn der Rück-
gabewert nicht 0 ist.
Hereby it can be queried whether the
resource was defined to NULL (UI_
NULL_FONT or UI_NULL_COLOR).
The resource has been defined to
NULL if the return value is not 0.

AT_maxsize setup or 0 int This attribute returns the number of
WSI ID's that are still free.
Attention: The number of WSI IDs still
available has nothing to do with how
many objects can actually still be made
visible! It is the maximum upper limit.

AT_Raster dialog
editbox
groupbox
layoutbox
module
notebook
notepage
spinbox
splitbox
statusbar
tablefield
toolbar
Window

DWORD This attribute returns the size of the ras-
ter defined on the object in IDM pixels.
The width and height is packed into a
“DWORD”, see note below.

font DWORD This attribute returns the size of the
font in IDM pixels as used for raster cal-
culation. The width and height is
packed into a “DWORD”, see note
below.

A.06.03.b 105

106 ISA DialogManager

attribute object Return value Meaning

AT_Sroll-
barDimension

groupbox
notepage
window

DWORD This attribute returns the width of the
vertical scrollbar and the height of the
horizontal scrollbar in IDM pixels. The
width and height is packed into a
“DWORD”, see note below.

AT_Size dialog
module

DWORD This attribute returns the size of the
primary monitor's workspace in IDM
pixels. The width and height is packed
into a “DWORD”, see note below.

font DWORD This attribute returns the size of the
font in IDM pixels. The width is cal-
culated from the reference string if one
is specified. The width and height is
packed into a “DWORD”, see note
below.

Remaining IDM
Objectsexcept
menubox, menu-
item and
menuseparator

DWORD This attribute returns the size of the
object in IDM pixels. The width and
height is packed into a “DWORD”, see
note below.

AT_Tile color HBRUSH See also AT_XTile

tile HANDLE
The query is only available for com-
patibility reasons. DM_
GetToolkitDataEx should be used with
the “data” parameter set.
See also AT_XTile

AT_toolhelp setup or 0 HWND This attribute returns the Microsoft Win-
dows handle of the tooltip control used
by Dialog Manager to display the .tool-
help attribute.
See also “Example for AT_toolhelp at
the setup object” below.

AT_value RTF edittext DM_String This attribute returns the complete con-
tent, i.e. with all formatting instructions
etc., of an RTF input field.

attribute object Return value Meaning

AT_VSize IDM Objekte
except menubox,
menuitem and
menuseparator

DWORD This attribute returns the virtual size of
the object in IDM pixels. If there is no
virtual size, then the real size is
returned in IDM pixels. The width and
height is packed into a “DWORD”, see
note below.

AT_Widget USW HWND See also AT_XWidget

AT_WinHandle dialog
module
setup or 0

HINSTANCE This attribute returns the Microsoft Win-
dows handle of the application
instance.

menubox HMENU This attribute returns the Microsoft Win-
dows Menu Handle.

menuitem
menuseparator

HMENU This attribute returns the Microsoft Win-
dows menu handle of the surrounding
menubox object.

Remaining IDM
Objects

HWND This attribute returns the Microsoft Win-
dows handle of the object. The group-
ing objects (groupbox, notepage,
window, ...) are usually composed of
several Microsoft Windows objects, for
these the handle of the “client” window
(the window in which the child objects
are created) is returned.

AT_wsidata cursor HCURSOR See also AT_XCursor

font HFONT See also AT_XFont

tile HANDLE
The query is only available for com-
patibility reasons. DM_
GetToolkitDataEx should be used with
the “data” parameter set.
See also AT_XTile

Remaining IDM
Objects

HWND This attribute returns the Microsoft
Windows handle of the outer Microsoft
Windows object, the inner one can be
queried with “AT_WinHandle”.

A.06.03.b 107

108 ISA DialogManager

attribute object Return value Meaning

AT_XColor color COLORREF This attribute returns the Microsoft Win-
dows-specific structure for the spe-
cified color. The color values are
accessed using the appropriate
Microsoft Windows macros:
COLORREF u1RGB = (COLORREF)
(size_t) DM_GetToolkitDataEx
(colorID, AT_XColor, (FPTR)
0, 0);
BYTE ucRed = GetRValue
(u1RGB);
BYTE ucGreen = GetGValue
(u1RGB);
BYTE ucBlue = GetBValue
(u1RGB);

tile HPALETTE This attribute returns the Microsoft Win-
dows color palette used by the pattern.

AT_XCursor cursor HCURSOR This attribute returns the Microsoft Win-
dows cursor handle.

AT_XFont font HFONT This attribute returns the Microsoft Win-
dows font handle.

IDM Objects HFONT This attribute returns the Microsoft Win-
dows font handle of the font used on
this object.

setup HFONT The font handle of the default font used
is returned.

attribute object Return value Meaning

AT_XTile color HBRUSH This attribute returns a Microsoft Win-
dows Brush of the color. This brush
can be used to fill the background.

tile HANDLE The query of AT_wsidata, AT_Tile and
AT_XTile without set "data" parameter
is only available for compatibility reas-
ons. The "data" parameter should be
used. This attribute returns the
Microsoft Windows specific structure
for the pattern (tile) as in version
A.06.03.a and before. GDI objects
have to be created for this purpose. In
order to obtain the new Microsoft Dir-
ect2D data, that the IDM uses intern-
ally, the "data" parameter must be set.
The type of Microsoft Windows handle
depends on AT_DataType, whereby
AT_DataType may only be queried
after AT_wsidata, AT_Tile or AT_XTile
has been queried:

DMF_TlkDataIsIcon: HICON

DMF_TlkDataIsWMF: HMETAFILE

DMF_TlkDataIsEMF:
HENHMETAFILE

Otherwise: HBITMAP

IMPORTANT: The returned data
should not be saved, as it is auto-
matically released when the tile
resource is no longer used by a visible
IDM object.
Note: If data was set using DM_
SetToolkitData, then the set data and
only the set data is returned.

AT_XWidget USW HWND This attribute returns the Microsoft Win-
dows handle of the USW object.

A.06.03.b 109

110 ISA DialogManager

Note for object and attribute

The object specified in the call must generally be visible and thus created in the WSI for the returned
data to make sense. Resources are generally created when they are called. If an object type is spe-
cified that is not mentioned for the attribute in question, an error message is usually written to the log
file and “(FPTR) 0” is returned.

Note for access on the return value

The return value of the function is a “FPTR” or “void *”, this must be cast to the documented return
value to avoid getting warnings when compiling.

Since a “void *” pointer can be cast to any other pointer, a simple cast operator is sufficient for all
pointer data types. Pointer data types include, for example, all Microsoft Windows handles, such as
“HWND”, “HFONT”, ... :

HWND hwnd = (HWND) DM_GetToolkitData(idObj, AT_wsidata);

For numerical values, an intermediate cast must usually be inserted, since the size of the data value
must be preserved when casting from a pointer to a number in order to avoid warnings. The data type
“size_t” can be used for this purpose, since it has the same size as a pointer by definition. Sub-
sequently, it is possible to cast to a smaller number type:

DM_UInt2 val = (DM_UInt2) (size_t) DM_GetToolkitData(idObj, AT_wsidata);

Note width and height packed in “DWORD”

Under Microsoft Windows, width and height are often packed into a “DWORD”. This is also partly
handled in this way by the IDM. The individual values can then be extracted with the Microsoft Win-
dows macros “LOWORD” and “HIWORD”:

DWORD size = (DWORD) (size_t) DM_GetToolkitData(id, AT_Size);
WORD width = LOWORD(size);
WORD height = HIWORD(size);

Note IDM pixel

The IDM for WINDOWS 11 supports high resolutions. To minimize impact on existing dialog scripts, ISA
DIALOG MANAGER uses virtual pixel coordinates. These are based on the size of an application that
does not support high resolutions, such as IDM for WINDOWS 10.

Note for DPI values

Note that all DPI values are dynamic and can be changed by the user. For example, IDM objects can
be moved to another monitor or the user can set other scale factors via the control panel.

If the application is not DPI Aware (for example IDM for WINDOWS 10) then the default DPI value of 96
is always used.

Notefor NULL values with ressources

The DM_GetToolkitData function returns a NULL value for font and color resources under
MICROSOFT WINDOWS if the resource has been defined to UI_NULL_FONT or UI_NULL_COLOR,

respectively. This affects the following attributes:

AT_wsidata, AT_Font, AT_XFont:

The return value for UI_NULL_FONT becomes (HFONT) 0.

AT_Color, AT_XColor:

The return value for UI_NULL_COLOR becomes (COLORREF) -1L.

AT_Tile, AT_XTile:

The return value for UI_NULL_COLOR becomes (HBRUSH) 0.

Note IDM pixel

Example

Querying a canvas-specific structure. If the structure is not yet defined at the canvas, the neces-
sary memory will be allocated and the data will be transferred to the canvas.

void DML_default DM_ENTRY HoleCanvasDaten __3(
(DM_ID, thisID),
(DM_ID, canvasID),
(DM_ID, stvarID))
{

MyData *d;
/* Holen der Daten aus der Canvas und Abprüfen, ob man sie
* wirklich bekommen hat, sonst Allokieren der Struktur
/* Fetching data from the canvas and checking whether it has
* actually arrived. Otherwise allocating the structure.
*/
if ((d = (MyData *) DM_GetToolkitData (canvasID,

AT_CanvasData)) == (MyData *) 0)
if ((d = DM_Calloc (sizeof(MyData)))

== (MyData *) 0)
return;

else
if (!DM_SetToolkitData (canvasID, AT_CanvasData, d, 0))

DM_TraceMessage ("Cannot set canvas toolkit data",
0);

}

Example for AT_toolhelp at the setup object

Note

The functions “CloseToolhelp” and “SetToolhelpDisplayTime” used in the example must be defined
accordingly within the dialog.

A.06.03.b 111

112 ISA DialogManager

Temporarily closing an open tooltip control in a canvas function to redraw the canvas

#include <windows.h>
#include <commctrl.h>
#include IDMuser.h

void DML_default DM_ENTRY CloseToolhelp __0() {
DM_ID idSetup =
DM_ParsePath((DM_ID) 0, (DM_ID) 0, "setup", 0, 0);

if (idSetuo != (DM_ID) 0) {
HWND hwndToolhelp =
(HWND) DM_GetToolkitData(idSetup, AT_toolhelp);

if (hwndToolhelp != (HWND) 0) {
SendMessage(

hwndToolhelp, TTM_POP,
(WPARAM) 0, (LPARAM) 0);

}
}

}

Change the display time of the tooltip

#include <windows.h>
#include <commctrl.h>
#include IDMuser.h

void DML_default DM_ENTRY SetToolhelpDisplayTime __1(
(DM_Integer, iDisplayTime)) {

DM_ID idSetup =
DM_ParsePath((DM_ID) 0, (DM_ID) 0, "setup", 0, 0);

if (idSetuo != (DM_ID) 0) {
HWND hwndToolhelp =

(HWND) DM_GetToolkitData(idSetup, AT_toolhelp);

if (hwndToolhelp != (HWND) 0) {
SendMessage(

hwndToolhelp, TTM_SETDELAYTIME,
(WPARAM) TTDT_AUTOPOP,
(LPARAM) iDisplayTime);

}
}

}

3.31.3 Qt
The following values are permitted for these attributes:

attribute object Return value Meaning

AT_Application 0 FPTR auf QAp-
plication

This attribute can be used to
query the QApplication on
which the application is
based.

AT_CanvasData cancas FPTR Über dieses Attribut können
die benutzerspezifischen
Daten eines Canvas-
Objekts erfragt werden.
Diese Daten wurden von
DM_SetToolkitData oder
einer Canvas-Callback-
Funktion gesetzt und bein-
halten jegliche ben-
utzerspezifischen Daten
(Siehe auch Kapitel „Struk-
turen für Canvas-Funk-
tionen“).
This attribute can be used to
retrieve the user-specific
data of a canvas object. This
data was set by DM_
SetToolkitData or a canvas
callback function and con-
tains any user-specific data
(See also chapter „Struc-
tures for Canvas Func-
tions“).

A.06.03.b 113

114 ISA DialogManager

attribute object Return value Meaning

AT_Color color QColor /
QBrush

This attribute can be used to
query the color or color gradi-
ent (as a QBrush) used by
the Color resource. Atten-
tion: It should always be
checked first for a valid color
(QColor), since a QBrush
can be automatically cast to
a QColor, which then how-
ever is an uninitialized but
valid QColor.

AT_Font font QFont This attribute can be used to
query the QFont used by the
font resource.

AT_FontName font char* This attribute can be used to
get the name of the QFont
used by the font resource.

AT_Tile tile QPixmap This attribute can be used to
query the QPixmap of the
pattern (tile).

AT_XTile tile QPixmap See AT_Tile

AT_XWidget IDM
Objekte

QWidget This attribute determines
the QWidget associated
with a DM_ID.

See also

Function DM_GetToolkitDataEx

3.32 DM_GetToolkitDataEx
This function is an extended form of DM_GetToolkitData and allows to pass additional values or struc-
tures via the parameters data and options.

Availability

since IDM version A.05.02.e

FPTR DML_default DM_EXPORT DM_GetToolkitDataEx
(
 DM_ID objectID,
 DM_Attribute attr,
 FPTR data,
 DM_Options options
)

Parameters

-> DM_ID objectID

This parameter is the identifier of the object whose window system specific data should be reques-
ted.

-> DM_Attribute attr

This parameter specifies the attribute to be queried.

<-> FPTR data

Pointer to DM_ToolkitDataArgs structure. The structure is used for communication with the DM_
GetToolkitDataEx function. It allows the transfer and return of different value types.

For compatible use to DM_GetToolkitData should be data = NULL.

-> DM_Options options

Currently unused, should be used with 0.

Return value

Depending on the type of the queried value, this function returns the corresponding values converted
to FPTR.

Remarks

The function DM_GetToolkitDataEx does not exist for the server side and should not be called there!

3.32.1 Motif
Using this function you can query the data necessary for X-Windows, such as "window-id", "widget"
and "color". The meanings of these datatypes are explained in the corresponding X-Windows manual.

The following values are permitted for the atttributes:

A.06.03.b 115

116 ISA DialogManager

attribute data object Meaning

AT_CanvasData (FPTR) 0 canvas Returns the user-specific data of a canvas.
This data have been set by a canvas callback
function and contains any user-specific data
(see also chapter „Strukturen für Canvas-
Funktionen“ in the „C Interface - Basics“
manual).

AT_CellRect DM_
ToolkitDataArgs
*data

tablefield Determines the coordinates and size of a cell
in IDM pixels for a tablefield (for this the
“data->index” field must be set to the desired
index (argmask = DM_TKAM_index)). These
are stored in the rectangle field of the passed
DM_ToolkitDataArgs structure. Cell means
the rectangular area in the tablefield where
shadows, focus and activation frames and
text are drawn. The cell does not include the
lines drawn between the cells.
The coordinates supplied are relative to the
upper left corner of the tablefield.
If position and size of a cell could be determ-
ined, DM_GetToolkitDataEx returns the
pointer to the specified DM_ToolkitDataArgs
structure, in all other cases NULL. Position
and size can only be determined if both table-
field and row and column of the cell are
switched visible and the cell is fully or partially
visible in the tablefield. A concrete, absolute
invisibility (e.g. because the window is out-
side the visible screen or otherwise covered)
cannot be excluded despite supplied position
and size and is window system dependent.

attribute data object Meaning

AT_DPI DM_
ToolkitDataArgs
*data

0 Returns - with set argmask=0 - the DPI inform-
ation of the default screen (null objectID) or
the DPI information of the screen on which
the specified surface object is made visible.
The function resets the argmask to DM_
TKAM_dpi | DM_TKAM_scaledpi. In the dpi
field of the DM_ToolkitDataArgs structure
then contains the default dpi value. In the sub-
structure scale.dpi the DPI value to which
the scaling from the default DPI value takes
place. The element scale.factor element
also returns the scaling factor in %. For a
HiDPI-aware IDM application on a screen
with 200% scaling you will typically find the
values dpi=96 ,scale.dpi=192,
scale.factor=200 are present. A conversion
of pixel coordinates of the IDM into real
screen pixels can then be done using with
*scale.factor/100 or *scale.dpi/dpi.

AT_IsNull (FPTR) 0 font Returns a value<>0 if the font is a UI_NULL_
FONT.

AT_ObjectID DM_
ToolkitDataArgs
*data

0 Determines the corresponding object ID for a
widget. If successful, the data pointer is
returned and in the DM_ToolkitDataArgs
structure the ID is stored in the data sub-
structure.

AT_Tile (FPTR) 0 tile See also AT_XTile

AT_XColor (FPTR) 0 color Returns the X Windows-specific structure for
the specified color. The return value of the
function is of the type “pixel”. The specified
object must be a color.

AT_XColormap (FPTR) 0 0 Dieser Wert liefert die Colormap des Default-
Screens zurück.
Returns a colormap of the default screen.

A.06.03.b 117

118 ISA DialogManager

attribute data object Meaning

AT_XCursor (FPTR) 0 cursor Returns the X Windows-specific structure for
the specified cursor. The return value of the
function is of the type “Cursor”. The specified
object must be a cursor.

AT_XDepth (FPTR) 0 0 Dieser Wert liefert die Farbtiefe des Default-
Screens als int.
Returns the color depth of the default screen
as int.

AT_XDisplay (FPTR) 0 0 Returns the display for the specified dialog.
The return value of the function is of the type
“display *”.

AT_XFont (FPTR) 0 font Returns the X Windows-specific structure for
the specified font. The return value of the func-
tion is of the type “XFontStruct *”, if supported
by the font defintion. Otherwise NULL.

AT_XFontSet (FPTR) 0 font Dieser Wert liefert die X-Windows-spezi-
fische Struktur für den angegebenen
Zeichensatz zurück. Der Rückgabewert der
Funktion ist vom Typ “XFontSet”, sofern zur
Font-Definition passend. Andernfalls NULL.
Returns the X Windows-specific structure for
the specified font. The return value of the func-
tion is of the type “XFontSet”, if supported by
the font defintion. Otherwise NULL.

AT_XmFontList (FPTR) 0 font Dieser Wert liefert die X-Windows-spezi-
fische Struktur für den angegebenen
Zeichensatz zurück. Der Rückgabewert der
Funktion ist vom Typ “XmFontList”, sofern zur
Font-Definition passend. Andernfalls NULL.
Returns the X Windows-specific structure for
the specified font. The return value of the func-
tion is of the type “XFontSet”, if supported by
the font defintion. Otherwise NULL.

0 or visible
IDM
Objects

Returns the default font typically used by the
IDM when the font attribute is not set.

attribute data object Meaning

AT_XScreen (FPTR) 0 0 Returns the screen for the specified dialog.
The return value of the function is of the type
“screen”.

AT_XShell (FPTR) 0 0 Returns the shell widget of an object. The
return value of the function is a widget.

AT_XtAp-
pContext

(FPTR) 0 0 Liefert den Application Context.
Returns the Application Context.

AT_XTile (FPTR) 0 tile Returns the X Windows-specific structure for
a tile. The return value of this function
depends on how the tile was defined. If it was
stored in an external "“.gif”"-format file,
"“XImage *”" is returned. If it was defined dir-
ectly in the Dialog Manager file, “Pixmap” is
returned.

DM_
ToolkitDataArgs
*data

tile This value returns the X-Windows specific
structure of a pattern tile (with set argmask=0
or armask=DM_TKAM_scaledpi). If image
information is present, the following inform-
ation is returned in the DM_ToolkitDataArgs
structure:

DM_TKAM_tile: In the tile substructure
the image type (DM_GFX_PIXMAP or
DM_GFX_XIMAGE)in gfxtype. For a
PIXMAP the image information in the
pixmap member and the transparency
clipmask in the trans_mask member. For
an XIMAGE the full image information is
supplied in the ximage member.

DM_TKAM_rectangle: width and height of
the image in the rectangle substructure.

DM_TKAM_dpi: The DPI information ana-
log to the AT_DPI call.

DM_TKAM_scaledpi: The DPI inform-
ation analogous to the AT_DPI call.

A.06.03.b 119

120 ISA DialogManager

attribute data object Meaning

AT_XVisual (FPTR) 0 0 Dieser Wert liefert eine Visual Struktur für den
Default-Screen.
Returns a visual structure for the default
screen.

AT_XWidget (FPTR) 0 IDM
Objects

Returns the widget of the specified object.
The return value of the function is of the type
“widget”.

AT_XWindow (FPTR) 0 IDM
Objects

Is the window belonging to the object. The
return value of the function is of the type “win-
dow”.

To be noted for multiscreen dialogs

The call with AT_ XTile or AT_XColor always returns only the tile or color of the default screen (see
also chapter „Multiscreen Ssupport untder Motif“ in manual „Programmiertechniken“).

3.32.2 Microsoft Windows
Using this function, the data necessary for MICROSOFT WINDOWS such as “window-handle”, “instance
handle” and “color” can be queried.

The meanings of these data types are explained in the corresponding Microsoft Windows manuals.

The following values are permitted for these attributes:

attribute data object Return value Meaning

AT_CanvasData (FPTR) 0 canvas FPTR This attribute can be
used to retrieve the
user-specific data of a
canvas object. This
data was set by DM_
SetToolkitData or a
canvas callback func-
tion and contains any
user-specific data
(See also chapter
„Structures for Can-
vas Functions“).

attribute data object Return value Meaning

AT_CellRect DM_
ToolkitDataArgs
*data

tablefield data This attribute determ-
ines the coordinates
of a tablefield cell in
IDM pixels. For this
the “data->index” field
must be set to the
desired index (do not
forget the bit “DM_
TKAM_index” in
“data->argmask”). In
data->argmask the bit
“DM_TKAM_rect-
angle” is set and the
corresponding fields
are filled in (see
description DM_
ToolkitDataArgs). By
cell is meant the rect-
angular area in the
tablefield where shad-
ows, focus and activ-
ation frames and text
are drawn. The cell
does not include the
lines drawn between
the cells. The coordin-
ates supplied are rel-
ative to the upper left
corner of the table-
field. If position and
size of a cell could be
determined, DM_
GetToolkitDataEx
returns the pointer to
the specified DM_
ToolkitDataArgs struc-
ture, in all other cases
(FPTR) 0. Position
and size can only be
determined if both

A.06.03.b 121

122 ISA DialogManager

attribute data object Return value Meaning

tablefield and row and
column of the cell are
switched visible and
the cell is completely
or partially visible in
the tablefield. A con-
crete, absolute invis-
ibility (e.g. because
the window is outside
the visible screen or
otherwise covered)
cannot be excluded
despite supplied pos-
ition and size and is
window system
dependent.

AT_ClipboardText (FPTR) 0 setup or 0 DM_String This attribute returns
the string content of
the Microsoft Win-
dows clipboard. The
return value is buf-
fered and is valid until
the attribute is quer-
ied again. Setting the
attribute also inval-
idates the buffer. To
release the string
without changing the
clipboard, invoke:
DM_
SetToolkitData
(0, AT_
ClipboardText,
(FPTR) 0, 0);

AT_Color (FPTR) 0 color COLORREF See also AT_XColor

tile HPALETTE See also AT_XColor

attribute data object Return value Meaning

AT_DataType (FPTR) 0 tile int The query is only
available for com-
patibility reasons. The
attribute AT_Tile with
set “data” parameter
should be used with
DM_
GetToolkitDataEx.
This attribute returns
the type of the pat-
tern. The assignment
is described at AT_
XTile.

A.06.03.b 123

124 ISA DialogManager

attribute data object Return value Meaning

AT_DPI (FPTR) 0 IDM Objects int See also AT_GetDPI

DM_
ToolkitDataArgs
*data

setup oder 0 int This attribute returns
the system DPI value
as in "AT_GetDPI". If
"DM_TKAM_handle"
is set, the DPI value
of the Microsoft Win-
dows control whose
window handle
(HWND) is specified
in "data->handle" is
determined instead.
In addition, the bits
"DM_TKAM_dpi" and
"DM_TKAM_scaled-
dpi" are set in "data-
>argmask" and the
corresponding fields
are filled out (see
description DM_
ToolkitDataArgs).

Remaining IDM
Objects

int This attribute returns
the DPI value of the
object as in AT_
GetDPI. In addition, in
data->argmask the
bits DM_TKAM_dpi
and DM_TKAM_
scaleddpi are set and
the corresponding
fields are filled in (see
description DM_
ToolkitDataArgs).

AT_Font (FPTR) 0 font HFONT See also AT_XFont

IDM Objects HFONT See also AT_XFont

setup HFONT See also AT_XFont

attribute data object Return value Meaning

AT_GetDPI (FPTR) 0 setup or 0 int This attribute returns
the system DPI value.
See the note below.

IDM Objects int This attribute returns
the DPI value of the
object. This depends
on which monitor the
object is assigned to.
See note below.

HWND data setup or 0 int This attribute returns
the DPI value of the
Microsoft Windows
object whose handle
(HWND) was passed
in “data”. This
depends on which
monitor the object is
assigned to. See note
below.

AT_IsNull font or color int Hiermit kann abge-
fragt werden, ob die
Resource auf NULL
definiert wurde (UI_
NULL_FONT bzw.
UI_NULL_COLOR).
Die Resource wurde
auf NULL definiert,
wenn der Rück-
gabewert nicht 0 ist.
Hereby it can be quer-
ied whether the
resource was defined
to NULL (UI_NULL_
FONT or UI_NULL_
COLOR). The
resource has been
defined to NULL if the
return value is not 0.

A.06.03.b 125

126 ISA DialogManager

attribute data object Return value Meaning

AT_maxsize (FPTR) 0 setup or 0 int This attribute returns
the number of WSI
ID's that are still free.
Attention: The num-
ber of WSI IDs still
available has nothing
to do with how many
objects can actually
still be made visible! It
is the maximum
upper limit.

AT_ObjectID DM_
ToolkitDataArgs
*data

setup oder 0 data This attribute returns
the DM_ID of a
Microsoft Windows
object. For this the
“data->handle” field
must be set to the
Microsoft Windows
window handle
(HWND) (do not for-
get the bit “DM_
TKAM_handle” in
“data->argmask”). If a
Dialog Manager ID
can be determined,
the return value is set
to “data”, the “data-
>argmask” bit “DM_
TKAM_data” is set
and the “data->data”
field is filled with the
DM_ID.

attribute data object Return value Meaning

AT_Raster (FPTR) 0 dialog
editbox
groupbox
layoutbox
module
notebook
notepage
spinbox
splitbox
statusbar
tablefield
toolbar
Window

DWORD This attribute returns
the size of the raster
defined on the object
in IDM pixels. The
width and height is
packed into a
“DWORD”, see note
below.

font DWORD This attribute returns
the size of the font in
IDM pixels as used
for raster calculation.
The width and height
is packed into a
“DWORD”, see note
below.

AT_Sroll-
barDimension

(FPTR) 0 groupbox
notepage
window

DWORD This attribute returns
the width of the ver-
tical scrollbar and the
height of the hori-
zontal scrollbar in
IDM pixels. The width
and height is packed
into a “DWORD”, see
note below.

A.06.03.b 127

128 ISA DialogManager

attribute data object Return value Meaning

AT_Size (FPTR) 0 dialog
module

DWORD This attribute returns
the size of the primary
monitor's workspace
in IDM pixels. The
width and height is
packed into a
“DWORD”, see note
below.

font DWORD This attribute returns
the size of the font in
IDM pixels. The width
is calculated from the
reference string if one
is specified. The
width and height is
packed into a
“DWORD”, see note
below.

Remaining IDM
Objectsexcept
menubox,
menuitem and
menuseparator

DWORD This attribute returns
the size of the object
in IDM pixels. The
width and height is
packed into a
“DWORD”, see note
below.

AT_Tile (FPTR) 0 color HBRUSH See also AT_XTile

tile HANDLE
The query is only
available for com-
patibility reasons.
DM_
GetToolkitDataEx
should be used with
the “data” parameter
set.
See also AT_XTile

attribute data object Return value Meaning

AT_toolhelp (FPTR) 0 setup or 0 HWND This attribute returns
the Microsoft Win-
dows handle of the
tooltip control used by
Dialog Manager to dis-
play the .toolhelp
attribute.
See also “DM_
GetToolkitDataEx”
below.

AT_value (FPTR) 0 RTF edittext DM_String This attribute returns
the complete content,
i.e. with all formatting
instructions etc., of an
RTF input field.

AT_VSize (FPTR) 0 IDM Objekte
except
menubox,
menuitem and
menuseparator

DWORD This attribute returns
the virtual size of the
object in IDM pixels. If
there is no virtual
size, then the real
size is returned in
IDM pixels. The width
and height is packed
into a “DWORD”, see
note below.

AT_Widget (FPTR) 0 USW HWND See also AT_XWid-
get

A.06.03.b 129

130 ISA DialogManager

attribute data object Return value Meaning

AT_WinHandle (FPTR) 0 dialog
module
setup or 0

HINSTANCE This attribute returns
the Microsoft Win-
dows handle of the
application instance.

menubox HMENU This attribute returns
the Microsoft Win-
dows Menu Handle.

menuitem
menuseparator

HMENU This attribute returns
the Microsoft Win-
dows menu handle of
the surrounding
menubox object.

Remaining IDM
Objects

HWND This attribute returns
the Microsoft Win-
dows handle of the
object. The grouping
objects (groupbox,
notepage, window,
...) are usually com-
posed of several
Microsoft Windows
objects, for these the
handle of the “client”
window (the window
in which the child
objects are created)
is returned.

attribute data object Return value Meaning

AT_wsidata (FPTR) 0 cursor HCURSOR See also AT_XCursor

font HFONT See also AT_XFont

tile HANDLE
The query is only
available for com-
patibility reasons.
DM_
GetToolkitDataEx
should be used with
the “data” parameter
set.
See also AT_XTile

Remaining IDM
Objects

HWND This attribute returns
the Microsoft Win-
dows handle of the
outer Microsoft Win-
dows object, the inner
one can be queried
with “AT_WinHandle”.

A.06.03.b 131

132 ISA DialogManager

attribute data object Return value Meaning

AT_XColor (FPTR) 0 color COLORREF This attribute returns
the Microsoft Win-
dows-specific struc-
ture for the specified
color. The color val-
ues are accessed
using the appropriate
Microsoft Windows
macros:
COLORREF u1RGB =
(COLORREF)
(size_t) DM_
GetToolkitDataEx
(colorID, AT_
XColor, (FPTR)
0, 0);
BYTE ucRed =
GetRValue
(u1RGB);
BYTE ucGreen =
GetGValue
(u1RGB);
BYTE ucBlue =
GetBValue
(u1RGB);

tile HPALETTE This attribute returns
the Microsoft Win-
dows color palette
used by the pattern.

AT_XCursor (FPTR) 0 cursor HCURSOR This attribute returns
the Microsoft Win-
dows cursor handle.

attribute data object Return value Meaning

AT_XFont (FPTR) 0 font HFONT This attribute returns
the Microsoft Win-
dows font handle.

IDM Objects HFONT This attribute returns
the Microsoft Win-
dows font handle of
the font used on this
object.

setup HFONT The font handle of the
default font used is
returned.

A.06.03.b 133

134 ISA DialogManager

attribute data object Return value Meaning

AT_XTile (FPTR) 0 color HBRUSH This attribute returns
a Microsoft Windows
Brush of the color.
This brush can be
used to fill the back-
ground.

attribute data object Return value Meaning

(FPTR) 0 tile HANDLE The query of AT_
wsidata, AT_Tile and
AT_XTile without set
"data" parameter is
only available for com-
patibility reasons. The
"data" parameter
should be used. This
attribute returns the
Microsoft Windows
specific structure for
the pattern (tile) as in
version A.06.03.a and
before. GDI objects
have to be created for
this purpose. In order
to obtain the new
Microsoft Direct2D
data, that the IDM
uses internally, the
"data" parameter
must be set.
The type of Microsoft
Windows handle
depends on AT_
DataType, whereby
AT_DataType may
only be queried after
AT_wsidata, AT_Tile
or AT_XTile has been
queried:

DMF_TlkDataIsI-
con: HICON

DMF_
TlkDataIsWMF:
HMETAFILE

DMF_
TlkDataIsEMF:
HENHMETAFILE

A.06.03.b 135

136 ISA DialogManager

attribute data object Return value Meaning

DMF_
TlkDataIsI-
con: HICON

DMF_
TlkDataIsW-
MF:
HMETAFIL-
E

DMF_
TlkDataIsE-
MF:
HENHMET-
AFILE

Otherwise:
HBITMAP

IMPORTANT:
The returned
data should not
be saved, as it
is automatically
released when
the tile
resource is no
longer used by
a visible IDM
object.
Note: If data
was set using
DM_
SetToolkitData,
then the set
data and only
the set data is
returned.

attribute data object Return value Meaning

DM_
ToolkitDataArgs
*data

tile HANDLE /
LPUNKNOWN

This attribute
returns the
Microsoft Win-
dows specific
structure for the
pattern (tile) as
in version
A.06.03.a and
before. GDI
objects have to
be created for
this purpose. In
order to receive
the new
Microsoft Direct
2D data that
IDM uses intern-
ally, the “DM_
TKAM_tile_req”
bit must be set
in “data-
>argmask”. The
desired data
types are spe-
cified in “data-
>tile_req”, the
following val-
ues are pos-
sible:
- DM_GFX_
BMP: GDI Bit-
map Handle
(HBITMAP)
- DM_GFX_
WMF: GDI
Metafile Handle
(HMETAFILE)
- DM_GFX_
EMF: GDI

A.06.03.b 137

138 ISA DialogManager

attribute data object Return value Meaning

Enhanced
Metafile Handle
(HENHMETAFI-
LE)
- DM_GFX_
ICO: GDI Icon
Handle
(HICON)
- DM_GFX_
D2D1BMP: Dir-
ect2D Bitmap
(ID2D1Bitmap
*)
- DM_GFX_
D2D1SVG: Dir-
ect2D SVG
Documnet
(ID2D1SvgDoc-
ument *)
- DM_GFX_
D2D1EMF: Dir-
ect2D Metafile
(ID2D1GdiMet-
afile *)
These values
can be linked
with “bitwise
or”. One of
them is then
selected, the
data type DM_
GFX_BMP is
always used as
a fallback (even
if not explicitly
specified). If
necessary and
possible, it is
converted to
one of the

attribute data object Return value Meaning

desired data
types, which
may consume
additional
resources.
This attribute
returns the
Microsoft Win-
dows specific
structure for the
pattern (tile).
The pattern is
determined for
a requested
DPI value. This
is determined in
the specified
order from the
following data:

If in “data-
>argmask”
the “DM_
TKAM_
handle” bit
is set, then
the DPI
value of the
Microsoft
Windows
control is
determined
whose Win-
dows
handle
(HWND) is
in the “data-
>handle”
field.

Otherwise,

A.06.03.b 139

140 ISA DialogManager

attribute data object Return value Meaning

if the “DM_
TKAM_
scaledpi” bit
is set in
“data-
>argmask”,
then the sys-
tem DPI
value is
determined
(cor-
responding
to the scal-
ing factor of
the primary
monitor).

If none of
the previous
conditions
was met,
then the ori-
ginal image
size, i.e. the
DPI value
for which
the images
were
designed, is
used.

Also, in “data-
>argmask” the
“DM_TKAM_
tile”, “DM_
TKAM_rect-
angle”, “DM_
TKAM_dpi” and
“DM_TKAM_
scaleddpi” bits
are set and the

attribute data object Return value Meaning

corresponding
fields are filled
in (see descrip-
tion DM_
ToolkitDataArg-
s), where the
DPI values are
set to the
requested DPI
value and the
rectangle is set
to the size
matching this
requested DPI
value. Note:
This does not
mean that the
image data will
be the appro-
priate size, it
may need to be
scaled.
The return
value cor-
responds to
either “data-
>tile.data” or
“data-
>tile.iunk”, see
DM_
ToolkitDataArg-
s.
Note: The data
type of the
return value is
either in the
“entry data-
>tile.gfxtype” or
“data->tile.data-
type”. The

A.06.03.b 141

142 ISA DialogManager

attribute data object Return value Meaning

query of AT_
DataType is
obsolete and
may no longer
be used when
using the “data”
parameter.
IMPORTANT:
The returned
data should not
be saved, as it
is automatically
released when
the tile
resource is no
longer used by
a visible IDM
object.
Note: If data
was set using
DM_
SetToolkitData,
then the set
data and only
the set data is
returned.

AT_XWidget (FPTR) 0 USW HWND This attribute returns
the Microsoft Win-
dows handle of the
USW object.

Note for object and attribute

The object specified in the call must generally be visible and thus created in the WSI for the returned
data to make sense. Resources are generally created when they are called. If an object type is spe-
cified that is not mentioned for the attribute in question, an error message is usually written to the log
file and “(FPTR) 0” is returned.

Note for access on the return value

The return value of the function is a “FPTR” or “void *”, this must be cast to the documented return
value to avoid getting warnings when compiling.

Since a “void *” pointer can be cast to any other pointer, a simple cast operator is sufficient for all
pointer data types. Pointer data types include, for example, all Microsoft Windows handles, such as
“HWND”, “HFONT”, ... :

HWND hwnd = (HWND) DM_GetToolkitDataEx(idObj, AT_wsidata, (FPTR) 0, 0);

For numerical values, an intermediate cast must usually be inserted, since the size of the data value
must be preserved when casting from a pointer to a number in order to avoid warnings. The data type
“size_t” can be used for this purpose, since it has the same size as a pointer by definition. Sub-
sequently, it is possible to cast to a smaller number type:

DM_UInt2 val = (DM_UInt2) (size_t) DM_GetToolkitDataEx(idObj, AT_wsidata,
(FPTR) 0, 0);

Note width and height packed in “DWORD”

Under Microsoft Windows, width and height are often packed into a “DWORD”. This is also partly
handled in this way by the IDM. The individual values can then be extracted with the Microsoft Win-
dows macros “LOWORD” and “HIWORD”:

DWORD size = (DWORD) (size_t) DM_GetToolkitDataEx(id, AT_Size, (FPTR) 0, 0);
WORD width = LOWORD(size);
WORD height = HIWORD(size);

Note IDM pixel

The IDM for WINDOWS 11 supports high resolutions. To minimize impact on existing dialog scripts, ISA
DIALOG MANAGER uses virtual pixel coordinates. These are based on the size of an application that
does not support high resolutions, such as IDM for WINDOWS 10.

Note for DPI values

Note that all DPI values are dynamic and can be changed by the user. For example, IDM objects can
be moved to another monitor or the user can set other scale factors via the control panel.

If the application is not DPI Aware (for example IDM for WINDOWS 10) then the default DPI value of 96
is always used.

Notefor NULL values with ressources

The DM_GetToolkitDataEx function returns a NULL value for font and color resources under
MICROSOFT WINDOWS if the resource has been defined to UI_NULL_FONT or UI_NULL_COLOR,
respectively. This affects the following attributes:

AT_wsidata, AT_Font, AT_XFont:

The return value for UI_NULL_FONT becomes (HFONT) 0.

AT_Color, AT_XColor:

The return value for UI_NULL_COLOR becomes (COLORREF) -1L.

A.06.03.b 143

144 ISA DialogManager

AT_Tile, AT_XTile:

The return value for UI_NULL_COLOR becomes (HBRUSH) 0.

Note IDM pixel

3.32.3 Qt
The following values are permitted for these attributes:

attribute data object Return value Meaning

AT_Application (FPTR) 0 0 FPTR auf QAp-
plication

This attribute can be
used to query the QAp-
plication on which the
application is based.

AT_CanvasData (FPTR) 0 cancas FPTR Über dieses Attribut
können die ben-
utzerspezifischen
Daten eines Canvas-
Objekts erfragt werden.
Diese Daten wurden
von DM_
SetToolkitData oder
einer Canvas-Call-
back-Funktion gesetzt
und beinhalten jegliche
benutzerspezifischen
Daten (Siehe auch Kap-
itel „Strukturen für Can-
vas-Funktionen“).
This attribute can be
used to retrieve the
user-specific data of a
canvas object. This
data was set by DM_
SetToolkitData or a can-
vas callback function
and contains any user-
specific data (See also
chapter „Structures for
Canvas Functions“).

attribute data object Return value Meaning

AT_Color (FPTR) 0 color QColor /
QBrush

This attribute can be
used to query the color
or color gradient (as a
QBrush) used by the
Color resource. Atten-
tion: It should always
be checked first for a
valid color (QColor),
since a QBrush can be
automatically cast to a
QColor, which then
however is an unini-
tialized but valid QCo-
lor.

AT_DPI (DM_
ToolkitDataArgs
*data

0 int This attribute returns
the system DPI value.
In addition, the DM_
TKAM_dpi and DM_
TKAM_scaleddpi bits
are set in data-
>argmask and the cor-
responding fields are
filled in (see description
DM_ToolkitDataArgs).

AT_Font (FPTR) 0 font QFont This attribute can be
used to query the
QFont used by the font
resource.

AT_FontName (FPTR) 0 font char* This attribute can be
used to get the name of
the QFont used by the
font resource.

A.06.03.b 145

146 ISA DialogManager

attribute data object Return value Meaning

AT_ObjectID DM_
ToolkitDataArgs
*data

0 data This attribute returns
the DM_ID of a Qt wid-
get. This requires that
the pointer to DM_
ToolkitDataArgs struc-
ture has the “data->wid-
get” field set to the
QWidget and argmask
= DM_TKAM_widget. If
a Dialog Manager ID
can be determined, the
return value is set to
data, the data-
>argmask bit “DM_
TKAM_data” is set and
the “data->data” field is
filled with the DM_ID
(see description DM_
ToolkitDataArgs).

AT_Tile (FPTR) 0 tile QPixmap This attribute can be
used to query the
QPixmap of the pattern
(tile).

attribute data object Return value Meaning

AT_XTile (FPTR) 0 tile QPixmap See AT_Tile

DM_
ToolkitDataArgs
*data

tile QPixmap This attribute returns
the Qt specific struc-
ture for the pattern
(tile).
Also, in “data-
>argmask” the “DM_
TKAM_tile”, “DM_
TKAM_rectangle”,
“DM_TKAM_dpi” and
“DM_TKAM_
scaleddpi” bits are set
and the corresponding
fields are filled in (see
description DM_
ToolkitDataArgs).
The return value cor-
responds to “data-
>tile.pixmap”.

AT_XWidget (FPTR) 0 IDM
Objekte

QWidget This attribute determ-
ines the QWidget asso-
ciated with a DM_ID.

See also

Function DM_GetToolkitDataEx

A.06.03.b 147

148 ISA DialogManager

3.33 DM_GetValue
Using this function you can query attributes of DM objects. For the attributes which are allowed for the
relevant object type please refer to the “Object Reference”.

DM_Boolean DML_default DM_EXPORT DM_GetValue
(
 DM_ID objectID,
 DM_Attribute attr,
 DM_UInt index,
 DM_Value *data,
 DM_Options options
)

Parameters

-> DM_ID objectID

This parameter describes the object whose attribute you want to query.

-> DM_Attribute attr

This parameter describes the object attribute you want to query. All attributes permitted are
defined in the file IDMuser.h.

-> DM_UInt index

This parameter is analyzed only in vector attributes of objects and describes the index of the
desired object (e.g. text in listbox).

-> DM_Value *data

In this parameter you can query the attribute value. You should make sure that you read out the
correct element out of this union. For the data type of each attribute please refer to the “Object
Reference”.

-> DM_Options options

With this parameter you can control which form of texts are returned by DM, if the corresponding
attribute is of the text-type. The following assignment is possible for this parameter:

Option Meaning

DMF_GetMasterString This object means that the string of textual attributes is to be
returned in the development language, independently of the lan-
guage the user is working with.

DMF_GetLocalString This option means that the string of textual attributes is returned in
the selected language.

Option Meaning

DMF_GetTextID This option means that the string of textual attributes is returned as
textID. This is especially useful if the text is to be assigned to
another object.

DMF_
DontFreeLastStrings

Usually, strings are transferred in a temporary buffer (which
remains until the next call to DM) to the application. If strings are to
remain valid for a longer time in the application, the option DMF_
DontFreeLastStrings has to be set. The memory will only be
released, if a DM function is called without this option and if then a
string is returned by the DM to the application.

Return Value

TRUE The object could be queried successfully.

FALSE The attribute is not permitted for this object.

Example

Querying the contents of an editable text in an object-callback function.

DM_Boolean DML_default DM_CALLBACK CheckFilename __1(
(DM_CallBackArgs *, data))
{

DM_Value value; /*structure for DM_GetValue*/

/* get current contents */
if (DM_GetValue(data->object, AT_content, 0, &value,

DMF_GetLocalString))
/* check the datatype */
if(value.type == DT_string)

See Also

Built-in function getvalue in manual “Rule Language”

A.06.03.b 149

150 ISA DialogManager

3.34 DM_GetValueIndex
This function can be used to query attributes with two indexes.

The attributes which are allowed for the relevant object type are listed in the “Object Reference”.

DM_Boolean DML_default DM_EXPORT DM_GetValueIndex
(
 DM_ID objectID,
 DM_Attribute attr,
 DM_Value *index,
 DM_Value *data,
 DM_Options options
)

Parameters

-> DM_ID objectID

Describes the object whose attribute you query.

-> DM_Attribute attr

Describes the attribute you query. Valid attributes are defined in IDMuser.h.

-> DM_Value *index

Specifies the data type of the index (enum, index) and its value.

-> DM_Value *data

In this parameter you receive the value of the desired attribute. You have to make sure that the
right element has to be read out of this union. The attributes which are allowed for the relevant
object type are listed in the “Object Reference”.

-> DM_Options options

Using this parameter you can control in which form the texts are returned from the Dialog Man-
ager, if the corresponding attribute is of the text-type. The following assignments are possible with
this parameter:

Option Meaning

DMF_GetMasterString This object means that the string of textual attributes is to be
returned in the development language, independently of the lan-
guage the user is working with.

DMF_GetLocalString This option means that the string of textual attributes is returned in
the selected language.

DMF_GetTextID This option means that the string of textual attributes is returned as
textID. This is especially useful if the text is to be assigned to
another object.

Option Meaning

DMF_
DontFreeLastStrings

Usually, strings are transferred in a temporary buffer (which
remains until the next call to DM) to the application. If strings are to
remain valid for a longer time in the application, the option DMF_
DontFreeLastStrings has to be set. The memory will only be
released, if a DM function is called without this option and if then a
string is returned by the DM to the application.

Return Value

TRUE The object could be queried successfully.

FALSE The attribute is not permitted for this object.

Example

Querying a vectorial user-defined attribute of a groupbox or a window.

void DML_default DM_ENTRY GetInfo __1((DM_ID, obj))
{

DM_Value attr;
DM_Value data, index;
DM_ID groupbox;

DM_GetValue(obj, AT_parent, 0, &data, 0);
groupbox = data.value.id;
DM_TraceMessage("\nin GetInfo\n",DMF_Printf);

/*
** Getting the number of user-defined attributes
*/
if (DM_GetValue(obj, AT_membercount, 0, &data, 0))

DM_TraceMessage("groupbox.membercount = %ld\n",
DMF_Printf, data.value.integer);

/*
** Choosing the name of the user-defined attribute
*/
index.type = DT_string;
index.value.string = ".StringVec";
if (DM_GetValueIndex(groupbox, AT_label, &index, &attr, 0))
{
DM_Integer n, i;
DM_GetValueIndex(groupbox, AT_count, &attr, &data, 0);
n = data.value.integer;
for (i=1 ; i<=n; i++)

A.06.03.b 151

152 ISA DialogManager

{
DM_GetValue(groupbox, attr.value.attribute, i, &data,

0);
DM_TraceMessage ("first attribute%ld.string %s\n",

DMF_Printf, i, data.value.string);
}

}
}

3.35 DM_GetVectorValue
Using this function, attributes occurring several times in an object (vector attributes) can be queried
(see end of this function description for details). Moreover, you can query user-defined attributes by
means of this function.

In contrast to DM_GetValue, this function causes the DM to process structures and allocate memory.
Afterward, the memory allocated must be released by DM_FreeVector.

DM_Boolean DML_default DM_EXPORT DM_GetVectorValue
(
 DM_ID objectID,
 DM_Attribute attr,
 DM_Value *firstindex,
 DM_Value *lastindex,
 DM_VectorValue **values,
 DM_Options options
)

Parameters

-> DM_ID objectID

Describes the object whose attribute you query.

-> DM_Attribute attr

This parameter describes the object attribute you want to query.

-> DM_Value *firstindex

Using this parameter you can control which part of the contents is to be queried by this function. In
this parameter the starting point of the part is defined. For a one-dimensional attribute this means
that the type in the DM_Value structure is set to DT_integer and the integer values in the union are
assigned the starting value. For a two-dimensional attribute this means that the type in the DM_
Value structure is set to DT_index and that the index value in the union is assigned the starting
value. In index.first the row has to be specified, in index.second the column has to be indicated.

Note

If this parameter is a NULL pointer, the starting point has the following default values:

Listbox.content: integer = 1

Tablefield.content: index.first = 1, index.second = 1

-> DM_Value *lastindex

Using this parameter you can control which part of the contents is to be queried by the function. In
this parameter the starting point of the part is defined. For a one-dimensional attribute this means
that the type in the DM_Value structure is set to DT_integer and the integer values in the union are
assigned the starting value. For a two-dimensional attribute this means that the type in the DM_

A.06.03.b 153

154 ISA DialogManager

Value structure is set to DT_index and that the index value in the union is assigned the starting
value. In index.first the row has to be specified, in index.second the column has to be indicated.

Note

If this parameter is a NULL pointer, the ending point has the following default values:

Listbox.content: integer = object.itemcount

Tablefield.content: index.first = object.rowcount, index.second = object.colcount

<- DM_VectorValue **values

This parameter is a pointer to the values which are to be queried. In the DM_VectorValue structure
you can control via the field type the data type of the individual values. You can control in the DM_
VectorValue structure via the field count how many values the vector contains. The fields type and
count are executed by the function call.

-> DM_Options options

Using this parameter you can control the form of the texts to be returned from DM, if the cor-
responding attribute is of the text-type.

Option Meaning

DMF_GetMasterString This object means that the string of textual attributes is to be
returned in the development language, independently of the lan-
guage the user is working with.

DMF_GetLocalString This option means that the string of textual attributes is returned in
the selected language.

DMF_GetTextID This option means that the string of textual attributes is returned as
textID. This is especially useful if the text is to be assigned to
another object.

DMF_
DontFreeLastStrings

Usually, strings are transferred in a temporary buffer (which
remains until the next call to DM) to the application. If strings are to
remain valid for a longer time in the application, the option DMF_
DontFreeLastStrings has to be set. The memory will only be
released, if a DM function is called without this option and if then a
string is returned by the DM to the application.

Return Value

TRUE The object could be queried successfully.

FALSE The attribute is not permitted for this object.

Example

Querying row-wise the contents of a tablefield with 5 columns.

/*
*write the content of a tablefield to a file
*the file format is described above
*/
DM_Boolean DML_default DM_ENTRY SaveTable_ _2(
(DM_ID, Table),
(char *, filename))
{

DM_boolean retval = FALSE;
DM_VectorValue *vector;

if (DM_GetVectorValue (table, AT_field, (DM_Value *) 0,
(DM_Value *) 0, &vector, 0))

{
FILE *f;

if ((f = fopen(filename, "w")))
{

int vpos = 0;
int i;

retval = TRUE;

while ((vpos + 5) < vector->count)
{

DM_boolean ok = TRUE;
for (i=0; i<5, i++)

if (!vector->vector.stringPtr[vpos+i]
&& !*vector->vector.stringPtr[vposi])

ok = FALSE;
if (ok)

for (1=0, i<5; i++)
{
fputs(vector->vector.stringPtr[vpos+i], f);

putc((i<4) ? ' ' : '\n', f);
vpos += 5;
}

}
fclose(f);

DM_FreeVectorValue(vector,0);
}
return retval;

A.06.03.b 155

156 ISA DialogManager

}

3.36 DM_IndexReturn
This function is used to safely return local index values (DM_Index) from a function. When local vari-
ables and structures are used in a C function, they are invalid after they have been returned. This func-
tion can safely and easily return a local index.

For this purpose, a temporary copy is created.

DM_Index * DML_default DM_EXPORT DM_IndexReturn
(

DM_Index *pindex,
DM_Options options

)

Parameters

-> DM_Index * pindex

This parameter refers to the index that shall be returned.

-> DM_Options options

Should be set to 0 since no options are available.

Return value

Zurückgegeben wird ein für die Funktionsrückgabe gültiger Zeiger auf eine DM_Index-Struktur oder
NULL im Fehlerfall. Ein Fehler kann z.B. vorliegen, wenn die Funktion im falschen “runstate”
aufgerufen wird oder das Kopieren nicht ausgeführt werden konnte.

A pointer to a valid DM_Index structure is returned or NULL in case of an error. An error may occur,
for instance, if the function is called in the wrong “runstate” or copying failed.

Example

Dialog File

dialog YourDialog
function index SwapIndex(index Idx);

on dialog start
{

print SwapIndex([1,3]);
exit();

}

C Part

...

DM_Index* DML_default DM_ENTRY StringOf(DM_Index* Idx)

A.06.03.b 157

158 ISA DialogManager

{
DM_Index newIdx;
newIdx.first = Idx->second;
newIdx.second = Idx->first;

/* wrong: return &newIdx; => newIdx is local! */
return DM_IndexReturn(&newIdx, 0);

}

Availability

Since IDM version A.06.01.a

See also

Functions DM_StringReturn, DM_ValueReturn

3.37 DM_Initialize
Using this function DM-internal data structures are initialized. This function must be called exactly
once before the application is started.

DM_Boolean DML_default DM_EXPORT DM_Initialize
(
 int far *argc,
 char far * far *argv,
 DM_Options options
)

Parameters

<-> int far *argc

In this parameter a pointer is transferred to the number of command-line arguments. DM changes
this parameter. It removes all arguments it can process in the following argument vector and
reduces the number of arguments accordingly.

<-> char far * far *argv

Vector to the argument list. DM removes from this list all arguments it can process directly.

-> DM_Options options

Option Meaning

0 To set no option

DMF_FatalNetErrors Sets a compatible behavior to the IDM versions before A.05.01.d
for the DISTRIBUTED DIALOG MANAGERS (DDM), enforcing an imme-
diate termination on client and server side when a network, pro-
tocol or version error occurs. This means that except for local
applications no more start and finish events will be triggered and
AppFinish will not be called.
Thus the option DMF_FatalNetErrors is applicable within the func-
tion AppMain of the client application as well as on the server side
by recompiling startup.c (with the additional compiler define
XXX_FATALNETERRORS) and relinking the server application
This option is intended primarily for use cases where the use of the
command line option -IDMfataneterrors is impossible. DMF_
FatalNetErrors takes precedence over -IDMfatalneterrors.

See Also
Command line option -IDMfatalneterrors in chapter “Command
Line Options” of manual “Development Environment”

A.06.03.b 159

160 ISA DialogManager

Return Value

TRUE DM has successfully executed the initialization.

FALSE DM was unable to initialize its internal structures correctly. In this case the
application should be canceled, because it cannot continue operating correctly.

When calling this function you should keep in mind that all arguments which the application cannot
process in the function have to be transferred. DM then removes the arguments it needs from this
argument vector and passes the remaining vector on to the window system. The window system is
also initialized with this function. This behavior enables the user to start the application with certain
options designed for the relevant window system.

Example

Start of a standard main program:

int DML_c AppMain (argc, argv)
int argc;
char far * far *argv;
{

DM_ID dialogID;

/* Initializtion
if (!DM_Initialize (&argc, argv, 0))

return (1);

3.38 DM_InitMSW
This function has to be called in the Microsoft Windows version of DM, if the "startup.obj" has been
replaced by an individual starting program. This function assumes the task of parsing the command
line and saves all important information with which a Windows program can be supplied as parameter
on starting.

char far * far* DML_default DM_EXPORT DM_InitMSW
(
 HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpCmdLine,
 int *argc
)

Parameters

-> HANDLE hInstance

In this parameter a pointer to the current application instance is transferred. Each Windows pro-
gram receives this value as parameter.

-> HANDLE hPrevInstance

In this parameter a pointer is transferred to the previous application instance. Every Windows pro-
gram receives this value.

<-> LPSTR lpCmdLine

This is the actual command line the user has specified on starting the program. This function sep-
arates this line into individual parameters and returns the line as return value.

-> int *argc

In this parameter the number of parameters the function has formed out of the command line is
returned.

Return Value

This function provides an array with strings as result. The individual strings represent the separated
command line.

Example

Standard-startup file of DM for MS Windows:

int PASCAL WinMain __4(
(HANDLE, hInstance),
(HANDLE, hPrevInstance),
(LPSTR, lpCmdLine),
(int, nCmdShow))
{

int argc;

A.06.03.b 161

162 ISA DialogManager

char far * far *argv;

argv = DM_InitMSW(hInstance, hPrevInstance, lpCmdLine,
&argc);

if (argv)
return (main (argc, argv));

return (-1);
}

3.39 DM_InputHandler
By using this function, additional messages can be received and processed in the application. The
kind of messages as well as the type of message reception depend on the window system. The func-
tion itself is window-system-dependent and is introduced in the following chapters.

3.39.1 Microsoft Windows
In these window systems the input handler helps to react to any messages sent to objects. These mes-
sages are defined by the relevant window system.

HWND DML_default DM_EXPORT DM_InputHandler
(
 DM_InputHandlerProc funcp,
 FPTR funcarg,
 DM_UInt msg,
 DM_UInt iomode,
 DM_UInt operation,
 DM_Options options
)

Parameters

-> DM_InputHandlerProc funcp

This parameter specifies a pointer to the function to be called as soon as the indicated message
arrives.

-> FPTR funcarg

This parameter transfers a pointer to a structure defined by the application. This structure is then
passed on to the application on calling the installed input-handler function. DM stores this para-
meter only, it does not interpret it.

-> DM_UInt msg

This parameter specifies the message on whose arrival the indicated function is to be called. Here
all messages defined in the window system can be specified.

-> DM_UInt iomode

This parameter informs Dialog Manager on how the installed input handler is to be interpreted.
The following constants are defined:

iomode Meaning

DMF_ModeAny This option is not permitted if an input handler is to be installed by
means of the DM_InputHandler function.

A.06.03.b 163

164 ISA DialogManager

iomode Meaning

DMF_ModeMsgNotify This option means that the installed input handler will only be
informed if the specified message has arrived. Dialog Manager
takes on the actual handling of the message.

DMF_ModeMsgManage This option means that the installed input handler completely
takes on the processing of the specified message. Dialog Man-
ager only passes on this message to the specified function, but
does not process them.

-> DM_UInt operation

This parameter informs the function about the operation to be actually executed. The relevant con-
stants are defined here:

operation Meaning

DMF_RegisterHandler Using this value, you can install an input handler in DM.

DMF_WithdrawHandler Using this value, you can de-install an input handler previously
installed.

DMF_DisableHandler Using this value, an input handler is deactivated temporarily.

DMF_EnableHandler Using this value, a deactivated input handler is reactivated.

-> DM_Options options

Usually, you have to indicate 0 for this parameter. If exactly one handler is to be de-installed, you
can control via one additional option that all function arguments are compared and that the hand-
ler is de-installed.

Option Meaning

DMF_Checkfuncarg This option means that all function arguments are to be used for
searching the handler and that exactly the same handler is to be
installed. This can be useful if several handlers have been
installed and if one of these is to be de-installed.

Return Value

If the return value is not equal HWND 0, the HWND of the object to which the input handler has been
linked is returned in this parameter. A HWND 0 means that the input handler could not be installed.

Example

The following example for the PC platforms shows how an asynchronous function

gethostbyname

can be implemented by means of this function.

/* Definition of static variables */
static HWND TcpWinHwnd = (HWND) 0;

/* Definition of the desired message number */
static UINT TcpWinMsgGetXByY = 0x6FE1;
/*
** The following function enables you to calculate
** a free message number. This number takes on
** DM_ProposeInputHandlerArgs. The result will be returned.
*/
static boolean TcpWin_CheckAvail __1(
(TranspDescr *, tpdesc))
{

DM_InputHandlerArgs InpArgs;

/* provides WinHandle of the invisible window to which the
** input handler is attached and returns free message.

*/
InpArgs.hwnd = (HWND) 0;
InpArgs.message = TcpWinMsgGetXByY;
InpArgs.wParam = (WPARAM) 0;
InpArgs.lParam = (LPARAM) 0;
InpArgs.mresult = (LRESULT) 0;
InpArgs.userdata = (FPTR) 0;

DM_ProposeInputHandlerArgs (&InpArgs, DMF_DontTrace);
TcpWinHwnd = InpArgs.hwnd;
TcpWinMsgGetXByY = InpArgs.message;

}

/*
** The following function is the actual handler function.
** It takes the desired data from the corresponding
** structures.
*/
static DM_Boolean DML_default DM_CALLBACK TcpWinGetXByYHandler __3(DM_
InputHandlerArgs far *, pInpArgs),

(DM_UInt, msg),
(DM_UInt, iomode))
{

if (msg == TcpWinMsgGetXByY)
{

if ((WSAGETASYNCERROR (pInpArgs->lParam) == 0)
|| (WSAGETASYNCERROR (pInpArgs->lParam) == WSABASEERR))
{

TcpWinHostent = (struct hostent FAR *) (FPTR)

A.06.03.b 165

166 ISA DialogManager

TcpWinBuffer;
}
return (FALSE);

}
return (TRUE);

}

/*
** This function has the control. It enables you to calculate
** the free message, it installs the input handler and then
** calls the asynchronous function gethostbyname.
*/

static struct hostent FAR * TcpWin_gethostbyname __1(
(const char FAR *, name))
{

HANDLE h = WSAAsyncGetHostByName (TcpWinHwnd,
TcpWinMsgGetXByY,name,TcpWinBuffer,MAXGETHOSTSTRUCT);

TcpWinHostent = (struct hostent FAR *) 0;

if ((h != (HANDLE) 0)
&& (DM_InputHandler (TcpWinGetXByYHandler, (FPTR) 0,

TcpWinMsgGetXByY, DMF_ModeMsgNotify,
DMF_RegisterHandler, DMF_DontTrace)

!= (HWND) 0)
&& DM_WaitForInput (TcpWinMsgGetXByY, 0,
DMF_IgnoreExtEvent | DMF_DontTrace))
{

DM_InputHandler (TcpWinGetXByYHandler, (FPTR) 0,
TcpWinMsgGetXByY, DMF_ModeMsgNotify,
DMF_WithdrawHandler,
DMF_DontTrace | DMF_CheckFuncarg);

}

return (TcpWinHostent);
}

3.39.2 Motif
In this window system the input handler is used to be able to wait for events on any file descriptors.
Thus, for example messages coming from other processes can be processed.

DM_Boolean DML_default DM_EXPORT DM_InputHandler
(
 DM_InputHandlerProc funcp,
 FPTR funcarg,
 int FileDescriptor,
 DM_UInt iomode,

 DM_UInt operation,
 DM_Options options
)

Parameters

-> DM_InputHandlerProc funcp

This parameter passes on a pointer to the function which is to be called on arrival of a message.

-> FPTR funcarg

In this parameter a pointer to one of the structures defined by the application is passed on. This
structure is then transferred to the application on calling the installed input-handler function. Dia-
log Manager stores this parameter only, without interpreting it itself.

-> int FileDescriptor

In this parameter a file descriptor on which arriving messages are waited for is passed on. These
messages are then transferred to the installed input handler.

-> DM_UInt iomode

This parameter informs DM on how to interpret the installed input handler. To do so, the following
constants are defined

iomode Meaning

DMF_ModeAny This option is not permitted if an input handler is to be installed by
means of the DM_InputHandler function.

DMF_ModeRead This option informs DM that the specified input handler is to be
called if something has been read on the specified file descriptor.

DMF_ModeWrite This option informs DM that the specified input handler is to be
called if it can be read from the specified file descriptor.

-> DM_UInt operation

This parameter informs the function about the operations actually to be executed. To do so, the fol-
lowing constants are defined:

Operation Meaning

DMF_RegisterHandler Using this value, you can install an input handler in DM.

DMF_WithdrawHandler Using this value, you can de-install an input handler previously
installed.

DMF_DisableHandler Using this value, an input handler is deactivated temporarily.

DMF_EnableHandler Using this value, a deactivated input handler is reactivated.

A.06.03.b 167

168 ISA DialogManager

-> DM_Options options

This parameter is reserved for future versions. Please specify with 0.

Return Value

TRUE The input handler has been installed successfully.

FALSE The input handler could not be installed.

3.40 DM_InstallNlsHandler
This function installs another function which provides texts from message catalogs.

void DML_default DM_EXPORT DM_InstallNlsHandler
(
 DM_NlsFunc func
)

Parameters

-> DM_NlsFunc func

Address of the function that provides texts. It has the following format:

DM_String (DML_default DM_CALLBACK *DM_NlsFunc)
(DM_Int4 msgno, int *codepage);

The first parameter is the number of the text desired in the row (1 - 65535); the second parameter
is a pointer to the desired code page (e.g. CP_ascii, CP_iso8859, etc.).

The function returns the text assigned to the number. If no appropriate text is available, the func-
tion may return a NULL pointer.

If the function returns the text in a different code page, the function has to save the used code
page in *codepage.

See Also

Resource text

A.06.03.b 169

170 ISA DialogManager

3.41 DM_InstallWSINetHandler
This function of the DM interface registers the user-defined functions in which the encryption software
is called.

This function must be called in AppMain before DM_Initialize.

Result value and parameters of the user-defined functions are predefined.

DM_Boolean DML_default DM_EXPORT DM_InstallWSINetHandler
(
 DM_WSINetFunctions *wsinetfunctions,
 DM_Uint Operation,
 DM_Options Options
)

parameter

-> DM_WSINetFunctions *wsinetfunctions

Structure containing the function pointers to the user-defined functions. It has the following form:

DM_WSINetFunctions
{
 DMAcceptProc,
 DM_SessionProc,
 DM_ShutDownProc,
 DM_OpenProc,
 DM_CloseProc,
 DM_SendProc,
 DM_ExistsMessageProc,
 DM_RecvProc,
 DM_FreeWarningProc
}

The individual function types have the following form:

int <name of DM_AcceptProc function>
(int serverfd, void *cliaddr, void *addrlen, char *message)

void * <name of DM_SessionProc function>
(int clientfd, void *support, char *message)

void <name of DM_ShutDownProc function>()
int <name of DM_OpenProc function

(int *port, void **supportptr, char *message, char **warning)
int <name of DM_CloseProc function>

(void *connptr, int *clientfd, char *message)
int <name of DM_SendProc function>

(void *connptr, char *buffer, int length, char message)
int <name of DM_ExistsMessageProc function>

(void *connptr, char *message)
int <name of DM_Recv function>

(void *connptr, char *buffer, int count, char *message)

void <name of DM_FreeWarningProc function>
(char *warning)

-> DM_Uint Operation

One of the two predefined constants:

1. DMF_RegisterHandler to register the user defined functions.

2. DMF_WithdrawHandler to deregister the user-defined functions.

-> DM_Options Options

Is not used and is to be preassigned with 0.

Return value

TRUE For DMF_RegisterHandler: functions could be registered.
For DMF_WithdrawHandler: return value always immer = TRUE.

FALSE For DMF_RegisterHandler: functions could not be registered.

3.41.1 User defined functions
Description of the individual functions:

DM_AcceptProc

Accepts a connection to a client.

DM_SessionProc

Returns the descriptor of the client as return value void *.

Sets parameters for the client session.

DM_ShutDownProc

Performs closing actions when closing the connection.

DM_OpenProc

Configures the socket and opens it.

DM_CloseProc

Closes the connection.

DM_SendProc

Sends a message to the client.

DM_ExistsMessage

Checks if the client has sent a message.

A.06.03.b 171

172 ISA DialogManager

DM_RecvProc

Reads a message sent by the client.

DM_FreeWarningProc

Frees memory allocated in DM_OpenProc for the warning parameter.

Order of the call is usually

1. DM_OpenProc function

2. DM_FreeWarningProc function

3. DM_AcceptProc function

4. DM_SessionProc function

5. DM_SendProc function, DM_Recv function, DM_ExistsMessageProc function alternating

6. DM_CloseProc function

7. DM_ShutDownProc function

If custom encryption is to be implemented using the user-defined functions, the order of calls specified
by the IDM must be taken into account when using the parameters as input and output.

3.42 DM_LoadDialog
Using this function dialogs can be loaded into the application.

DM_ID DML_default DM_EXPORT DM_LoadDialog
(
 DM_String path,
 DM_Options options
)

Parameters

-> DM_String path

Specifies the file to be loaded by means of a path. As is usual with all file accesses, the indicated
name has to have the following structure:

environment variable:name of dialog file

The preceding environment variable serves as path on which the dialog file is to be searched.

-> DM_Options options

This parameter is reserved for future versions. Please specify with 0.

Return Value

0 The indicated file is not an error-free DM file, or the file was not found.

!= 0 Identifier of the dialog loaded by DM.

The DM has the ability to load the dialog data from an ASCII file (dialog script) as well as from a binary
file. The main advantage of a binary file is that it can be loaded in a significantly shorter time, because
no internal checks have to be carried out. A binary file is generated with this command:

idm +writebin <name of binary file> <name of ASCII file>

Example

Excerpt from an AppMain function:

/*
** Loading the dialog. Standard name is given in the
** program, and can be overwritten via the command line.

*/
switch(argc)
{

case 1:
dialogID = DM_LoadDialog (dialogfile, 0);

break;
case 2:

dialogfile = argv[1];
dialogID = DM_LoadDialog (dialogfile, 0);

A.06.03.b 173

174 ISA DialogManager

break;
default:

DM_TraceMessage("Zuviele Argumente ",
DMF_LogFile | DMF_InhibitTag);

return(0);
break;

}

if (!dialogID)
{

DM_TraceMessage("%s: Could not load dialog \"%s\"",
DMF_LogFile | DMF_InhibitTag | DMF_Printf,
argv[0], dialogfile);

return(1);
}

See Also

Built-in function load in manual “Rule Language”

3.43 DM_LoadProfile
Using this function, you can read variables which can be changed by the end user and processed by
the DM. This facility enables end users to influence the dialog behavior when the dialog source or the
DM are not available.

DM_Boolean DML_default DM_EXPORT DM_LoadProfile
(
 DM_ID dialog,
 DM_String filename,
 DM_Options options
)

Parameters

-> DM_ID dialog

This is the identifier of the dialog for which the specified profile is to be read.

-> DM_String filename

This name denotes the profile file.

As is usual with all file accesses, the specified name may have the following structure:

environment variable:name of dialog file

The preceding environment variable serves as path on which the dialog file is to be searched.

The dialog description looks, for example, as follows:

config variable integer HUGO;

This variable now is to be set by means of the profile. The file then looks like this:

HUGO := 5;

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

TRUE File could be read.

FALSE File could not be read.

Example

Dialog File

dialog YourDialog
{

.xraster 10;

.yraster 16;
}

A.06.03.b 175

176 ISA DialogManager

config variable string WindowText := "Sorry no profile";
config variable integer WindowXPos := 5;
config variable integer WindowYPos := 5;

window W1
{

.xleft 4;

.ytop 6;

.width 25;

.title "Testwindow";

.visible false;

.xraster 10;

.yraster 16;

.posraster true;

.sizeraster true;
child pushbutton End

{
.xleft 7;
.width 9;
.ytop 6;
.height 2;
.text "End";
.visible true;
.sizeraster true;
}

}
on End select
{

exit ();
}

on dialog start
{

W1.xleft :=WindowXPos;
W1.ytop :=WindowYPos;
W1.title :=WindowText;
W1.visible :=true;

}

Profile

WindowXPos:=10;
WindowYPos:=5;
WindowText:="Out Of Profile";

Note

This profile can only be loaded in the application via DM_LoadProfile or it can be loaded in the sim-
ulator via -profile <filename>.

Furthermore, you have to note that DM_LoadProfile has to be called before DM_StartDialog and DM_
EventLoop.

See also

C function DM_SaveProfile

Built-in function loadprofile

A.06.03.b 177

178 ISA DialogManager

3.44 DM_Malloc
Using this function, you can allocate memory. The allocation is carried out according to the used oper-
ating system with the relevant available functions.

Memory allocated with DM_Malloc may be released with DM_Free or modified with DM_Realloc only!

DM_Pointer DML_default DM_EXPORT DM_Malloc
(
 DM_UInt4 size
)

Parameters

-> DM_UInt4 size

This parameter specifies the size of the memory to be newly allocated.

Warning

This memory capacity must not be > 64 KByte, if the application is to run with Microsoft Windows!

Return Value

Pointer to the memory allocated. If the memory could not be allocated, the NULL pointer is returned.

Example

Memory is to be provided for a string.

char * string;

if ((string = DM_Malloc(20)))
strcpy (string, "1234567");

3.45 DM_NetHandler
With the help of this function a NetHandler can be registered. A NetHandler is a user-defined function
which is called by the IDM with the contents of network packets immediately before sending and imme-
diately after receiving these packets.

The Distributed Dialog Manager sends all data as plain text over the network, i.e. the data can be read
by anyone. In order to protect confidential data against unauthorized persons the IDM user needs a
possibility to encrypt the data being sent over the network. This possibility is provided by the regis-
tration of NetHandlers, where the IDM user can carry out encryption.

Apart from encryption, other applications of NetHandlers are also possible.

void DML_default DM_EXPORT DM_NetHandler
(

DM_NetHandlerProc NetHandler,
DM_UInt Operation,
DM_Options Options

)

Parameter

-> DM_NetHanderProc NetHandler

Function pointer to the user-defined handler. The handler must have the following format:

void DML_default DM_Callback <ProcName> (reason)
DM_NetInfo far *reason;
{

/* User code */
}

-> DM_UInt Operation

This parameter can be assigned the following values:

DMF_RegisterHandler
Register the handler

DMF_WithdrawHandler
Deregister the handler

DMF_EnableHandler
Activate the handler (not yet implemented)

DMF_DisableHandler
Deactivate the handler (not yet implemented)

NetHandlers are automatically activated after their registration. It is possible to install several
NetHandlers, yet each handler can only be installed once.

-> DM_Options Options

Is not used, has to be initialized with 0.

A.06.03.b 179

180 ISA DialogManager

Please note that such NetHandlers, which modify data packets, absolutely have to be registered with
the sending and receiving processes synchronously. If, for example, one process is sending encryp-
ted data and the other process is expecting unencrypted data this may cause the process or even the
entire system to crash.

The registered handlers are called in the inverse order they had been registered. There is only one
exception that will be explained later on.

When calling a NetHandler, it is passed a DM_NetInfo structure that contains all necessary inform-
ation and the data of the network packet:

struct {
char *data; /* Data packet */
DM_Integer length; /* Data size in bytes */
DM_Integer action; /* Communication process */
DM_Integer error; /* Error number */
int socket; /* Communication interface */
DM_ID applID; /* ObjectId of the application */

} DM_NetInfo;

In the structure element action, one of these five constants can be passed to the handler:

DM_NET_SEND

DM_NET_RECEIVE

DM_NET_CONNECT

DM_NET_MESSAGE

DM_NET_ERROR

DM_NET_MESSAGE

DM_NET_CONNECTMESSAGE

With DM_NET_SEND the transferred data packet is to be sent and with DM_NET_RECEIVE it has
been received. The content of the data packet can be manipulated in these operations, e.g. it can be
encrypted or decrypted.

The constant DM_NET_CONNECT indicates that a connection is being established. Yet, the content
of the data packet must not be changed, otherwise the establishment of the connection will fail.

DM_NET_CONNECTMESSAGE indicates the STDOUT output for establishing a connection to the
application page started by .exec. This must be forwarded to IDM unchanged.

DM_NET_MESSAGE indicates the STDOUT output of the application page started by .exec. The out-
put is passed line by line to the NetHandler (exception when the socket is closed). Attention: First a 0
byte is sent (rsh protocol ?) and the IDM sends a newline before the connection is established.
Attention: 0 bytes remain as 0 bytes. The length of the string should be strictly observed.

If the constant DM_NET_RECEIVE is set, the registered NetHandlers are invoked in the same order
as they had been registered. This case is the exception mentioned above. This is necessary because
the manipulations of the data by several handlers before sending must be undone in reverse order

when receiving the data. If, for instance, first a logging and then an encrypting handler is called, then
the data must be decrypted by the encrypting handler first before it can be recorded by the logging
handler.

Data manipulations carried out with DM_NET_SEND and DM_NET_RECEIVE have to be inverse to
each other. This means that data that has been passed through the handler by the receiver with DM_
NET_RECEIVE, must be identical with the data that the sender previously passed through the hand-
ler with DM_NET_SEND.

Here, the data packets have to be regarded as a stream, because what the sender transmits to the
handler as one packet does not necessarily reach the recipient as one packet.The TCP/IP imple-
mentation or other network components may have interposed buffers in-between. Consequently,
manipulations of the packet contents must be independent of the position within the packet.

The data pointer to the contents of the network packet, must not be changed by the handler. Re-alloc-
ation of data at the same address is also not allowed. Thus data packets cannot be enlarged which is
why decompressing compressed data is not possible.

Example

/* NetHandler to encrypt data
through bit inversion */

void DML_default DM_CALLBACK MyNetHandler
__1((DM_NetInfo *, info)) {
switch (info->action) {

case DM_NET_SEND:
case DM_NET_RECEIVE: {

int ZaVa;
for(ZaVa=0;ZaVa<info->length;ZaVa++)

(info->data)[ZaVa]=~(info->data)[ZaVa];
break;

}
}

}

For example, one can register the handler with client and server before the attachment of C functions
to the IDM.

if (!DM_NetHandler(MyNetHandler,DMF_RegisterHandler,0))
DM_TraceMessage("NetHandler registering error", 0);

A.06.03.b 181

182 ISA DialogManager

3.46 DM_OpenBox
With this function, a specified messagebox or dialogbox (window with attribute .dialogbox = true)
can be opened. The program waits until the user has closed this messagebox or dialogbox.

Note

When using functions that have records as parameters, please refer to the notes in chapter “Hand-
ling of String Parameters” and the chapter “Note for Using DM Functions” in manual “C Interface -
Basics”.

DM_Boolean DM_OpenBox
(

DM_ID objectID,
DM_ID parentID,
DM_Value *retval,
DM_Options options

)

Parameters

-> DM_ID objectID

This parameter specifies the messagebox or dialogbox to be opened.

-> DM_ID parentID

This parameter specifies the window in which the messagebox should appear. The parameter
may be ignored. If this parameter is specified, a window or NULL must be specified.

If the window system supports it, the messagebox is displayed centered in the parent window.
Otherwise, the position is determined by the window system itself (e.g. screen center).

-> DM_Value *retval

Contains the return value of the respective object after closing the messagebox or dialogbox:

For messageboxes the number of the pressed button. There are the following definitions for
this:

MB_abort

MB_cancel

MB_ignore

MB_no

MB_ok

MB_retry

MB_yes

For dialogboxes, the value defined in the closequery function.

-> DM_Options options

This parameter is currently not used and must therefore be set to 0.

Return Value

The return value indicates whether the messagebox or dialogbox could be opened.

See Also

C function DM_QueryBox

Object Messagebox

Built-in function querybox in manual “Rule Language”

A.06.03.b 183

184 ISA DialogManager

3.47 DM_ParsePath
With this function, the identifier of an object can be queried if more than one dialog is loaded and the
searched object is not in the first loaded dialog.

DM_ID DML_default DM_EXPORT DM_ParsePath
(

DM_ID dialogid,
DM_ID rootid,
DM_String path,
DM_UInt idx,
DM_Options options

)

Parameters

-> DM_ID dialogid

This is the identifier of the dialog in which to search for the object.

-> DM_ID rootid

This parameter controls from which object the IDM starts the search for the object. There are the
following options:

rootid = 0
The IDM searches for the specified object in the entire dialog definition.
This is the usual case. In this way the identifiers of rules, functions, variables and resources
can be queried too.

rootid != 0
From the specified object, the IDM searches only on the next lower hierarchy level; lower hier-
archy levels are not searched.
This procedure is only appropriate if an object name occurs more than once in a dialog.

-> DM_String path

This path defines the searched object. It must unambiguously describe an object.

If the object name exists only once within the dialog, then the indication of the name suffices to
obtain the desired reference. If the object name is not unique, the object must be described by a
point separated path of object names.

-> DM_UInt idx

This parameter specifies which occurrence of the object with the specified name shall be
searched.

The counter starts at 0. To find the first occurrence of an object, enter 0 here.

-> DM_Options options

This parameter is currently not used.

Return Value

0 The searched object was not found or the name is not unique.
That is, there are none or more objects with the given name.

!= 0 Identifier of the searched object.

Annotation

If "setup" is specified as path and both dialogid and rootid are 0, then the setup object is returned.

Example

void DML_default DM_ENTRY OkButtonCallback __1((DM_ID, dialogID))
{

DM_ID ID1;
DM_ID ID2;

/* Query an object in the dialog globally */
ID1 = DM_ParsePath(dialogID, 0, "FirstObject", 0, 0);

/* Query using a path */
ID2 = DM_ParsePath(dialogID, 0, "FirstObject.Child1", 0, 0);

}

See Also

Built-in function parsepath in manual “Rule Language”

A.06.03.b 185

186 ISA DialogManager

3.48 DM_PathToID

Attention

The function DM_PathToID is deprecated and is only supported for compatibility reasons. Please use
DM_ParsePath instead.

Using this function, the known external identifier of an object is changed into an internal identifier. This
internal identifier is not changed during program execution, so you do not have to query the ID of a fre-
quently used object on every access.

DM_ID DML_default DM_EXPORT DM_PathToID
(
 DM_ID rootid,
 DM_String path
)

Parameters

-> DM_ID rootid

This parameter controls from which object the DM is to begin searching the object you desire. The
following options are available:

rootid = 0
DM searches the entire dialog definition for the object specified. This is the usual option. The
internal names or identifiers of rules, functions, variables and resources can also be queried in
this way.

rootid != 0
DM is to search the object desired only on the next subordinate hierarchy level from the object
specified.
This method is appropriate only if an object identifier occurs more than once in a dialog. Rules,
functions, variables and resources can not be queried.

-> DM_String path

Using this path, you can describe the searched object. This path has to describe an object unam-
biguously. If the object name exists only once within a dialog, the specification of the name is
enough to receive the desired reference. If the object name is unambiguous, the object has to be
described by means of a path of object names, separated by a dot.

Return Value

0 The searched object could not be found or the name is not unique.

!= 0 Identifier of the searched object.

By using the object identifier you have received in the above-mentioned way you can now access its
attributes.

Example

DM_Value value;
DM_ID id;

/* The file could be opened, enable the other objects */
value.type = DT_boolean;
value.value.boolean = TRUE;

/* Get the id of the edittext "Actives" */
if ((id=DM_PathToID(0, "Actives")))

/* Change the object to sensitive */
 DM_SetValue(id, AT_sensitive, 0, &value, DMF_ShipEvent);

See Also

Function DM_ParsePath

Built-in function parsepath in manual “Rule Language”

A.06.03.b 187

188 ISA DialogManager

3.49 DM_PictureHandler
With a custom graphics handler (GFX handler), images can be loaded and displayed in graphic
formats not supported by the IDM. In this case whenever an image has to be loaded (e.g. because it
has been attached to the application via a tile resource), the IDM first calls the registered graphics
handlers. If one of these handlers can load the image, it passes the image data to the IDM and no fur-
ther graphics handler is called. If no graphics handler could load the image, the IDM itself attempts to
parse the image. Then the behavior is like no graphics handlers were used.

Graphics handlers are registered and unregistered with the IDM by means of the DM_Pic-
tureReaderHandler function.

A graphics handler has to be defined like this:

DM_Boolean DML_default DM_CALLBACK <ProcName>
(

DM_PicInfo * pic
)
{

/* custom code */
}

When called, a pointer to the structure DM_PicInfo is passed to the graphics handler. This structure
contains all the information about an image that is to be loaded or whose memory is to be freed.

typedef struct {
DM_Integer struct_size; // size of the structure to verify the version
DM_UInt1 task; // task for the GFX handler
DM_String fname; // file path of the image
DM_String name; // image name as indicated at tile or image

#if defined(WSIWIN)
DM_UInt2 width; // width of the image
DM_UInt2 height; // height of the image
DM_UInt2 type; // image type
HANDLE palette; // handle for the color palette
HANDLE image; // handle for the image
HANDLE trans_mask; // handle for the tansparency mask

#endif
#if defined(MOTIF) || defined(QT)

DM_UInt2 type; // image type
DM_Pointer image; // pointer to the image data
DM_Pointer trans_mask; // pointer to the transparency mask

#endif
DM_Integer trans_color; // index of transparent color

} DM_PicInfo;

Meaning of elements

DM_Integer struct_size

Here the size of the structure is passed. This can be used in the graphics handler to check with
sizeof() whether the size of the passed structure matches the structure definition used.

DM_UInt1 task

Defines what the graphics handler should do. There are two possible tasks:

DM_GFX_TASK_LOAD
Load an image.
The graphics handler needs to load an image file with the file name fname and set the fol-
lowing items of the DM_PicInfo structure.

width (required on MICROSOFT WINDOWS; otherwise contained in the image data)

height (required on MICROSOFT WINDOWS; otherwise contained in the image data)

type (required)

palette (optional; MICROSOFT WINDOWS only)

image (required)

trans_mask (optional; supported since IDM version A.05.02.e)

trans_color (optional; currently not evaluated)

DM_GFX_TASK_UNLOAD
Free the memory of the image data.
In this case, the following structure items are set so that the graphics handler can free the
memory used by these objects:

palette (if existent; MICROSOFT WINDOWS only)

image

trans_mask (if existent; supported since IDM version A.05.02.e)

DM_String fname

Only valid for task == DM_GFX_TASK_LOAD.

This item specifies the path and file name of the image to be loaded.

The IDM checks whether the image can be loaded. If so, fname will contain the resolved file name
of the image.

If the image cannot be loaded, i.e. the file name cannot be resolved, then name == fname.

DM_String name

Only valid for task == DM_GFX_TASK_LOAD.

The item contains the unresolved file name of the image as specified at the tile resource or image
object.

The structure item exists since IDM version A.05.02.e.

A.06.03.b 189

190 ISA DialogManager

DM_Integer trans_color

Here the color to be displayed transparently can be passed.

The item is currently not evaluated.

Assignment of the Structure Items on Microsoft Windows

DM_UInt2 width
DM_UInt2 height

Only valid for task == DM_GFX_TASK_LOAD.

In these items the graphics handler must return the width and height of the loaded image.

DM_UInt2 type

In this item the graphics handler must return the type of the handle that is passed in image.

Value range

DM_GFX_BMP Windows Bitmap

DM_GFX_WMF Windows Meta File

DM_GFX_EMF Enhanced Meta File

DM_GFX_ICO Windows Icon

HANDLE palette

For task == DM_GFX_TASK_LOAD

The graphics handler can pass a color palette (Windows Handle Type HPALETTE) to the IDM
along with the image. If this item is NULL, the system color palette is used.

In general, the use of a separate color palette for each image should be avoided, as color dis-
tortions may occur with focus changes on systems with low color depth. Instead, the graphics
handler should adjust the colors of an image to the system color palette and thus ensure the color
fastness of the image.

For task == DM_GFX_TASK_UNLOAD

If a color palette was used, in this element its handle is passed from the IDM to the graphics hand-
ler so that the handler can free the memory used for the color palette.

HANDLE image

For task == DM_GFX_TASK_LOAD

In this item, the graphics handler has to return the handle of the image it loaded. The type of the
handle must match the one given in type.

For task == DM_GFX_TASK_UNLOAD

In this item the handle of the image, whose memory has to be freed, is passed from the IDM to the
graphics handler.

HANDLE trans_mask

This structure item is only evaluated since IDM version A.05.02.e.

For task == DM_GFX_TASK_LOAD

In this element a transparency mask can be passed. The transparency mask must be a mono-
chrome Windows Bitmap (data type HBITMAP) with the same size as the image passed in image.

A transparency mask is only supported for the image type DM_GFX_BMP, for other image types it
is ignored.

For task == DM_GFX_TASK_UNLOAD

If a transparency mask was used, in this element its handle is passed from the IDM to the graphics
handler so that the handler can free the memory used for the transparency mask.

Assignment of the Structure Items on Motif and Qt

DM_UInt2 type

In this item the graphics handler must return the type of the image that is passed in image.

Value Range with IDM FOR MOTIF

DM_GFX_XIMAGE XImage image

DM_GFX_PIXMAP PixMap image (supported since IDM version A.05.02.e)

Value Range with IDM FOR QT

DM_GFX_QPIXMAP

DM_GFX_QIMAGE

DM_GFX_QICON

DM_Pointer image

For task == DM_GFX_TASK_LOAD

In this element, the graphics handler has to pass a pointer to a PixMap image or an XImage struc-
ture with the image data corresponding to the type element.

The XImage structure can be generated on X Windows with the Xlib function XCreateImage().
This requires information about current screen settings (e.g. Display, Visual, Screen, Depth). This
data can be queried with the interface function DM_GetToolkitData.

For task == DM_GFX_TASK_UNLOAD

In this item a pointer to the image data, whose memory has to be freed, is passed from the IDM sto
the graphics handler.

DM_Pointer trans_mask

This structure item is only evaluated since IDM version A.05.02.e.

A.06.03.b 191

192 ISA DialogManager

For task == DM_GFX_TASK_LOAD

In this element a pointer to a transparency mask can be passed. On MOTIF the transparency mask
must be a PixMap image, on QT its data type must correspond to the image type given in type. The
transparency mask must have the same size as the image passed in image.

For task == DM_GFX_TASK_UNLOAD

If a transparency mask was used, in this element a pointer to it is passed from the IDM to the
graphics handler so that the handler can free the memory used for the transparency mask.

Return value

DM_TRUE The image could be loaded.

DM_FALSE In case of an error.

Remarks

Graphic handlers are system-dependent. As the DM_PicInfo structure shows, the data formats for
returning image data differ depending on the system.

Since a graphics handler must allocate memory to load an image (e.g. for image, palette and trans_
mask), it must also be charged with freeing this memory. Therefore the IDM calls the graphics hand-
lers with task == DM_GFX_TASK_LOAD when an image is needed. If the image is no longer needed,
the graphics handlers are called with task == DM_GFX_TASK_UNLOAD so that they can free the
allocated memory.

The first graphics handler that frees the memory returns DM_TRUE, so no further handlers are called
afterward. This does not necessarily need to be the same handler that loaded the image.

The IDM does not link an image to a graphics handler responsible for loading and releasing the
image. If, for instance, all graphics handlers allocate the memory in the same way, each handler can
also free the memory of any other handler. This means that the first handler called immediately frees
the memory.

Example

A typical GFX handler basically has the following structure:

DM_Boolean DML_default DM_CALLBACK MyGfxHandler __1((DM_PicInfo *, pic))
{

/* first determine what to do */
if (pic->task == DM_GFX_TASK_LOAD) {

/* the actual loading is done in LoadPicture_... */

#if defined(WIN32)
/* load image (Microsoft Windows) */
pic->image = LoadPicture_Win32 (pic->fname);

#endif
#if defined(MOTIF) || defined(QT)

/* load image (XWindows) */
pic->image = LoadPicture_X (pic->fname);

#endif

if (pic->image) {
/* write return values to pic */

#if defined(WIN32)
pic->type = DM_GFX_...;
pic->palette = handle to pallet, if wanted;
pic->width = width of the image;
pic->height = height of the image;

#endif
#if defined(MOTIF) || defined(QT)

pic->type = DM_GFX_...;
#endif

return DM_TRUE; /* success */
} else {

/* image could not be loaded, maybe another GFX handler
or the IDM graphics parser will be more successful */

return DM_FALSE;
}

} else {
/* free memory */

#if defined(WIN32)
if (pic->image) /* loaded here */

DeleteObject(pic->image);
if (pic->palette) /* created here */

DeleteObject(pic->palette);
#endif
#if defined(MOTIF) || defined(QT)

if (pic->image) /* loaded here */
XDestroyImage((XImage *)pic->image);

if (pic->trans_mask) /* created here */
free(pic->trans_mask);

#endif

return DM_TRUE;
}

}

The GFX handler should be registered before loading image files and thus usually before loading the
dialog:

if (!DM_PictureReaderHandler (MyGfxHandler, DMF_RegisterHandler, 0))
DM_TraceMessage("GFX-Handler registering error", 0);

A.06.03.b 193

194 ISA DialogManager

...
/* load dialog */

See also

Function DM_PictureReaderHandler

3.50 DM_PictureReaderHandler
This function is used to register and manage custom graphics handlers (GFX handlers) with the IDM.
These handlers are invoked by the IDM to load images specified at tile resources or image objects.

Custom graphics handlers are described in DM_PictureHandler.

DM_Boolean DML_default DM_EXPORT DM_PictureReaderHandler
(

DM_PictureReaderProc funcp,
DM_UInt operation,
DM_UInt options

)

Parameters

-> DM_PictureReaderProc funcp

Pointer to a graphics handler for which the action defined in operation shall be performed.

The handler must be of this format:

DM_Boolean DML_default DM_CALLBACK <ProcName>
(

DM_PicInfo * pic
)
{

/* custom code */
}

Accordingly, the data type DM_PictureReaderProc is defined like this:

typedef DM_Boolean (DML_default DM_CALLBACK * DM_PictureReaderProc) __
((DM_PicInfo * pic));

-> DM_UInt operation

This parameter defines which action shall be performed for the graphics handler.

Value range

DMF_RegisterHandler
Registers the handler with the IDM.

DMF_WithdrawHandler
Unregisters the handler with the IDM.

DMF_EnableHandler
Activates the handler.

DMF_DisableHandler
Deactivates the handler.

A.06.03.b 195

196 ISA DialogManager

After a handler is registered, it is activated automatically. More than one graphics handler may be
registered, but each handler only once.

-> DM_UInt options

Currently unused; has to be 0.

Return value

DM_TRUE The action was completed successfully.

DM_FALSE In case of an error.

Remarks

The registered graphics handlers are invoked in reverse order as they were registered.

Because graphics handlers allocate memory when loading images, a handler must not be disabled or
unregistered until the memory it has allocated is freed by itself or another graphics handler. If all graph-
ics handlers allocate their memory in the same way, a graphics handler can free the memory that has
been allocated by other handlers. In that case, the first invoked graphics handler frees the memory,
regardless of which handler previously allocated it. Then it is sufficient for one graphics handler to
remain registered and active in order to free the memory allocated by graphics handlers.

It is not necessary to unregister graphics handlers when exiting an application.

See also

Function DM_PictureHandler

3.51 DM_ProposeInputHandlerArgs
Using this function, DM can query a message which has not been assigned. This is necessary so that
newly assigned message numbers do not overlap with already assigned message numbers.

This function is only available onMICROSOFT WINDOWS.

DM_Boolean DML_default DM_EXPORT DM_ProposeInputHandlerArgs
(
 DM_InputHandlerArgs pInputArgs,
 DM_Options options
)

Parameters

<-> DM_InputHandlerArgs pInputArgs

On calling this function the elements "msg" or "message" in this parameter are given the message
number. DM interprets this value if desired. On returning this element receives the message num-
ber which has actually been assigned. It has to be the message defined by the user; it ranges from
WM_USER to 0x7FFF.

On returning this function the element hwnd is assigned additionally. In this element the object is
returned to which the function has been linked.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

TRUE Function was carried out successfully.

FALSE Function was not carried out successfully, since the specified message was in the wrong
area or a NULL pointer has been specified as first parameter.

Example

Search for a free message:

static boolean TcpWin_CheckAvail __1(
(TranspDescr *, tpdesc))
{

DM_InputHandlerArgs InpArgs;

/* provides WinHandle of the invisible window to which
** Input-Handler is attached and returns free message.
*/
InpArgs.hwnd = (HWND) 0;
InpArgs.message = TcpWinMsgGetXByY;
InpArgs.wParam = (WPARAM) 0;
InpArgs.lParam = (LPARAM) 0;

A.06.03.b 197

198 ISA DialogManager

InpArgs.mresult = (LRESULT) 0;
InpArgs.userdata = (FPTR) 0;

DM_ProposeInputHandlerArgs (&InpArgs, DMF_DontTrace);
TcpWinHwnd = InpArgs.hwnd;
TcpWinMsgGetXByY = InpArgs.message;

}

3.52 DM_QueryBox
Using this function you can open a specified messagebox. The program waits until the user has
closed this box.

DM_Enum DML_default DM_EXPORT DM_QueryBox
(
 DM_ID objectID,
 DM_ID parentID,
 DM_Options options
)

Parameters

-> DM_ID objectID

This parameter specifies the messagebox to be opened.

-> DM_ID parentID

This parameter specifies the window in which the messagebox is to appear. The parameter may
be ignored. If this parameter is indicated, a window or NULL has to be specified.

If the window system allows it, the messagebox is represented centered in the parent window.
Otherwise, the position is defined by the window system (e.g. screen center).

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

Number of pressed button. There are the following definitions for it:

MB_abort

MB_cancel

MB_ignore

MB_no

MB_ok

MB_retry

MB_yes

Example

A messagebox is to be opened out of a C function. This C function looks as follows:

DM_Boolean DML_default DM_ENTRY MESSBOX __1((DM_ID id))
{

DM_Value data;
/* Setting the text to be displayed */
data.type = DT_string;
data.value.string = "HELLO TEST";

A.06.03.b 199

200 ISA DialogManager

DM_SetValue(id , AT_text , 0 , &data , DMF_ShipEvent);

/* Setting the title of the messagebox. */
data.type = DT_string;
data.value.string = "test output";
DM_SetValue(id , AT_title , 0 , &data , DMF_ShipEvent);
/*
** Opening messagebox and returning TRUE
** on pressing OK
*/
return ((DM_QueryBox(id,0,0)== MB_ok) ? TRUE : FALSE);

}

See Also

C function DM_OpenBox

Object Messagebox

Built-in function querybox in manual “Rule Language”

3.53 DM_QueryError
Using this function the application can query the reason for the failure of the last DM call. The DM
returns the number of errors and the errors themselves.

DM_UInt DML_default DM_EXPORT DM_QueryError
(
 DM_ErrorCode buffp[],
 DM_UInt bufflen,
 DM_Options options
)

Parameters

<-> DM_ErrorCode buffp[]

This is an array of error codes. It is filled by the DM, but must be allocated inside the application. If
the array is not large enough, the last errors are truncated. To be sure that all error codes stored in
DM can be passed to the application, this array should have a size of 32.

-> DM_UInt bufflen

Length of the error code array passed on to the DM.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

The number of valid errors in the array.

Example

Basic routine for error handling:

static void QueryError()
{
 DM_ErrorCode errorbuffer[32];

/* buffer for the errors that occurred */
 register int i;
 int errors; /* number of errors */

 if ((errors = DM_QueryError(errorbuffer, 32, 0)))
 for (i = 0; i < errors; i++)
 DM_TraceMessage(DM_ErrMsgText(errorbuffer[i], 0), 0);
}

A.06.03.b 201

202 ISA DialogManager

3.54 DM_QueueExtEvent
The execution of a rule attached to an external event is registered by the application with the function
DM_QueueExtEvent.“Registered” means that the rule is not executed immediately, but that the
external event is queued and then processed according to the dialog event mechanisms.

The event is processed by the IDM with the usual event processing algorithm which results in calling a
rule with the scheme on <object> extevent <no.>.

DM_Boolean DML_default DM_EXPORT DM_QueueExtEvent
(

DM_ID objectID,
DM_Int4 event_no,
DM_UInt argc,
DM_Value *argv,
DM_Options options

)

Parameters

-> DM_ID objectID

This is the identifier of the object to which this external event is to be sent.

-> DM_Int4 event_no

This parameter is the number of the external event to be triggered.

-> DM_Int argc

This parameter transfers the number of parameters (up to 16).

-> DM_Value *argv

This parameter indicates the arguments (up to 16) which the IDM passes to the rule on invocation.
This vector must have the length that is specified in the argc parameter.

-> DM_Options options

The following values can be specified as options:

Option Meaning

DMF_DontTrace This option implies that the function call shall not be traced, if the
application is started with the trace option.

DMF_Synchronous This option can be set, if it is ensured that the function DM_
QueueExtEvent is called synchronously to the process. In this
case, the function internally can work more efficiently. A syn-
chronous call is not given, when the function is called from a signal
handler, for instance.

Option Meaning

DMF_NoCriticalSection This option prevents the function from using a “critical section” on
MICROSOFT WINDOWS.

Return Value

DM_TRUE External event could be put in queue.

DM_FALSE External event could not be put in queue.

Note for Microsoft Windows

Since IDM version A.05.01.a, the function DM_QueueExtEvent uses a “critical section” to ensure,
that it has been completed before this function or the functionDM_SendEvent is invoked once more.
If one of these functions is called in a situation where a “critical section” is not permitted, the use of the
“critical section” can be prevented through the option DMF_NoCriticalSection.

Attention

A thread, that carries out one of the two functions must not be canceled.

Example

In a dialog, there shall be a response to a signal of the operating system. The dialog looks as follows:

on dialog extevent 4711 (integer ErrCode)
{

variable string S;
S := "Dialog has received extevent " + itoa(ErrCode);
print S;

}

The corresponding C program looks like this:

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <IDMuser.h>

DM_ID dialogID;
/* This function has been installed as signal handler */
void handler __1((int, sig))
{

DM_Value data;

data.type = DT_integer;
data.value.integer = sig;
DM_QueueExtEvent(dialogID, 4711, 1, &data, 0);

A.06.03.b 203

204 ISA DialogManager

}

See Also

C functions DM_SendEvent, DM_SendMethod

Chapter “External Events” and built-in function sendevent() in manual “Rule Language”

3.55 DM_Realloc
A memory already allocated can be resized with the help of this function. This memory to be modified
has to be allocated with DM_Malloc.

DM_Pointer DML_default DM_EXPORT DM_Realloc
(
 DM_Pointer ptr,
 DM_UInt4 size
)

Parameters

-> DM_Pointer ptr

Pointer to the memory already allocated.

-> DM_UInt4 size

New size of the memory.

Warning

On MS-Windows, this size must not be > 64 KByte!

Return Value

Pointer to the memory allocated. If the memory could not be allocated, the NULL pointer is returned.

Example

A string is to be copied in a memory already allocated.

char * string;
if ((string = DM_Realloc(string, strlen("12345")+1))

strcpy(string, "12345");

A.06.03.b 205

206 ISA DialogManager

3.56 DM_ResetMultiValue
Using this function you are able to reset various attributes of different DM objects to their model value
in one function call. Therefore these functions should be especially used with the distributed DM,
since they obviously reduce the network load.

For the permitted attributes of the respective object type please refer to the “Object Reference”.

DM_Boolean DML_default DM_EXPORT DM_ResetMultiValue
(
 DM_MultiValue *values,
 DM_UInt count,
 DM_ID dialogID,
 DM_String pathname,
 DM_Options options
)

Parameters

<-> DM_MultiValue *values

List of attributes and objects to be reset. If the element in the structure for the object is set to 0, the
object described in the parameter pathname is chosen. The list has to have at least the length spe-
cified in the parameter count.

-> DM_UInt count

Specifies the length of the object-attribute vector indicated in the parameter values.

-> DM_ID dialogID

This parameter describes the dialog to which the given objects belong. It has to be specified only if
the object identifier the attributes of which are to be reset is not known and thus the name of the
object is given in the parameter pathname.

-> DM_String pathname

Describes the object the attributes of which are to be reset. It is allocated only if the object's
internal identifier is not known yet.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

TRUE The attributes were reset successfully

FALSE At least one attribute could not be reset

Example

Resetting coordinates for several objects:

void DML_default DM_ENTRY Reset __3((DM_ID, o1),

(DM_ID, o2),
(DM_ID, o3))

{
DM_MultiValue val[3];

/* Setting the relevant object ID */
val[0].object = o1;
val[1].object = o2;
val[2].object = o3;

/* Setting the relevant index type */
val[0].index.type = DT_void;
val[1].index.type = DT_void;
val[2].index.type = DT_void;

/* Setting the relevant attributes */
val[0].attribute = AT_xleft;
val[1].attribute = AT_width;
val[2].attribute = AT_xright;

DM_ResetMultiValue(val, 3, dialogID, (char *)0, 0);
}

A.06.03.b 207

208 ISA DialogManager

3.57 DM_ResetValue
This function can be used to reset object attributes to the values of the relevant model or default. For
information on the attributes valid for the relevant object type, please refer to the “Object Reference”.

DM_Boolean DML_default DM_EXPORT DM_ResetValue
(
 DM_ID objectID;
 DM_Attribute attr;
 DM_UInt index;
 DM_Options options
)

Parameters

-> DM_ID objectID

Describes the object the attribute of which you want to reset.

-> DM_Attribute attr

Describes the attribute to be reset. All attributes permitted are defined in IDMuser.h.

-> DM_UInt index

Analyzed only in vector attributes. Describes the index of the searched sub-object (e.g. text in list-
box).

-> DM_Options options

Controls whether DM is to trigger rule processing after an attribute has been set successfully.

Option Meaning

DMF_Inhibit This option means that the function call is not to trigger any
internal events. If this flag is set, you can achieve a better per-
formance in case that a lot of attribute changes are carried out by
the application.

DMF_ShipEvent This option means that the function call is to trigger internal
events. Then rules are triggered which have been defined for this
object and which react to the changing of the specified attribute.

Return Value

TRUE The attribute was reset successfully.

FALSE The attribute could not be reset.

3.58 DM_ResetValueIndex
Using this function, attributes with two indexes can be reset to the value of the corresponding default
attribute (with index 0).

For the attributes valid for the relevant object type, please refer to the “Object Reference”.

DM_Boolean DML_default DM_EXPORT DM_ResetValueIndex
(
 DM_ID objectID,
 DM_Attribute attr,
 DM_Value *index,
 DM_Options options
)

Parameters

-> DM_ID objectID

Describes the object the attribute of which you want to change.

-> DM_Attribute attr

Describes the attribute to be changed. All valid attributes are defined in IDMuser.h.

-> DM_Value *index

Specifies the data type of the index (enum, index) and its value.

-> DM_Options options

Controls whether DM is to trigger rule processing after an attribute has been set successfully.

Option Meaning

DMF_Inhibit This option means that the function call is not to trigger any
internal events. If this flag is set, you can achieve a better per-
formance in case that a lot of attribute changes have been made
by the application.

DMF_ShipEvent This option means that the function call is to trigger internal
events. Then rules are triggered which have been defined for this
object and which react to the changing of the specified attribute.

Return Value

TRUE The attribute was reset successfully.

FALSE The attribute could not be reset.

A.06.03.b 209

210 ISA DialogManager

3.59 DM_SaveProfile
This function writes the current values of all configurable record instances (.configurable = true) and
global variables (declared with config) of a dialog or module into a configuration file (profile), from
which they can be reloaded using the function DM_LoadProfile().

For records, only values that are not inherited are written into the file by default. In order to also write
the inherited values into the file, the parameter options needs to be set to DMF_SaveAll.

Only values from the indicated dialog or module are saved. Records and variables imported from
other modules are omitted.

DM_Boolean DML_default DM_EXPORT DM_SaveProfile
(

DM_String filename,
DM_ID dialog,
DM_String comment,
DM_Options options

)

Parameters

-> DM_String filename

This parameter defines the file name of the configuration file. A file path can be specified which
may also contain an environment variable.

-> DM_ID dialog

This parameter contains the identifier of the dialog or module whose record and variable values
are to be written into the file.

-> DM_String comment

In this parameter a text can be specified, which is written as a comment into the configuration file.

-> DM_Options options

These are the options available:

Option Meaning

DMF_SaveAll Writes the inherited values into the configuration file too.

Return value

DM_TRUE Saving the values in the configuration file has been successful.

DM_FALSE The values could not be saved.
This may be due to errors accessing the file or an invalid module ID.

Availability

Since IDM version A.06.02.g

See also

C function DM_LoadProfile

Built-in function saveprofile

A.06.03.b 211

212 ISA DialogManager

3.60 DM_SendEvent
The execution of a rule attached to an external event is registered by the application with the function
DM_SendEvent.“Registered” means that the rule is not executed immediately, but that the external
event is queued and then processed according to the dialog event mechanisms.

The event is processed by the IDM with the usual event processing algorithm which results in calling a
rule with the scheme on <object> extevent <no.>.

DM_Boolean DML_default DM_EXPORT DM_SendEvent
(

DM_ID objectID,
DM_Value *eventData,
DM_UInt argc,
DM_Value *argv,
DM_Options options

)

Parameters

-> DM_ID objectID

This is the identifier of the object to which this external event is to be sent.

-> DM_Value *eventData

This parameter defines the external event to be triggered.

-> DM_Int argc

This parameter transfers the number of parameters (up to 16).

-> DM_Value *argv

This parameter indicates the arguments (up to 16) which the IDM passes to the rule on invocation.
This vector must have the length that is specified in the argc parameter.

-> DM_Options options

The following values can be specified as options:

Option Meaning

DMF_DontTrace This option implies that the function call shall not be traced, if the
application is started with the trace option.

DMF_Synchronous This option can be set, if it is ensured that the function DM_
SendEvent is called synchronously to the process. In this case,
the function internally can work more efficiently. A synchronous
call is not given, when the function is called from a signal handler,
for instance.

Option Meaning

DMF_NoCriticalSection This option prevents the function from using a “critical section” on
MICROSOFT WINDOWS.

Return Value

DM_TRUE External event could be put in queue.

DM_FALSE External event could not be put in queue.

Note for Microsoft Windows

Since IDM version A.05.01.a, the function DM_SendEvent uses a “critical section” to ensure, that it
has been completed before this function or the functionDM_QueueExtEvent is invoked once more. If
one of these functions is called in a situation where a “critical section” is not permitted, the use of the
“critical section” can be prevented through the option DMF_NoCriticalSection.

Attention

A thread, that carries out one of the two functions must not be canceled.

See Also

C functions DM_QueueExtEvent, DM_SendMethod

Chapter “External Events” and built-in function sendevent() in manual “Rule Language”

Resource message

A.06.03.b 213

214 ISA DialogManager

3.61 DM_SendMethod
This function puts a method call into the event queue to be executed asynchronously from the event
loop (DM_EventLoop). It is therefore a convenience function for sending an external event with DM_
SendEvent() and calling the method in the event rule for that external event.

DM_SendMethod() supports a maximum of 14 arguments for the method call and cannot be used for
methods with output parameters.

Return values from methods cannot be processed.

Definition

DM_Boolean DML_default DM_EXPORT DM_SendMethod
(

DM_ID object,
DM_Method method,
DM_UInt argc,
DM_Value *argv,
DM_Options options

)

Parameters

-> DM_ID object

Object whose method shall be invoked asynchronously.

-> DM_Method Method

Identifier of the method to invoke.

-> DM_Int argc

This parameter transfers the number of arguments for the method call (up to 14).

-> DM_Value *argv

This parameter indicates the arguments (up to 14) which the IDM passes to the method on invoc-
ation. This vector must have the length that is specified in the argc parameter.

-> DM_Options options

This parameter is reserved for future versions. At present pass only 0.

Return value

DM_TRUE Method call has been put into the event queue.

DM_FALSE Method call could not be put into the event queue.

Availability

Since IDM version A.06.02.g

See also

C function DM_SendEvent

Built-in function sendmethod

A.06.03.b 215

216 ISA DialogManager

3.62 DM_SetContent
Using this function the complete contents of an object can be set by the application in one function
call. This function is significantly faster than setting the contents with DM_SetValue and the attribute
AT_content. The function can be used in tablefields, poptexts, and listboxes.

DM_Boolean DML_default DM_EXPORT DM_SetContent
(
 DM_ID objectID,
 DM_Value *firstindex,
 DM_Value *lastindex,
 DM_Content *contentvec,
 DM_UInt count,
 DM_Options options
)

Parameters

-> DM_ID objectID

Specifies the object to be filled with the new contents.

-> DM_Value *firstindex

Controls which range of the contents is modified by this function. This parameter then defines the
starting point of the range.

For a listbox or a poptext the type in the DM_Value structure has to be set to DT_index and the
index value in the union has to be assigned the starting value. For tablefield you have to set the
type in the DM_Value structure to DT_index and the index value in the union has to be assigned
the starting value. For index.first you have to specify the row, for index.second you have to specify
the column.

Note

If this parameter is a NULL pointer, the starting point has the following defaults, e.g.

listbox integer = 1

poptext integer = 1

tablefield index.first = 1, index.second = 1

-> DM_Value *lastindex

Controls which range of the contents is to be modified by this function. This parameter defines the
ending point of the range. For a listbox or a poptext the type in the DM_Value structure has to be
set to DT_index and the index value in the union has to be assigned the ending value. For table-
field you have to set the type in the DM_Value structure to DT_index and the index value in the
union has to be assigned the ending value. For index.first you have to specify the row, for
index.second you have to specify the column.

Note

If the parameter is a NULL pointer, the ending point is defined by the size of the new contents. The
object contents is cut after the last modified entry.

listbox .itemcount is modified

poptext .itemcount is modified

tablefield if direction = 1, then .rowcount will be modified
if direction = 2, then .colcount will be modified

-> DM_Content *contentvec

Passes on the new contents of the object. The information in this array can be deleted after DM_
SetContent has been called successfully in the application, since the DM copies the information.

For the object tablefield, the contents is specified as a list and is read according to the index. The
attribute .direction determines whether the rectangular area which is defined by firstindex and
lastindex, is filled over rows or columns:

.direction = 1 rectangular area is filled row-wise

.direction = 2 rectangular area is filled column-wise

-> DM_UInt count

Specifies the number of elements to be set by the call.

-> DM_Options options

Controls whether DM is to trigger rule processing after an attribute has been set successfully.

Option Meaning

DMF_Inhibit This option means that the function call is not to trigger any
internal events. If this flag is set, you can achieve a better per-
formance in case that a lot of attribute changes have been made
by the application.

DMF_ShipEvent This option means that the function call is to trigger internal
events. Then rules are triggered which have been defined for this
object and which react to the changing of the specified attribute.

DMF_UseUserData This option means that on analyzing the attribute vector, the attrib-
ute .userdata has to be considered. If the option DMF_UseUser-
Data is set, DM copies the userdata for each object entry. If the
option is not set, the userdata will be ignored.

A.06.03.b 217

218 ISA DialogManager

Option Meaning

DMF_OmitActive This option means that on analyzing the attribute vector, the attrib-
ute .active is not to be considered. If the option DMF_OmitActive is
set, DM will ignore the activating state for each object entry. If the
object is not set, the activating state of the entries will be normally
accepted.

DMF_OmitStrings This option means that on analyzing the attribute vector, the attrib-
ute .content is not to be considered. If the option DMF_
OmitStrings is set, DM will ignore the strings for each object entry.
If the option is not set, the contents of the entries will normally be
accepted.

DMF_OmitSensitive This option means that on analyzing the attribute vector, the attrib-
ute .sensitive is not to be considered. If the option DMF_OmitSens-
itive is set, DM will ignore the selectivity of each object entry. If the
option is not set, the selectivity of the entries will normally be
accepted.

Return Value

TRUE Object was filled successfully.

FALSE Object could not be filled.

Example

Filling a tablefield:

static DM_Content *content;
static ushort ColCount;

void DML_default DM_ENTRY ContInit__2(
(DM_ID, table)
(long, fillRows))
{

DM_Value data;
ushort rowcount;
ushort rowheader;
ushort count;
DM_Value first, last;
ushort i;

DM_GetValue(table, AT_rowcount, 0, &data, 0);
rowcount = data.value.integer;

DM_GetValue(table, AT_colcount, 0, &data, 0);

colcount = data.value.integer;

DM_GetValue(table, AT_rowheader, 0, &data, 0);
rowheader = data.value.integer;

count = (rowcount-rowheader) * ColCount;

content=(DM_Content*)DM_Malloc(count*sizeof(DM_Content));

for (i=0; i<count; i++)
{

char buf[10];

sprintf(buf, "<%8d>", i);

content[i].string = DM_Strdup(buf);
content[i].active = FALSE;
content[i].sensitive = TRUE;

}

if (fillRows > (rowcount-rowheader))
fillRows = rowcount-rowheader;

if (fillRows)
{

first.type = DT_index;
first.value.index.first = rowheader + 1;
first.value.index.second = 1;

last.type = DT_index;
last.value.index.first = fillRows + rowheader;
first.value.index.second = ColCount;

DM_SetContent(table, &first, &last, content,
fillRows*ColCount,0);

}
}

A.06.03.b 219

220 ISA DialogManager

3.63 DM_SetMultiValue
Using this function you are able to set several attributes of different DM objects in one function call.
This function should therefore be implemented especially together with the DISTRIBUTED DIALOG

MANAGER (DDM), since the network capacity is considerably reduced.

For information on the permitted attributes for the corresponding object type please refer to the
“Object Reference”.

DM_Boolean DML_default DM_EXPORT DM_SetMultiValue
(
 DM_MultiValue *values,
 DM_UInt count,
 DM_ID dialogID,
 DM_String pathname,
 DM_Options options
)

Parameters

<-> DM_MultiValue *values

List of attributes and objects to be reset. If the element in the structure for the object is set to 0, the
object described in the parameter pathname is chosen. The list has to have at least the length spe-
cified in the parameter count.

-> DM_UInt count

Specifies the length of the object-attribute vector indicated in the parameter values.

-> DM_ID dialogID

This parameter describes the dialog to which the given objects belong. It has to be specified only if
the object identifier whose attributes are to be set is not known and thus the name of the object is
specified in the parameter pathname.

-> DM_String pathname

Describes the object the attributes of which are to be set. It will only be allocated if the object's
internal identifier is not yet known.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

TRUE The attributes have been set successfully.

FALSE At least one attribute could not be set.

Example

Setting coordinates for several objects:

void DML_default DM_ENTRY Set __3((DM_ID, o1),
(DM_ID, o2),
(DM_ID, o3))

{
DM_MultiValue val[3];

/* Setting the relevant object */
val[0].object = o1;
val[1].object = o2;
val[2].object = o3;

/* Setting the relevant index type */
val[0].index.type = DT_void;
val[1].index.type = DT_void;
val[2].index.type = DT_void;

/* Setting the relevant attribute */
val[0].attribute = AT_xleft;
val[1].attribute = AT_width;
val[2].attribute = AT_xright;

/* Setting the attribute datatype */
val[0].data.type = DT_integer;
val[1].data.type = DT_integer;
val[2].data.type = DT_integer;

val[0].data.value.integer = 10;
val[1].data.value.integer = 50;
val[2].data.value.integer = 10;

DM_SetMultiValue(val, 3, dialogID, (char *)0, 0);
}

A.06.03.b 221

222 ISA DialogManager

3.64 DM_SetToolkitData
With this function a direct access to the window system is possible. This means that with this function
the application is able to change attributes that are not supported by the ISA Dialog Manager but exist
in the toolkit.

DM_Boolean DML_default DM_EXPORT DM_SetToolkitData
(
 DM_ID objectID,
 DM_Attribute attr
 FPTR value,
 DM_Options options
)

Parameters

-> DM_ID objectID

This parameter is the identifier of the object whose window system specific data is to be changed.

-> DM_Attribute attr

With the help of this parameter you can define which window system attribute should be changed.

-> FPTR value

This parameter can be used to set new, window system specific data of the object.

-> DM_Options options

This parameter is currently not used and must therefore be set to 0.

Return value

TRUE The attribute was set successfully.

FALSE The attribute could not be set successfully.

The attributes and the associated return values are window system dependent and will be explained
in the following chapters.

3.64.1 Motif
These functions can be used to change the data necessary for X-Windows, such as “window-id”, “wid-
get” and “color”. The meaning of these data types is explained in the corresponding X-Windows manu-
als.

The following values are allowed for the attributes:

attribute Meaning

AT_CanvasData This value stores the user-specific data of a canvas. This data is
remembered by the specified canvas and contains user-specific
data.

See also
Chapter „Strukturen für Canvas-Funktionen“ in manual „C-Sch-
nittstelle - Grundlagen“

AT_XAppClass This attribute can be used to set the Xt application class.

AT_XColor This value sets the X-Windows specific structure for the specified
color. The value of the value parameter of the function should be of
type “Pixel”.

AT_XCursor This value sets the X-Windows specific structure for the specified
cursor. The value of the value parameter of the function should be of
type “Cursor”.

AT_XFont This value sets the X-Windows specific structure for the specified
font. The value of the value parameter of the function should be of
type XFontStruct*. The availability of this attribute depends on the
Motif version used.

AT_XFontSet This value sets the X-Windows specific structure for the specified
font. The value of the value parameter of the function should be of
type XFontSet. The availability of this attribute depends on the Motif
version used.

AT_XmFontList This value sets the X-Windows specific structure for the specified
font. The value of the value parameter of the function should be of
type XmFontList. The availability of this attribute depends on the
Motif version used.

AT_XtAddEvents This attribute can be used to request additional X events for a can-
vas, e.g. mouse movements. When using this attribute, the event
mask ("event_mask") must be passed in the value parameter and the
non-selected events in options (non-maskable). If no more additional
events are to be sent to the canvas, value and options must be set to
0.

Note for multiscreen dialogs

When called with AT_XTile or AT_XColor, only the tile or color of the default screen can be set.

See also

Chapter„Multiscreen Ssupport untder Motif“ in manual „Programmiertechniken“

A.06.03.b 223

224 ISA DialogManager

3.64.2 Microsoft Windows
With the help of these functions the data necessary for Microsoft Windows can be changed. The
meaning of these data types is explained in the corresponding Microsoft Windows manuals.

The following values are allowed for the attributes:

attribute Meaning

AT_CanvasData This value stores the user-specific data of a canvas. This data is
remembered by the specified canvas and contains user-specific
data.

See also
Chapter „Strukturen für Canvas-Funktionen“ in manual „C-Sch-
nittstelle - Grundlagen“

AT_ClipboardText Permitted only at the setup object.
The AT_ClipboardText attribute can be used to set the content of the
MS Windows clipboard:
DM_SetToolkitData(<setup>, AT_ClipboardText, str, 0);

The string obtained remains valid until DM_GetToolkitData or DM_
SetToolkitData is called again.
To release the string without changing the clipboard use the call
DM_SetToolkitData(<setup>, AT_ClipboardText, (FPTR)
0, 0);

AT_WinDisableAll This value makes all toplevel windows of the same application insens-
itive - except for the window whose DM-ID is specified as value para-
meter.

AT_WinEnableAll This value makes all toplevel windows of the same application sens-
itive - except for the window whose DM-ID is specified as value para-
meter.

AT_XColor This is used to set a Microsoft Windows RGB value for a color
resource.
The value 0 resets to the original resource value.

attribute Meaning

AT_XTile This is used to set a Microsoft Windows Brush for a color resource.
The value must be a valid Microsoft Windows Brush handle. The
value should absolutely correspond to the value of AT_XColor, since
it cannot be predicted when the Dialog Manager will use the AT_XCo-
lor value or the AT_XTile value.
The value 0 resets to the original resource value.

Attention
If the value is invalid, the ISA Dialog Manager may crash.

AT_wsidata This is used to set a Microsoft Windows cursor for a cursor resource.
The value must be a valid Microsoft Windows cursor handle.
Der Wert 0 setzt wieder auf den originalen Ressourcenwert zurück-
.The value 0 resets to the original resource value. It releases the ori-
ginal resource if it is no longer needed by Dialog Manager.

Attention
If the value is invalid, the ISA Dialog Manager may crash.

AT_wsidata Allows you to set a Microsoft Windows font for a font resource. The
value must be a valid Microsoft Windows font handle.
The value 0 resets to the original resource value.

Attention
If the value is invalid, the ISA Dialog Manager may crash.

A.06.03.b 225

226 ISA DialogManager

attribute Meaning

AT_Tile / AT_XTile / AT_
wsidata

This allows the setting of an own image for a tile resource. Depend-
ing on the option set, the following data types must be specified:
- DMF_TlkDataIsIcon: Microsoft Windows Icon Handle
- DMF_TlkDataIsWMF: Microsoft Windows Metafile Handle
- DMF_TlkDataIsEMF: Microsoft Windows Enhanced Metafile
Handle
- DMF_TlkDataIsD2D1Bmp: Microsoft Direct 2D Bitmap (ID2D1Bit-
map *)
- DMF_TlkDataIsD2D1SVG: Microsoft Direct 2D SVG Documnet
(ID2D1SvgDocument *)
- DMF_TlkDataIsD2D1EMF: Microsoft Direct 2D Metafile
(ID2D1GdiMetafile *)
- other: Microsoft-Windows Bitmap Handle
The value 0 resets to the original resource value.

Attention
If the value is invalid, the ISA Dialog Manager may crash.
Note: If a HANDLE is set, it is usually converted internally to a
Microsoft Direct2D object. A query returns the set HANDLE and not
the converted value.

AT_XColor This is used to set a Microsoft Windows color palette for a tile
resource, which is used to draw a bitmap (not an icon). The value
must be a valid Microsoft Windows palette handle.
The value 0 resets to the original resource value.

Attention
If the value is invalid, the ISA Dialog Manager may crash.

3.65 DM_SetValue
This function enables you to change attributes of DM objects. For information on the attributes per-
mitted for the relevant object type, please refer to the “Object Reference”.

DM_Boolean DML_default DM_EXPORT DM_SetValue
(
 DM_ID object,
 DM_Attribute attr,
 DM_UInt index,
 DM_Value *data,
 DM_Options options
)

Parameters

-> DM_ID objectID

Describes the object the attribute of which you want to change.

-> DM_Attribute attr

Describes the attribute to be changed. All valid attributes are defined in IDMuser.h.

-> DM_UInt index

This parameter is only analyzed for vector attributes of objects and describes the index of the
searched sub-object (e.g. text in listbox).

-> DM_Value*data

In this parameter the value to be accepted by the attribute is to be transferred. You have to take
care, however, to assign the correct element in this union. For information on the data type of the
individual attributes, please refer to the “Attribute Reference”.

-> DM_Options options

Using this parameter you can control whether DM is to trigger the rule processing by setting the
attribute successfully.

Option Meaning

DMF_Inhibit This option means that the function call is not to trigger any
internal events. If this flag is set, you can achieve a better per-
formance in case that a lot of attribute changes have been made
by the application.

DMF_ShipEvent This option means that the function call is to trigger internal
events. Then rules are triggered which have been defined for this
object and which react to the changing of the specified attribute.

A.06.03.b 227

228 ISA DialogManager

Option Meaning

DMF_AcceptChild This option is valid for the attribute AT_options (object canvas) on
Motif. It describes a canvas which can have child objects.

DMF_NoFocusFrame Valid on Motif with attribute AT_options. It describes a canvas
which is not to have a focus border.

DMF_XlateString The specified string is to be translated in the currently used lan-
guage. This is of course only possible if the text already exists
internally and if also a translation exists for it.

Return Value

TRUE The attribute has been set successfully.

FALSE The attribute could not be set.

Example

Application-callback function checking whether an input string corresponds to an existing file.

DM_Boolean DML_default DM_CALLBACK CheckFilename __1(
(DM_CallBackArgs *, data))
{

DM_Value value; /* structure for DM_SetValue */
FILE *fptr; /* file pointer */
DM_ID id; /* Identifier of object */

/* get the current content */
if (DM_GetValue(data->object, AT_content, 0, &value,

DMF_GetLocalString))
/* check the datatype */
if(value.type == DT_string)
{

/* try to open the file */
if(!((fptr = fopen(value.value.string, "r"))))
{

/*
* the file cannot be opened for reading.
* activate the edittext again
*/

value.type = DT_boolean;
value.value.boolean = TRUE;
DM_SetValue(data->object, AT_active, 0, &value,

DMF_Inhibit);

/*
* The file cannot be read. So don't continue
* processing with the rules
*/

return (FALSE);
}
else

fclose(fptr);

/*
* the file could be opened. enable the other objects
*/
value.type = DT_boolean;
value.value.boolean = TRUE;

/* Get the id of the edittext "Actives" */
if ((id = DM_PathToID(0, "Actives")))

/* Change the object to sensitive */
DM_SetValue(id, AT_sensitive, 0, &value,

DMF_ShipEvent);
/*
* the last parameter must be ShipEvent,
* because a rule should be triggered
*/

/*
* Everything is ok. So let the rule process normally
*/

return(TRUE);
}

/* Too many errors don't continue the rule processing */
return (FALSE);

}

See Also

Built-in function setvalue in manual “Rule Language”

A.06.03.b 229

230 ISA DialogManager

3.66 DM_SetValueIndex
With this function attributes of the tablefield object can be changed. The function can work with two
indexes.

For the attributes valid for the relevant object type, please refer to the “Object Reference”.

DM_Boolean DML_default DM_EXPORT DM_SetValueIndex
(
 DM_ID objectID,
 DM_Attribute attr,
 DM_Value *index,
 DM_Value *data,
 DM_Options options;
)

Parameters

-> DM_ID objectID

Describes the object the attribute of which you want to change.

-> DM_Attribute attr

Describes the attribute to be changed. All valid attributes are defined in IDMuser.h

-> DM_Value *index

Specifies the data type of the index (enum, index) and its value.

-> DM_Value *data

In this parameter the value to be accepted by the attribute is to be transferred. You have to take
care, however, to assign the correct element in this union. For information on the data type of the
individual attributes, please refer to the “Attribute Reference”.

-> DM_Options options

Using this parameter you can control whether DM is to trigger the rule processing by setting the
attribute successfully.

Option Meaning

DMF_Inhibit This option means that the function call is not to trigger any
internal events. If this flag is set, you can achieve a better per-
formance in case a lot of attribute changes have been made by the
application.

DMF_ShipEvent This option means that the function call is to trigger internal
events. Then rules are triggered which have been defined for this
object and which react to the changing of the specified attribute.

Option Meaning

DMF_XlateString The specified string is to be translated in the currently used lan-
guage. This is of course only possible if the text already exists
internally and if also a translation exists for it.

Return Value

TRUE The attribute was set successfully.

FALSE The attribute could not be set.

Example

A tablefield is to be filled row-wise by means of the function DM_SetValueIndex.

void DML_default DM_ENTRY SetTable __3(
(DM_ID, tableID),
(DM_Integer, Rows),
(DM_Integer, Cols))

{
 DM_Value index,data;
 int row, column;

 index.type = DT_index;
 data.type = DT_string;
 data.value.string = "new string";
 for (row = 1; row <= (int) Rows; row++)

{
 index.value.index.first = row;
 for (column = 1; column <= (int) Cols; column++)

{
 index.value.index.second=column;
 DM_SetValueIndex(tableID, AT_content, &index, &data,
 DMF_Inhibit);
 }
 }
}

A.06.03.b 231

232 ISA DialogManager

3.67 DM_SetVectorValue
Using this function you can set attributes which occur several times in an object (so-called "vector
attributes").

DM_Boolean DML_default DM_EXPORT DM_SetVectorValue
(
 DM_ID objectID
 DM_Attribute attr,
 DM_Value *firstindex,
 DM_Value *lastindex,
 DM_VectorValue *values,
 DM_Options options
)

Parameters

-> DM_ID objectID

Describes the object the attribute of which you want to change.

-> DM_Attribute attr

Describes the attribute to be changed.

-> DM_Value *firstindex

Controls which range of the contents is modified by this function. This parameter then defines the
starting point of the range.

For a listbox or a poptext the type in the DM_Value structure has to be set to DT_index and the
index value in the union has to be assigned the starting value. For tablefield you have to set the
type in the DM_Value structure to DT_index and the index value in the union has to be assigned
the starting value. For index.first you have to specify the row, for index.second you have to specify
the column.

Note

If this parameter is a NULL pointer, the starting point has the following defaults, e.g.

listbox integer = 1

tablefield index.first = 1, index.second = 1

-> DM_Value *lastindex

Controls which range of the contents is to be modified by this function. This parameter defines the
last point of the range. For a listbox or a poptext the type in the DM_Value structure has to be set
to DT_index and the index value in the union has to be assigned the ending value. For tablefield
you have to set the type in the DM_Value structure to DT_index and the index value in the union
has to be assigned the ending value. For index.first you have to specify the line, for index.second
you have to specify the column.

Note

If the parameter is a NULL pointer, the ending point is defined by the size of the new contents. The
object contents is cut after the last modified entry.

listbox .itemcount is modified

tablefield if direction = 1, then .rowcount will be modified
if direction = 2, then .colcount will be modified

-> DM_VectorValue *values

Pointer to the values to be set. By the field type in the DM_VectorValue structure you can control
which data type the individual values have.

By the field count in the DM_VectorValue structure you can control how many values a vector is to
have.

-> DM_Options options

Controls whether the DM is to trigger rule processing after an attribute has been set successfully.

Option Meaning

DMF_Inhibit This option means that the function call is not to trigger any
internal events. If this flag is set, you can achieve a better per-
formance in case a lot of attribute changes have been made by the
application.

DMF_ShipEvent This option means that the function call is to trigger internal
events. Then rules are triggered which have been defined for this
object and which react to the changing of the specified attribute.

DMF_XlateString The specified string is to be translated into the currently used lan-
guage. This is of course only possible if the text already exists
internally and if also a translation exists for it.

Return Value

TRUE The attribute was set successfully.

FALSE The attribute could not be set.

Example

A new content is to be set for a listbox.

void DML_default DM_ENTRY SetVector __1((DM_ID, lb)){ DM_Value first, last;
DM_VectorValue vec;
char *list[9]

list[0] = "V_1";

A.06.03.b 233

234 ISA DialogManager

list[1] = "V_2";
list[2] = "V_3";
list[3] = "V_4";
list[4] = "V_5";
list[5] = "V_6";
list[6] = "V_7";
list[7] = "V_8";
list[8] = "V_9";

/*
** Setting the starting and ending line
** Content of line 1 to 9 is replaced by
** the new content. The rest remains unchanged.
*/

first.type = DT_integer;
first.value.integer = 1;
last.type = DT_integer;
last.value.integer = 9;

/* Specifying the number of lines to be set */
vec.type = DT_string;
vec.count = 9;
vec.vector.stringPtr = list;
DM_SetVectorValue(lb, AT_content, &first, &last, &vec,

DMF_ShipEvent);

}

3.68 DM_ShutDown
This function shuts down the DM. If this function is called all global initialization procedures will be
recalled. It is usually called by the same function that calls "AppMain" in the application. Therefore,
DM_ShutDown may only be called if the “Main” program in the DM is replaced by an application-spe-
cific one.

void DML_default DM_EXPORT DM_ShutDown
(
 void
)

Parameters

None.

Return value

None.

Example

Start program of Dialog Manager which is usually linked by means of the files startup.o or star-
tup.obj.

int cdecl main __2(
(int, argc),
(char far * far *, argv))
{

register int status;
static char running = 0;

if ((status = running++) == 0)
{

if ((status = DM_BootStrap(&argc, &argv)) == 0)
{

DM_InitOptions(&argc, argv, 0);

DM_TraceMessage ("[AC] Transfer to AppMain(...)",
DMF_Printf | DMF_InhibitTag);

status = AppMain (argc, argv);
DM_TraceMessage ("[AR] AppMain() = %d", DMF_Printf |

DMF_InhibitTag, status);

DM_ShutDown();
}
else DM_TraceMessage ("Bootstrap failed", DMF_LogFile);

}
else

DM_FatalAppError ("Unexpected restart", -1, 0);

A.06.03.b 235

236 ISA DialogManager

return (status);
}

3.69 DM_StartDialog
This function starts the actual dialog application. The DM creates all necessary resources (colors,
cursor, fonts etc.) in the window system, puts all top level objects defined as visible in the dialog on
the screen, and executes the start rule.

DM_Boolean DML_default DM_EXPORT DM_StartDialog
(
 DM_ID dialogID,
 DM_Options options
)

Parameters

-> DM_ID dialogID

Identifier of the dialog to be started. This identifier was received as the return value from DM_
LoadDialog.

-> DM_Options options

Currently not used. Please specify with 0.

Return Value

TRUE The dialog was successfully started.

FALSE The dialog could not be started, e.g. because another dialog is already running
or the given parameter is no dialog.

Example

Typical main program for DM applications:

int DML_c DM_CALLBACK AppMain __2(
(int, argc),
(char far * far *, argv))
{

DM_ID dialogID;

/*
* Initialize Dialog Manager

*/
if (!DM_Initialize (&argc, argv, 0))
{

DM_TraceMessage("could not initialize", DMF_LogFile);
return (1);

}

/*
* Load the dialog file

A.06.03.b 237

238 ISA DialogManager

*/

dialogID = DM_LoadDialog ("tabdemo.dlg",0);
if (!dialogID)
{

DM_TraceMessage("could not load dialog", DMF_LogFile);
return(1);

}

/*
* Start the dialog and enter event loop

*/

if (DM_StartDialog (dialogID, 0))
DM_EventLoop (0);

else
return (1);

return (0);
}

See Also

Built-in function run in manual “Rule Language”

3.70 DM_StopDialog
This function cancels a dialog. If that dialog was the last running dialog the event loop is left. If no dia-
log is specified the current dialog is stopped.

DM_Boolean DML_default DM_EXPORT DM_StopDialog
(
 DM_ID dialogID,
 DM_Options options
)

Parameters

-> DM_ID dialogID

Identifier of the dialog to be stopped. This identifier was received as the return value from DM_
LoadDialog

-> DM_Options options

In this parameter the following values are possible:

Option Meaning

DMF_Destroy This option means that the stopped dialog is to be deleted. If this option is
not set, the stopped dialog will remain in the memory and be restarted.

Return Value

TRUE The dialog could be stopped successfully.

FALSE The dialog could not be stopped.

See Also

Built-in function stop in manual “Rule Language”

A.06.03.b 239

240 ISA DialogManager

3.71 DM_StrCreate
With the function DM_StrCreate a text with a given character encoding can be created.

DM_String DML_default DM_EXPORT DM_StrCreate
(
 DM_String str,
 DM_UInt1 strCP,
 DM_UInt1 toCP,
 DM_Options options
)

Parameters

-> DM_String str

Source text to initialize the newly created text.

-> DM_UInt1 strCP

Character encoding (code page) of the source text.

-> DM_UInt1 toCP

Character encoding (code page) of the newly created text.

-> DM_Options options

Currently unused, should be set to 0.

Parameter Values

Besides the already known code page constants (CP_ascii, CP_iso8859,...) the following code page
constants can be used for the parameters strCP and toCP:

Constant Meaning

CP_appl currently set application code page

CP_format currently set format code page

CP_input currently set input code page

CP_output currently set output code page

CP_display currently set display code page

CP_system currently set system code page

These constants may only be used with DM_StrCreate.

Return Value

The newly created text.

The text has to be freed with DM_Free when it is not needed anymore.

Availability

DM_StrCreate is available as of IDM release A.05.02.k.

A.06.03.b 241

242 ISA DialogManager

3.72 DM_Strdup
Using this function you can duplicate any strings. For the copies of the strings you have to use the Dia-
log Manager functions for the memory administration DM_Malloc. This is why these strings can be
released only via the function DM_Free.

DM_String DML_default DM_EXPORT DM_Strdup
(
 DM_string string
)

Parameters

-> DM_string string

This parameter is the string to be duplicated.

Return Value

This function returns the pointer to the duplicate of the string or a NULL pointer if the string could not
be duplicated.

Example

A string transferred from Dialog Manager is to be saved for the application.

 DM_String new_string;

void DML_default DM_ENTRY StoreString __1((DM_String string))
{

 if (new_string = DM_Strdup(string) == (DM_String) 0)
 DM_TraceMessage("String could not be created", 0);

}

If this string is not needed any more, it has to be freed via the function DM_Free.

void DML_default DM_ENTRY FreeString __0((void))
{

 DM_Free(new_string);

}

3.73 DM_StringChange
This function can be used to modify or manipulate a managed string.

Besides the mere replacement of the string, it is possible to concatenate strings via the DMF_
AppendValue option.

If the pstring parameter is a yet unmanaged string, it is copied and from then on managed by the IDM.
If the option DMF_StaticValue has been set, the string will be treated as a static or global string and
not be released as usual when the function returns.

Generally, only string arguments and local or global strings can be managed.

DM_Boolean DML_default DM_EXPORT DM_StringChange
(

DM_String * pstring,
DM_String newstring,
DM_Options options

)

Parameters

<-> DM_String * pstring

This parameter refers to the string reference that shall be manipulated. It may already be a man-
aged string, however this is not mandatory.

-> DM_String newstring

This parameter refers to the string which shall be assigned or appended to the string reference
(pstring parameter).

-> DM_Options options

These are the options available:

Option Meaning

DMF_StaticValue When the pstring parameter is automatically converted into a man-
aged string reference, it is treated as a static respectively global
string reference.

DMF_AppendValue The string in the newstring parameter is appended to the string in
the pstring parameter.

Return value

DM_TRUE The string has been manipulated successfully.

DM_
FALSE

An error occurred. This may be due to a wrong runstate on call or an invalid string ref-
erence.

A.06.03.b 243

244 ISA DialogManager

Example

Dialog File

dialog YourDialog
function anyvalue StringOf(integer I);

on dialog start
{

print StringOf(123);
print StringOf(-42);
exit();

}

C Part

...

DM_String DML_default DM_ENTRY StringOf(DM_Integer I)
{

char buf[10];
DM_String data;
DM_String negative;

if (I>=0)
{

/* return an unmanaged local string */
sprintf(buf, "%d", (int)I);
data = buf;
/* wrong: return data; => buf is a local char array! */
return DM_StringReturn(&data, 0);

}
else
{

/* return a managed string */
DM_StringInit(&negative, 0); /* can be omitted */
DM_StringChange(&negative, "!!negative", &data, 0);
return DM_StringReturn(&negative);
/* return &negative; => also possible for managed strings! */

}
}

Availability

Since IDM version A.06.01.a

See also

Functions DM_StringInit, DM_StringReturn

3.74 DM_StringInit
This function converts a string into a local or global respectively static string managed by the IDM.
This allows further manipulation of the string with the DM_StringChange() function, as well as sim-
plified handling as parameter or return value. The IDM then manages the memory for the string.

For managed strings, only read access of the string characters or the string pointer is allowed. Releas-
ing via DM_Free() is not allowed!

This function initializes the string with NULL.

By specifying the DMF_StaticValue option, the string is treated as static and is not released after the
function returns, as it is usually the case for local strings.

Generally, only string arguments and local or global strings can be managed.

DM_Boolean DML_default DM_EXPORT DM_StringInit
(

DM_String * pstring,
DM_Options options

)

Parameters

-> DM_String * pstring

This parameter refers to the string pointer that shall be initialized and managed.

-> DM_Options options

These are the options available:

Option Meaning

DMF_StaticValue The pstring parameter will be initialized as a static or global string
reference.

Return value

DM_TRUE The string has been initialized successfully and is now managed.

DM_FALSE The string could not be managed or initialized.

Example

Dialog File

dialog YourDialog
function string FormatString(integer Op, string String);

on dialog start
{

A.06.03.b 245

246 ISA DialogManager

print FormatString (-1, "**"); // set decoration
print FormatString (0, "hello world"); // print with decoration
exit();

}

C Part

...

DM_String DML_default DM_ENTRY FormatString (DM_Integer Op, DM_String String)
{

static DM_String decoration = NULL;
DM_String newstring;

if (!decoration)
{

/* static initialization */
DM_StringInit(&decoration, DMF_StaticValue);
DM_StringChange(&decoration, "-", 0);
/* above can be done simpler via:
* DM_StringChange(&decoraton, "-", DMF_StaticValue);
*/

}

switch(Op)
{
case -1: /* change decoration */

DM_StringChange(&decoration, String);
return &decoration;

case 1: /* decor only at the beginning */
DM_StringChange(&newString, decoration, 0);
DM_StringChange(&newString, String, DMF_AppendValue);
break;

case 2: /* decor only at the end */
DM_StringChange(&newString, String, 0);
DM_StringChange(&newString, decoration, DMF_AppendValue);
break;

default:
DM_StringChange(&newString, decoration, 0);
DM_StringChange(&newString, String, DMF_AppendValue);
DM_StringChange(&newString, decoration, DMF_AppendValue);
break;

}
return newstring;
/* also possible: return DM_StringReturn(&newstring, 0); */

}

Availability

Since IDM version A.06.01.a

See also

Functions DM_StringChange, DM_StringReturn, DM_ValueInit

A.06.03.b 247

248 ISA DialogManager

3.75 DM_StringReturn
This function is used to safely return local strings (DM_String values) from a function. When local vari-
ables and structures are used in a C function, they are invalid after they have been returned. This func-
tion can safely and easily return a local string.

If necessary, a temporary copy created (e.g. the string in it is copied) for this purpose. There is no
copying for managed value references. In this case the returned DM_String pointer should be passed
to the caller with return.

DM_String DML_default DM_EXPORT DM_StringReturn
(

DM_String * pstring,
DM_Options options

)

Parameters

-> DM_String * pstring

This parameter refers to the string that will be returned. It may be a managed string, however this
is not mandatory.

-> DM_Options options

Should be set to 0 since no options are available.

Return value

A valid string to return by a function is returned or NULL in case of an error. An error may occur, for
instance, if the function is called in the wrong “runstate”, the managed string is invalid or copying
failed.

Please Note

The functions DM_StringInit and DM_StringChange can be used to return output string parameters.

Example

Dialog File

dialog YourDialog
function anyvalue StringOf(integer I);

on dialog start
{

print StringOf(123);
print StringOf(-42);
exit();

}

C Part

...

DM_String DML_default DM_ENTRY StringOf(DM_Integer I)
{

char buf[10];
DM_String data;
DM_String negative;

if (I>=0)
{

/* return an unmanaged local string */
sprintf(buf, "%d", (int)I);
data = buf;
/* wrong: return data; => buf is a local char array! */
return DM_StringReturn(&data, 0);

}
else
{

/* return a managed string */
DM_StringInit(&negative, 0); /* can be omitted */
DM_StringChange(&negative, "!!negative", &data, 0);
return DM_StringReturn(&negative);
/* return &negative; => also possible for managed strings! */

}
}

Availability

Since IDM version A.06.01.a

See also

Functions DM_IndexReturn, DM_StringChange, DM_StringInit, DM_ValueReturn

A.06.03.b 249

250 ISA DialogManager

3.76 DM_TraceMessage
Using this function you can write trace messages from the application in the tracefile of Dialog Man-
ager.

void DML_c DM_EXPORT DM_TraceMessage
(
 DM_string string,
 DM_Options options,
 ...
)

Parameters

-> DM_string string

This parameter is the string to be written in the tracefile.

-> DM_Options options

For this function the following options are permitted:

Option Meaning

DMF_InhibitTag Using this option, the application can influence whether Dialog Manager
writes the header “[UM]” at the beginning of a line or not. If the parameter is
set to DMF_InhibitTag, the beginning of a line will not be printed.
If this option is not set, the message in the tracefile will be as follows:
*[UM]: specified string

DMF_Printf If this option is set, the parameter string will be interpreted in the same way
as in the C function printf. The corresponding parameters have to be spe-
cified after the parameter options.

DMF_LogFile If this option is set, the output appears in the tracefile, not in the logfile.

Note
If the command line option -IDMtracefile is set, everything will always be
written in the tracefile. This is also valid if the option DMF_LogFile is set.
This option does have the above described effect - output in logfile and not
in tracefile - only, if -IDMtracefile is not set!

Note

The traces will only be printed if the DM has been started with the trace option.

Example

Output of a message in the main program, if the function DM_Initialize returns FALSE as a result.

int DML_c DM_CALLBACK AppMain __2(
(int, argc),

(char **, argv))
{
 DM_ID dialogID;

/* Initialization of Dialog Manager */
 if (!DM_Initialize (&argc, argv, 0))

{
 DM_TraceMessage("could not initialize",
 DMF_LogFile);
 return (1);
 }

A.06.03.b 251

252 ISA DialogManager

3.77 DM_ValueChange
With this function a value reference managed by IDM may be manipulated. Either the entire value can
be replaced or a single element value in a collection.

There is an automatic conversion of unmanaged value references into managed value references. If
the option DMF_StaticValue is set in this case, a static respectively global managed value reference
is created. For better control the explicit use of DM_ValueInit is recommended.

If the value parameter is a collection, e.g. of type DT_vector, DT_list, DT_hash, DT_matrix or DT_
refvec, an element value can be substituted by specifying the index parameter. Similar to predefined
attributes, a collection can be extended by incrementing the index with +1. For associative arrays,
simply a not yet assigned index key may be used.

If a collection in the data parameter is assigned to the target as a whole (i.e. with NULL as index para-
meter), the entire value with all value elements is copied. The conversion of an argument into a locally
managed value also requires a complete copying to allow further manipulation.

DM_Boolean DML_default DM_EXPORT DM_ValueChange
(

DM_Value *value,
DM_Value *index,
DM_Value *data,
DM_Options options

)

Parameters

-> DM_Value * value

This parameter refers to the value reference to be changed. If it is not yet managed by the IDM, it
is converted to a managed value reference.

-> DM_Value * index

This parameter can be used to change element values in collections and specifies the index.
Otherwise, it should be set to NULL. This parameter does not need to be a managed value ref-
erence.

-> DM_Value * data

This parameter defines the value to be set. It may be a managed or an unmanaged value ref-
erence. If this value is NULL, the value or element is set to DT_undefined.

-> DM_Options options

These are the options available:

Option Meaning

DMF_StaticValue When the value parameter is automatically converted into a man-
aged value reference, it is treated as a static respectively global
value reference.

DMF_AppendValue For collections, the data value from data is appended at the end.
The index must be NULL for this.

DMF_SortBinary In collections, the newly set value is finally sorted. May be used in
combination with DMF_SortReverse.

DMF_SortLinguistic In collections, the newly set value is finally sorted, for strings
according to linguistic rules (see the function sort()). May be used
in combination with DMF_SortReverse.

DMF_SortReverse In collections, the newly set value is finally sorted in reverse order.

Return value

DM_
TRUE

The function has been completed successfully, setting the value succeeded or the value
had already been set.

DM_
FALSE

Value could not be set. This may be due to an faulty call, an unmanaged or invalid value
reference, or an incorrect indexing.

Example

Dialog File

dialog YourDialog
function anyvalue FindData(hash DataHash, string Pattern,

anyvalue FirstIndex output);

on dialog start
{

variable hash Stations := ["1"=>"ABC","2"=>"CBS","9"=>"HBO"];
variable anyvalue Idx;

print "Found(D)=" + FindData(Stations,"D",Idx);
print " at " + Idx;
exit();

}

C Part

...

A.06.03.b 253

254 ISA DialogManager

static DM_Value InvalidIndex;
static DM_Value InvalidValue;

DM_Value * DML_default DM_ENTRY FindData(DM_Value *DataHash, DM_String
Pattern,

DM_Value *FirstIndex)
{

DM_Value index;
DM_Value value;

/* initialize the managed values */
DM_ValueInit(&index, DT_void, NULL, 0);
DM_ValueInit(&value, DT_void, NULL, 0);
DM_StringInit(&retString, 0);

count = DM_ValueCount(DataHash, NULL, 0);
while(count>0)
{

/* loop through the hash */
if (DM_ValueIndex(DataHash, count--, &index, 0)

&& DM_ValueGet(DataHash, &index, &value, DMF_GetLocalString)
&& value.type == DT_string)

{
if (strstr(value.value.string, Pattern))
{

/* return the first found index & value */
DM_ValueChange(FirstIndex, NULL, &index, 0);
return DM_ValueReturn(&value, 0);

}
}

}

/* return the invalid index & value */
DM_ValueChange(FirstIndex, NULL, &InvalidIndex, 0);
return &InvalidValue;

}

...

int DML_c AppMain __2((int, argc), (char **,argv))
{

DM_Value data;

...

data.type = DT_string;
data.value.string = "NO-VALUE";

DM_ValueChange(&InvalidValue, NULL, &data, DMF_StaticValue);
data.type = DT_string;
data.value.string = "INVALID-INDEX";
DM_ValueChange(&InvalidIndex, NULL, &data, DMF_StaticValue);

...

DM_StartDialog(...)

Availability

Since IDM version A.06.01.a

A.06.03.b 255

256 ISA DialogManager

3.78 DM_ValueCount
Returns the number of values in a collection (without the default values). It is also possible to return
the index type or the highest index value.

The returned value indicates the number of values (without the default values). Thus, in combination
with the DM_ValueIndex function, loops over all indexed values respectively elements can be imple-
mented easily.

Depending on the value parameter, the following results may occur:

value Type retvalue Return Type Remark

DT_refvec, DT_list, DT_vector DT_integer Highest index value

DT_matrix DT_index Highest index value

DT_hash DT_datatype Any index type (anyvalue)

otherwise DT_void Non-indexed value

DM_UInt DML_default DM_EXPORT DM_ValueCount
(

DM_Value *value,
DM_Value *retvalue,
DM_Options options

)

Parameters

-> DM_Value* value

This parameter refers to the value reference from which the number of values is fetched. It should
be a managed value reference or function argument.

-> DM_Value * retvalue

If this parameter is not NULL, the count value is returned in it. This may be a managed value ref-
erence, however this is not mandatory.

-> DM_Options options

These are the options available:

Option Meaning

DMF_GetLocalString This option means that text values (IDs of type DT_text) should be
returned as strings in the currently set language.

Option Meaning

DMF_GetMasterString This option means that text values (IDs of type DT_text) should be
returned as a strings in the development language, regardless of
which language the user is currently working with.

DMF_
DontFreeLastStrings

Strings are usually passed to the application in a temporary buffer,
which is retained until the next call to the IDM. If strings in the
application shall be valid longer, the option DMF_
DontFreeLastStrings has to be set. Then the memory will not be
released until an IDM function returning a string from the IDM to
the applicationis called without this option.

Return value

0… INT_
MAX

Number of values (excluding the default values with the indexes [0], [0,*] or [*,0]).

retvalue Highest index value, may be either void (scalar value), an integer value (one-dimen-
sional array), an index value (two-dimensional array), or a data type (associative array).

Example

Dialog File

dialog YourDialog
function integer CountIntegers(anyvalue List);

on dialog start
{

variable matrix M := [
[0,0]=>-1,[1,1]=>"ZIP",[1,2]=>"City",[2,1]=>60654,[2,2]=>"Chicago"];

print "#Integers in Hash: " + CountInteger(M);
exit();

}

C Part

...

static DM_Value InvalidIndex;
static DM_Value InvalidValue;

DM_Integer DML_default DM_ENTRY CountInteger(DM_Value *List)
{

DM_Value index;
DM_Value count;

A.06.03.b 257

258 ISA DialogManager

DM_Value value;
DM_Integer icount = 0;

/* initialize the managed values */
if (DM_ValueCount(List, &count, 0)>0 && List->type == DT_matrix

&& count->type == DT_index)
{

index.type = DT_index;
index.value.index.first = 0;
index.value.index.second = 1;

/* loop through [0,1],[1,1],[2,1],... */
while(index.value.index.first<=count.value.index.second)
{

if (DM_ValueGet(List, &index, &value, 0)
&& value.type == DT_integer)

icount++;
index.value.index.first++;

}
}
return icount;

}

Availability

Since IDM version A.06.01.a

See also

Functions DM_ValueChange, DM_ValueGet, DM_ValueIndex

Built-in functions countof, itemcount

3.79 DM_ValueGet
This function allows to retrieve a single element value that belongs to a defined index from collections.

If the given index is NULL, the entire value is returned, which usually means copying the value.

If the retvalue parameter is an unmanaged value, it remains unmanaged. When strings are returned,
they are only stored in a temporary buffer which may be cleared or overwritten the next time a DM
function without the DMF_DontFreeLastStrings option is called.

DM_Boolean DML_default DM_EXPORT DM_ValueGet
(

DM_Value *value,
DM_Value *index,
DM_Value *retvalue,
DM_Options options

)

Parameters

-> DM_Value* value

This parameter refers to the value reference from which the element value is retrieved. It should
be a managed value reference or function argument.

-> DM_Value * index

This parameter sets the index for which the element value is retrieved. This parameter does not
need to be a managed value. If the parameter is set to NULL, the value parameter is copied into
the return parameter retvalue.

-> DM_Value * retvalue

This parameter defines the value to be set. It may be a managed or an unmanaged value ref-
erence. If this value is NULL, the value or element is set to DT_undefined.

-> DM_Options options

These are the options available:

Option Meaning

DMF_StaticValue When the value parameter is automatically converted into a man-
aged value reference, it is treated as a static respectively global
value reference.

DMF_GetLocalString This option means that text values (IDs of type DT_text) should be
returned as strings in the currently set language.

A.06.03.b 259

260 ISA DialogManager

Option Meaning

DMF_GetMasterString This option means that text values (IDs of type DT_text) should be
returned as a strings in the development language, regardless of
which language the user is currently working with.

DMF_
DontFreeLastStrings

Strings are usually passed to the application in a temporary buffer,
which is retained until the next call to the IDM. If strings in the
application shall be valid longer, the option DMF_
DontFreeLastStrings has to be set. Then the memory will not be
released until an IDM function returning a string from the IDM to
the applicationis called without this option.

Return value

DM_
TRUE

Getting the value has been successful.

DM_
FALSE

The value could not be retrieved. This may be due to an faulty call, an unmanaged or
invalid value reference, or an incorrect indexing.

Availability

Since IDM version A.06.01.a

See also

Functions DM_ValueChange, DM_ValueCount, DM_ValueIndex

3.80 DM_ValueIndex
This function can be used to determine the corresponding index for a position in a collection. This is
especially important for values of type DT_hash and DT_matrix in order to access all respective
indexes the easiest way. The function only allows access to indexes that do not belong to default val-
ues.

The returned index can be stored in a managed retvalue parameter value or in an unmanaged one. In
the latter case, the string value is allocated in the temporary buffer if necessary.

DM_UInt DML_default DM_EXPORT DM_ValueIndex
(

DM_Value *value,
DM_UInt indexpos,
DM_Value *retvalue,
DM_Options options

)

Parameters

-> DM_Value* value

This parameter refers to the value reference from which the index for the position will be retrieved.
It must be a managed value reference or function argument.

-> DM_UInt indexpos

This parameter defines the position of the index and should be in the range 0 < indexpos <= DM_
ValueCount().

-> DM_Value * retvalue

Wenn dieser Parameter nicht NULL ist, wird hier der entsprechende Index abgelegt. Es kann sich
dabei um eine gemanagte oder auch um eine ungemanagte Wertereferenz handeln.

If this parameter is not NULL, the retrieved index is stored here. This may be a managed or an
unmanaged value reference.

-> DM_Options options

These are the options available:

Option Meaning

DMF_GetLocalString This option means that text values (IDs of type DT_text) should be
returned as strings in the currently set language.

DMF_GetMasterString This option means that text values (IDs of type DT_text) should be
returned as a strings in the development language, regardless of
which language the user is currently working with.

A.06.03.b 261

262 ISA DialogManager

Option Meaning

DMF_
DontFreeLastStrings

Strings are usually passed to the application in a temporary buffer,
which is retained until the next call to the IDM. If strings in the
application shall be valid longer, the option DMF_
DontFreeLastStrings has to be set. Then the memory will not be
released until an IDM function returning a string from the IDM to
the applicationis called without this option.

Return value

DM_
TRUE

The value has an index at this position; the obtained index can afterward be found in *ret-
value if retvalue != NULL.

DM_
FALSE

The index could not be determined. This may be due to an faulty call, an unmanaged or
invalid value reference, or an incorrect position.

Example

Dialog File

dialog YourDialog
function anyvalue FindData(hash DataHash, string Pattern,

anyvalue FirstIndex output);

on dialog start
{

variable hash Stations := ["1"=>"ABC","2"=>"CBS","9"=>"HBO"];
variable anyvalue Idx;

print "Found(D)=" + FindData(Stations,"D",Idx);
print " at " + Idx;
exit();

}

C Part

...

static DM_Value InvalidIndex;
static DM_Value InvalidValue;

DM_Value * DML_default DM_ENTRY FindData(DM_Value *DataHash, DM_String
Pattern,

DM_Value *FirstIndex)
{

DM_Value index;

DM_Value value;

/* initialize the managed values */
DM_ValueInit(&index, DT_void, NULL, 0);
DM_ValueInit(&value, DT_void, NULL, 0);
DM_StringInit(&retString, 0);

count = DM_ValueCount(DataHash, NULL, 0);
while(count>0)
{

/* loop through the hash */
if (DM_ValueIndex(DataHash, count--, &index, 0)

&& DM_ValueGet(DataHash, &index, &value, DMF_GetLocalString)
&& value.type == DT_string)

{
if (strstr(value.value.string, Pattern))
{

/* return the first found index & value */
DM_ValueChange(FirstIndex, NULL, &index, 0);
return DM_ValueReturn(&value, 0);

}
}

}

/* return the invalid index & value */
DM_ValueChange(FirstIndex, NULL, &InvalidIndex, 0);
return &InvalidValue;

}

...

int DML_c AppMain __2((int, argc), (char **,argv))
{

DM_Value data;

...

data.type = DT_string;
data.value.string = "NO-VALUE";
DM_ValueChange(&InvalidValue, NULL, &data, DMF_StaticValue);
data.type = DT_string;
data.value.string = "INVALID-INDEX";
DM_ValueChange(&InvalidIndex, NULL, &data, DMF_StaticValue);

...

DM_StartDialog(...)

A.06.03.b 263

264 ISA DialogManager

Availability

Since IDM version A.06.01.a

See also

Functions DM_ValueChange, DM_ValueCount, DM_ValueGet

Method index

Built-in functions countof, itemcount

3.81 DM_ValueInit
With this function a value reference can be converted into a local or global value reference managed
by the IDM. This allows the further manipulation of the value by DM_Value…() functions and its trans-
fer as parameter or return value.

The value reference is initialized with the appropriate type. The collection data types DT_list, DT_vec-
tor, DT_hash, DT_matrix and DT_refvec are also permitted.

If the value reference is initialized as static or global via the DMF_StaticValueoption, access is also
possible outside the function call. Value lists and strings are not released at the end of the function.
The initialization of arguments as static or global managed value references is not allowed.

String values are initialized with the NULL pointer. Collections are created without element values. All
other value types are also initialized with a 0 value.

The function DM_ValueChange can be used to add or change values or part values respectively ele-
ments. A reinitialization using DM_ValueInit() is also possible.

DM_Boolean DML_default DM_EXPORT DM_ValueInit
(

DM_Value *value,
DM_Type type,
DM_Value *count,
DM_Options options

)

Parameters

-> DM_Value *value

This is the value reference to be initialized.

-> DM_Type type

This parameter specifies the requested initial type.

-> DM_Value *count

In this parameter the initial size of collections like list or matrix can be specified or the appropriate
value type for vector values.

-> DM_Options options

Option Meaning

0 The value reference will be initialized as a local value.

DMF_StaticValue The value reference will be initialized as a global, static value.

A.06.03.b 265

266 ISA DialogManager

Return value

DM_TRUE The function has been completed successfully so the value reference is initialized.

DM_FALSE The value reference could not be initialized.

Example

Dialog File

dialog Dialog

function void AppendToList(anyvalue List input output, anyvalue Value);
function anyvalue FindMinMax(anyvalue IntegerList);
function string ListToString(anyvalue List);
function void SetElemSep(string Sep);

on dialog start
{

variable vector[string] WeekDays:=["Mo","Tu","Wed","Thu","Fri","Sat"];
variable list DaysPerWeek := [31,30,28,27];

SetElemSep(" , ");
AppendToList(WeekDays,"Sun");
print ListToString(WeekDays);
print FindMinMax(DaysPerWeek);
exit();

}

C Part

...

static DM_String elemSep = NULL;

void DML_default DM_ENTRY SetElemSep(DM_String sep)
{

DM_StringInit(&elemSep, DMF_StaticValue);
DM_StringChange(&elemSep, sep, 0);

}

DM_Value* DML_default DM_ENTRY FindMinMax(DM_Value *IntegerList)
{

DM_Value subval, minMaxList; /* managed local values */
DM_UInt count;
DM_UInt minValueCount=0, maxValueCount=0;
DM_Value index, mindex, data; /* unmanaged values */

/* initialize local managed values */
DM_ValueInit(&subval, DT_void, NULL, 0);
DM_ValueInit(&minMaxList, DT_list, NULL, 0);

/* determine the itemcount of the list */
count = DM_ValueCount(IntegerList, NULL, 0);
index.type = DT_integer;
index.value.integer = 1;

while(count>0)
{

/* loop through the index 1,2,3,... */
if (DM_ValueGet(IntegerList, &index, &subval, 0)

&& subval.type == DT_integer)
{

if (minValueCount==0 || subval.value.integer<minValue)
{

minValueCount++;
/* store maximum value at [1] in minMaxList */
mindex.type = DT_integer;
mindex.value.integer = 1;
DM_ValueChange(&minMaxList, &mindex, &subval, 0);

}
if (maxValueCount==0 || subval.value.integer>maxValue)
{

maxValueCount++;
/* store maximum value at [2] in minMaxList */
mindex.type = DT_integer;
mindex.value.integer = 2;
DM_ValueChange(&minMaxList, &mindex, &subval, 0);

}
}
count--;
index.value.integer++;

}
/* return the minMaxList (without compiler warnings) */
return DM_ValueReturn(&minMaxList, 0);

}

...

void DML_default DM_ENTRY AppendToList(DM_Value *List, DM_Value *Value)
{

DM_Value newList;

/* demonstrate the returning of a list-value by two ways * /
if (List->type == DT_list || List->type == DT_vector)

A.06.03.b 267

268 ISA DialogManager

{
/* 1) returning a manipulated argument (auto-management) */
DM_ValueChange(List, NULL, Value, DMF_AppendValue);

}
else
{

/* 2) creation of a managed local list-value */
DM_ValueInit(&newList, DT_list, NULL, 0);
DM_ValueChange(&newList, NULL, List, DMF_AppendValue);
DM_ValueChange(&newList, NULL, Value, DMF_AppendValue);
*List = newList;

}
}

DM_String DML_default DM_ENTRY ListToString(DM_Value *List)
{

DM_Value index;
DM_Value value;
DM_UInt count;
DM_String retString;

/* initialize the managed values */
DM_ValueInit(&index, DT_void, NULL, 0);
DM_ValueInit(&value, DT_void, NULL, 0);
DM_StringInit(&retString, 0);

count = DM_ValueCount(List, NULL, 0);
while(count>0)
{

if (DM_ValueIndex(List, count--, &index, 0)
&& DM_ValueGet(List, &index, &value, 0)
&& value.type == DT_string)

{
DM_StringChange(&retString, value.value.string, DMF_AppendValue);
if (count>0)

DM_StringChange(&retString, elemSep, DMF_AppendValue);
}

}
return DM_StringReturn(retString, 0);

}

Availability

Since IDM version A.06.01.a

3.82 DM_ValueReturn
This function is used to safely return local DM_Value values from a function. When local variables
and structures are used in a C function, they are invalid after they have been returned. This function
can safely and easily return a local DM_Value variable.

If necessary, a temporary copy of the value to return is created (e.g. the string in it is copied) for this
purpose. There is no copying for managed value references. In this case the returned DM_Value
pointer should be passed to the caller with return.

DM_Value* DML_default DM_EXPORT DM_ValueReturn
(

DM_Value *value,
DM_Options options

)

Parameters

-> DM_Value* value

This parameter refers to the value reference that shall be returned. It may be a managed value ref-
erence, however this is not mandatory.

-> DM_Options options

Should be set to 0 since no options are available.

Return value

A pointer to a valid DM_Value structure is returned or NULL in case of an error. An error may occur,
for instance, if the function is called in the wrong “runstate”, the managed string is invalid or copying
failed.

Please Note

The functions DM_ValueInit and DM_ValueChange can be used to return output parameters.

Example

Dialog File

dialog YourDialog
function anyvalue StringOf(integer I);

on dialog start
{

print StringOf(123);
print StringOf(-42);
exit();

}

A.06.03.b 269

270 ISA DialogManager

C Part

...

DM_Value * DML_default DM_ENTRY StringOf(DM_Integer I)
{

char buf[10];
DM_Value data;
DM_Value negative;

if (I>=0)
{

/* return an unmanaged value */
sprintf(buf, "%d", (int)I);
data.type = DT_string;
data.value.string = buf;
/* wrong: return &data => data is a local structure! */
return DM_ValueReturn(&data, 0);

}
else
{

/* return a managed value */
DM_ValueInit(&negative, DT_string, NULL, 0); /* can be omitted */
data.type = DT_string;
data.value.string = "!!negative!!";
DM_ValueChange(&negative, NULL, &data, 0);
/* return &negative; => possible but generates compiler warning! */
return DM_ValueReturn(&negative);

}
}

Availability

Since IDM version A.06.01.a

See also

Functions DM_ValueChange, DM_ValueCount, DM_ValueGet, DM_ValueIndex

Method index

Built-in functions countof, itemcount

3.83 DM_WaitForInput
Using this function you can wait for the arrival of a special message without blocking the underlying
window system.

This function is only available on MICROSOFT WINDOWS.

DM_UInt DML_default DM_EXPORT DM_WaitForInput
(
 DM_UInt msg,
 DM_Options options
)

Parameters

-> DM_UInt msg

In this parameter the message to be waited for is transferred.

-> DM_UInt timeout

This parameter indicates in seconds the period of waiting for the arrival of the message. 0 here rep-
resents an unlimited waiting time.

-> DM_Options options

For this parameter you have the following possibility:

Option Meaning

DMF_IgnoreExtEvent This option means that, during waiting for the specified event, the
external events will be ignored. If this option has not been set, an
external event finishes the waiting action.

Return Value

Value Meaning

DMF_RetInput This value means that the specified message has arrived.

DMF_RetTimeout This value means that the specified time has been exceeded. This is
why a timeout has occurred.

DMF_RetExtEvent This value means that an external event has arrived.

DMF_RetError On calling this function an error has arrived. The reason for this may
be an invalid message or that the present state of the application
does not allow a call. Calls to this function out of callback, canvas
and format functions are not permitted.

A.06.03.b 271

272 ISA DialogManager

Note

Calling this function, DM does not process any events until the specified message arrives. By doing
so, you risk to overflow the DM internal event processing. Therefore you should use this function very
carefully, otherwise the entire application may be shut down.

Example

Asynchronous analysis of a computer name via the function gethostbyname.

/*
** This function has the control. It enables you to calculate
** the free message, it installs the input handler and then
** calls the asynchronous function gethostbyname.
*/
static struct hostent FAR * TcpWin_gethostbyname __1(
(const char FAR *, name))
{

HANDLE h = WSAAsyncGetHostByName (TcpWinHwnd,
TcpWinMsgGetXByY,name,TcpWinBuffer,MAXGETHOSTSTRUCT);

TcpWinHostent = (struct hostent FAR *) 0;

if ((h != (HANDLE) 0)
&& (DM_InputHandler (TcpWinGetXByYHandler, (FPTR) 0,

TcpWinMsgGetXByY, DMF_ModeMsgNotify,
DMF_RegisterHandler, DMF_DontTrace)

!= (HWND) 0)
&& DM_WaitForInput (TcpWinMsgGetXByY, 0,
DMF_IgnoreExtEvent | DMF_DontTrace))
{

DM_InputHandler (TcpWinGetXByYHandler, (FPTR) 0,
TcpWinMsgGetXByY, DMF_ModeMsgNotify,
DMF_WithdrawHandler,
DMF_DontTrace | DMF_CheckFuncarg);

}

return (TcpWinHostent);
}

3.84 YiRegisterUserEventMonitor
This function is available only for the MICROSOFT WINDOWS version. It installs an event monitor func-
tion which can be used to interrupt the DM event loop.

Changes as of Version A.05.01.d

The monitors "YI_OBJ_MONITOR" or "YI_OBJFRAME_MONITOR" are called for additional
Microsoft Windows controls.

If an ISA Dialog Manager object is composed of several Microsoft Windows Controls, the monitor "YI_
OBJ_MONITOR" can be called for each of these Microsoft Windows Controls.

DM_Boolean DML_default DM_EXPORT YiRegisterUserEventMonitor
(
 int which,
 YiUserEventMonitor uem
)

Parameters

-> int which

This parameter defines which monitor functions are to be installed.

The following values are possible:

YI_APP_MONITOR
An application-event monitor has been installed.

YI_OBJ_MONITOR
An object-event monitor has been installed.

YI_OBJFRAME_MONITOR
An frame-object-event monitor has been installed.

-> YiUserEventMonitor uem

This parameter is the address of the monitor function to be installed. Its definition and its use are
explained below ("Notes").

Return value

TRUE Monitor function was successfully installed.

FALSE Monitor function could not be installed.

Remarks

1. YiRegisterUserEventMonitor installs a new monitor-function pointer. The old monitor function is
deleted.

2. If a NULL pointer is transferred instead of a monitor-function pointer, the default function will be

A.06.03.b 273

274 ISA DialogManager

installed again.

3. It is possible to install two different monitor functions depending on which.

3.84.1 YI_APP_MONITOR
This function is the application monitor which can be installed before the application. This monitoring
function receives each message that MICROSOFT WINDOWS sends to the application. It has to be
defined as follows:

LONG DML_default DM_CALLBACK AppMonitorFunc
(
 DM_ID id,
 MSG *pMsg
)

Parameters

-> DM_ID id

Currently not used. Please specify with 0.

-> MSG *pMsg

This parameter is the received message. The monitor function has to process this message in any
case! For all messages which are not processed the function "YiDefAppMonitor" executing the
standard DM processing has to be called.

It has the following definition:

LONG DML_pascal DM_EXPORT YiDefAppMonitor (DM_ID id, MSG *pMsg)

Return value

Return value which is expected by MICROSOFT WINDOWS or the return value of "YiDefAppMonitor".

3.84.2 YI_OBJ_MONITOR
This monitor function receives each message that MICROSOFT WINDOWS sends to the DM objects. It
has to be defined as follows:

LONG DML_pascal DM_CALLBACK ObjectMonitorFunc
(
 DM_ID id,
 MSG *pMsg
)

Parameters

-> DM_ID id

This parameter is the identifier of the DM object.

-> MSG *pMsg

This parameter is the arrived message. The monitor function has to process this message in any
case! For all messages which are not processed, the function "YiDefObjMonitor" that performs the
default DM processing has to be called.

It is defined as follows:

LONG DML_pascal DM_EXPORT YiDefObjMonitor (DM_ID id, MSG *pMsg)

Return value

Return value which is expected by MICROSOFT WINDOWS or the return value of "YiDefObjMonitor".

Important Remarks

If an error occurs when implementing the monitoring functions, the system will crash. This occurs
especially if the default function is not called or the wrong default function is called. Therefore, only
self-defined messages or DDE messages are to be processed in the application monitoring, and all
other messages are to be passed on to the function "YiDefAppMonitor". An object-monitor function
should not be installed if possible. The object canvas is available for the definition of special objects.

If possible, you should not install any object-monitor function.

For the definition of special objects, you should use the object canvas.

3.84.3 YI_OBJFRAME_MONITOR
This monitor function receives every message that Microsoft Windows sends to the MSW -frame win-
dows; this concerns only the DM objects that are composed of several MSW -windows.

This function is defined as follows:

LONG DML_pascal DM_CALLBACK ObjectFrameMonitorFunc
(
 DM_ID id,
 MSG *pMsg
)

Parameters

-> DM_ID id

This parameter is the identifier of the DM object.

-> MSG *pMsg

This parameter is the received message. The monitor function must process this message in any
case! For all messages that are not processed, the function "YiDefObjFrameMonitor" must be
called, which executes the standard DM processing.

It is defined as follows:

LONG DML_pascal DM_EXPORT YiDefObjFrameMonitor (DM_ID id, MSG *pMsg)

A.06.03.b 275

276 ISA DialogManager

Return value

Return value which is expected by MICROSOFT WINDOWS or the return value of "YiDe-
fObjFrameMonitor".

Important Remarks

If an error occurs when implementing the monitor functions, especially if the default function is not
called or the wrong default function is called, a system crash will occur. Therefore, only self-defined
messages or DDE messages should be processed in the application monitor. All other messages
should be passed to the "YiDefObjFrameMonitor" function.

If possible, no object frame monitor function should be installed.

The canvas object is available for defining special objects.

4Options for the Interface Functions
In the following table, you will find all options which can be specified in the parameter options of the
DM interface functions. Usually, these options can be connected by a logical “or”, so that a function
including more than one valid option can be called.

Option Function Meaning

DMF_AcceptChild DM_GetValue
DM_SetValue

Is valid for the attribute AT_options of
the canvas on Motif. This option
denotes a canvas which can have
child objects.

DMF_AppendValue DM_StringChange
DM_ValueChange

Append a data value to a collection (if
index == NULL) or string.

DMF_CheckFuncarg DM_InputHandler All function arguments are taken to
search for the function to be unin-
stalled.

DMF_CreateInvisible DM_CreateObject The newly created object is created
invisibly - independent of how the
attribute AT_visible is set in the copy
model.

DMF_CreateModel DM_CreateObject The object to be newly created is gen-
erated as a model.

DMF_DisableHandler DM_DispatchHandler
DM_ErrorHandler
DM_InputHandler
DM_NetHandler

Deactivates a registered handler func-
tion.

DMF_DontFreeLastStrings DM_GetContent
DM_GetValue
DM_GetValueIndex
DM_GetVectorValue
DM_ValueCount
DM_ValueGet
DM_ValueIndex

Usually, the internal strings are over-
written on every call to the DM_Get*
or DM_Value* function. By this option
you can keep the strings valid.

A.06.03.b 277

278 ISA DialogManager

Option Function Meaning

DMF_DontTrace DM_DispatchHandler
DM_InputHandler
DM_QueueExtEvent
DM_SendEvent
DM_WaitForInput

Function call is not traced.

DMF_DontWait DM_EventLoop Event processing is not carried out
"blockingly", i.e. if there is an event, it
will be processed; if there is no event,
go back immediately to the calling
function.

DMF_EnableHandler DM_DispatchHandler
DM_ErrorHandler
DM_InputHandler
DM_NetHandler

Reactivates a previously deactivated
handler function.

DMF_FatalNetErrors DM_Initialize Sets a compatible behavior to the IDM
versions before A.05.01.d for the
DISTRIBUTED DIALOG MANAGERS

(DDM), enforcing an immediate ter-
mination on client and server side
when a network, protocol or version
error occurs.

DMF_ForceDestroy DM_Destroy
DM_StopDialog

The option means that the specified
object is deleted. On DM_Destroy this
option has to be set, if the object is to
be deleted.

DMF_GetLocalString DM_GetValue
DM_GetValueIndex
DM_GetVectorValue
DM_ValueCount
DM_ValueGet
DM_ValueIndex

Text is returned as string in the lan-
guage which is currently set.

DMF_GetMasterString DM_GetValue
DM_GetValueIndex
DM_GetVectorValue
DM_ValueCount
DM_ValueGet
DM_ValueIndex

Text is returned as string in the ori-
ginal language.

Option Function Meaning

DMF_GetTextID DM_GetValue
DM_GetValueIndex
DM_GetVectorValue

Text is returned as text ID.

DMF_IgnoreExtEvent DM_WaitForInput External events are ignored.

DMF_IncludeIdent DM_ErrMsgText The name of the part which has pro-
duced the error appears in the error
message. This may be the operation
system, the window system or DM.

DMF_IncludeModule DM_ErrMsgText The name of the module in which the
error occurred appears in the error
message.

DMF_IncludeSeverity DM_ErrMsgText The severity of the error (warning,
error, fatal error) is contained in the
error text.

DMF_IncludeText DM_ErrMsgText The actual error text is contained in
the error message.

DMF_InheritFromModel DM_CreateObject The object including the children spe-
cified for the model are created.

DMF_Inhibit DM_SetContent
DM_SetValue
DM_SetValueIndex
DM_SetVectorValue

No event is created for the setting of
the attribute and thus no rule will be
triggered "on Object .Attribute
changed".

DMF_InhibitTag DM_TraceMessage The beginning of the line "[UM]" is not
printed during tracing.

DMF_LogFile DM_TraceMessage Output not in tracefile, but in logfile.

Note
If the start option -IDMtracefile is set,
everything will always be written in the
tracefile. This is also valid if the option
DMF_LogFile is set. This option does
have the above described effect - out-
put in logfile and not in tracefile - only,
if -IDMtracefile is not set!

A.06.03.b 279

280 ISA DialogManager

Option Function Meaning

DMF_NoCriticalSection DM_QueueExtEvent
DM_SendEvent

Prevents the function from using a “crit-
ical section” on MICROSOFT WINDOWS.

DMF_NoFocusFrame DM_GetValue
DM_SetValue

Is valid for the attribute AT_options of
the canvas on Motif. This option
denotes a canvas which is meant not
to have a focus frame.

DMF_OmitActive DM_GetContent
DM_SetContent

The attribute AT_active is not to be
transferred.

DMF_OmitSensitive DM_GetContent
DM_SetContent

The attribute AT_sensitive is not to be
transferred.

DMF_OmitStrings DM_GetContent
DM_SetContent

The strings are not transferred.

DMF_OmitUserData DM_GetContent The attribute AT_userdata is not filled
by DM_GetContent.

DMF_OperationMenu DM_Control Controls the display of the operation
menu at the windows.

DMF_Printf DM_TraceMessage The parameter "string" is interpreted in
the same way as in the C function
"printf".

DMF_RegisterHandler DM_DispatchHandler
DM_ErrorHandler
DM_InputHandler
DM_NetHandler

A new handler is installed by means of
this option.

DMF_ReplaceFunctions DM_BindFunctions A function table existing for the object
is replaced completely with a new one.

DMF_SaveAll DM_SaveProfile Also saves inherited values of con-
figurable records in the configuration
file.

DMF_SetCodePage DM_Control
DM_ControlEx

The specified code page is used in the
application and all texts are trans-
formed in this code page.

DMF_SetFormatCodePage DM_Control
DM_ControlEx

Defines the code page in which format
functions interpret and return strings.

Option Function Meaning

DMF_SetUserCodePage DM_ControlEx Defines the character code for iconv
and thus indirectly influences the IDM
code page CP_ucp. The code page
CP_ucp is activated by DMF_
SetCodePage. (Only on platforms
that support iconv).

DMF_ShipEvent DM_SetContent
DM_SetValue
DM_SetValueIndex
DM_SetVectorValue

An event is created for the setting of
the attribute and in doing so, the rule
".attribute changed" which possibly
exists is triggered.

DMF_SignalMode DM_Control
DM_ControlEx

This option specifies the way DM inter-
cepts signals.

DMF_Silent DM_BindCallBacks No error messages about missing
functions or about too many defined
functions are printed.

DMF_SortBinary DM_ValueChange Binary sorting of a collection.

DMF_SortLinguistic DM_ValueChange Sorting of a collection according to lin-
guistic rules.

DMF_SortReverse DM_ValueChange Sorting of a collection in reverse order.

DMF_StaticValue DM_StringChange
DM_StringInit
DM_ValueChange
DM_ValueGet
DM_ValueInit

Conversion into a static or global
value reference in the case of auto-
matic conversion into a managed
value reference.

DMF_Synchronous DM_QueueExtEvent
DM_SendEvent

This option can optimize internal pro-
cesses, if the function is not called
from a “signal handler”.

DMF_UpdateScreen DM_Control
DM_ControlEx

All actions which are executed intern-
ally are made visible on the screen.

DMF_UseUserData DM_SetContent In the DM_Content-Vector, the user-
data is considered and assigned to the
object.

A.06.03.b 281

282 ISA DialogManager

Option Function Meaning

DMF_Verbose DM_BindCallBacks
DM_DataChanged

DM_BindCallbacks: Error messages
about missing functions or about too
many functions are printed
DM_DataChanged: Activates tracing
of this function.

DMF_WaitForEvent DM_EventLoop The function waits for exactly one
event and then returns.

DMF_WindowListMenu DM_Control Controls the display of the menu of the
window lists at windows.

DMF_WithDrawHandler DM_DispatchHandler
DM_ErrorHandler
DM_InputHandler
DM_NetHandler

This option uninstalls a handler func-
tion.

DMF_XlateString DM_SetValue
DM_SetValueIndex
DM_SetVectorValue

The specified string is translated in the
currently active language, before it is
assigned to the object. This is only pos-
sible, if the text and the translation
exist already.

A

API 9

AppFinish 10, 28-29

AppInit 10, 28

AppMain 10, 27, 38, 235, 250

AT_active 280

AT_Application 113, 144

AT_CanvasData 100, 103, 113, 116, 120,
144, 223-224

AT_CellRect 116, 121

AT_ClipboardText 104, 122, 224

AT_Color 104, 114, 122, 145

AT_DataType 104, 123

AT_DPI 104, 117, 124

AT_Font 104, 114, 124, 145

AT_FontName 114, 145

AT_GetDPI 104, 125

AT_maxsize 105, 126

AT_membercount 151

AT_ObjectID 117, 126, 146

AT_options 228, 277, 280

AT_Raster 105, 127

AT_ScrollbarDimension 106, 127

AT_sensitive 280

AT_Size 106, 128

AT_Tile 106, 114, 128, 146

AT_toolhelp 106, 129

AT_userdata 280

AT_value 106, 129

AT_visible 277

AT_VSize 107, 129

AT_Widget 107, 129

AT_WinDisableAll 224

AT_WinEnableAll 224

AT_WinHandle 107, 130

AT_wsidata 107, 131

AT_XColor 100-101, 108, 117, 132, 223

AT_XColormap 101, 117

AT_XCursor 101, 108, 118, 132, 223

AT_XDepth 101, 118

AT_XDisplay 101, 118

AT_XFont 101, 108, 118, 133, 223

AT_XFontSet 101, 118, 223

AT_XmFontList 101, 118, 223

AT_XScreen 102, 119

AT_XShell 102, 119

AT_XtAddEvents 223

AT_XtAppContext 102, 119

AT_XTile 102, 109, 119, 134, 147

AT_XVisual 102, 120

AT_XWidget 102, 109, 114, 120, 142, 147

AT_XWindow 102, 120

B

BindFunctions 36

booted 22

C

canvas 228, 277, 280

Index

A.06.03.b 283

canvas callback function 51, 56

canvas function 22, 26

character encoding 240

checking 25

clear 43

code page 49, 54, 169, 240, 280-281

code page constant 240

Codepage 51, 56

collections 20

compiler 9

content vector 96

contents

string 87

contentvec 96

CP_acp 51, 56

CP_appl 240

CP_ascii 50, 55

CP_cp1252 50, 56

CP_cp437 50, 55

CP_cp850 50, 55

CP_dec169 50, 55

CP_display 240

CP_format 240

CP_hp15 51, 56

CP_input 240

CP_iso6937 50, 55

CP_iso8859 50, 55

CP_jap15 51, 56

CP_output 240

CP_prc15 51, 56

CP_roc15 51, 56

CP_roman8 50, 55

CP_system 240

CP_ucp 51, 55-56, 281

CP_utf16 50, 56

CP_utf16b 50, 56

CP_utf16l 50, 56

CP_utf8 50, 55

CP_winansi 50, 55

critical section 203, 213

custom function 21

D

default 66

format 87

format function 87

delete 43

Dialog Manager

initializing 14

starting 14

state 23

dialogbox 182

display string 88

DM function 22

DM_ApplyFormat 10, 23, 31

DM_BindCallbacks 14

DM_BindCallBacks 10, 23, 33

DM_BindFunctions 10, 14, 24, 29, 35

DM_BootStrap 10, 18, 23-24, 38

DM_CallFunction 10, 24, 40

DM_CallMethod 10, 17, 24, 42

DM_Calloc 10, 16, 26, 44

DM_CallRule 10, 17, 24, 45

DM_ClassCanvas 58

284 ISA DialogManager

DM_ClassCheck 58

DM_ClassEditext 58

DM_ClassGroupbox 58

DM_ClassImage 58

DM_ClassListbox 58

DM_ClassMenubox 58

DM_ClassMenuitem 58

DM_ClassMenusep 58

DM_ClassMessagebox 58

DM_ClassModule 58

DM_ClassNotebook 58

DM_ClassNotepage 58

DM_ClassPoptext 58

DM_ClassPush 58

DM_ClassRadio 58

DM_ClassRecord 58

DM_ClassRect 58

DM_ClassScroll 58

DM_ClassStatext 58

DM_ClassTablefield 58

DM_ClassTimer 58

DM_ClassWindow 58

DM_Control 10, 17, 24, 47, 51

DM_ControlEx 10, 17, 24, 52, 56

DM_CreateObject 10, 16, 24, 58

DM_DataChanged 11, 15, 24, 60

DM_Destroy 11, 16, 24, 66

DM_DialogPathToID 11, 15, 24, 68

DM_DispatchHandler 11, 21, 70

DM_DumpState 11, 17, 72

DM_ErrMsgText 11, 19, 24, 75

DM_ErrorCode 75, 201

DM_ErrorHandler 11, 21, 77

DM_ErrorInfo 78

DM_EventLoop 11, 14, 23-24, 27, 80, 177

DM_ExceptionHandler 11, 21, 82

DM_ExceptionInfo 83

DM_Execute 11, 17, 84

DM_ExtractErrno 20

DM_ExtractModule 19

DM_ExtractSev 19

DM_FatalAppError 11, 19, 26, 85

DM_FmtDefaultProc 11, 17, 24, 87, 89

DM_Free 11, 16, 26, 44, 91, 178

DM_FreeContent 11, 16, 24, 92, 96

DM_FreeVectorValue 11, 16, 24

DM_FuncMap 33, 35

DM_GetArgv 94

DM_GetContent 11, 16, 24, 92, 95

DM_GetMultiValue 11, 15, 24, 98

DM_GetToolkitData 11, 18, 24, 100

DM_GetValue 11, 15, 24, 148, 152

DM_GetValueIndex 11, 15, 24, 150

DM_GetVectorValue 11, 16, 24, 93, 153

DM_IndexReturn 11, 17, 157

DM_Initialize 11, 14, 22-24, 159, 251

DM_InitMSW 12, 18, 161

DM_InputHandle 163

DM_InputHandler 12, 21, 24, 166, 272

DM_InstallNlsHandler 12, 21, 24, 169

DM_InstallWSINetHandler 170

DM_LoadDialog 12, 14, 22, 25, 27, 173,
237, 239

DM_LoadProfile 12, 14, 25, 175, 177

A.06.03.b 285

DM_Malloc 12, 17, 26, 44, 91, 178, 205

DM_ModuleIDM 19

DM_ModuleMpe 20

DM_ModuleUnix 20

DM_ModuleVms 20

DM_NetHandler 12, 21, 179

DM_OpenBox 12, 17, 25, 182

DM_ParsePath 12, 15, 25, 184

DM_PathToID 12, 15, 25, 186

DM_PicInfo 188

DM_PictureHandler 12, 21, 188

DM_PictureReaderHandler 12, 21, 25,
195

DM_PictureReaderProc 195

DM_ProposeInputHandlerArgs 12, 17, 26,
165, 197-198

DM_QueryBox 12, 17, 25, 199

DM_QueryError 12, 19, 25, 201

DM_QueueExtEvent 12, 17, 22-23, 25,
202

DM_Realloc 12, 17, 26, 44, 91, 178, 205

DM_ResetMultiValue 12, 15, 25, 206

DM_ResetValue 12, 15, 25-26, 208

DM_ResetValueIndex 12, 15, 25-26, 209

DM_SaveProfile 12, 17, 25, 210

DM_SendEvent 12, 17, 23, 25, 212

DM_SendMethod 13, 18, 23, 25, 214

DM_SetContent 13, 16, 25, 216

DM_SetMultiValue 13, 15, 25, 220

DM_SetToolkitData 13, 18, 25, 222

DM_SetValue 13, 15, 25-26, 227

DM_SetValueIndex 13, 15, 25-26, 230

DM_SetVectorValue 13, 16, 25, 232

DM_SeverityError 19

DM_SeverityFatal 19

DM_SeverityProgErr 19

DM_SeveritySuccess 19

DM_SeverityWarning 19

DM_ShutDown 13, 18, 23, 25, 235

DM_StartDialog 13-14, 25, 27, 177, 237

DM_StopDialog 13, 25, 239

DM_StrCreate 13, 20, 240

DM_Strdup 13, 20, 26, 242

DM_StringChange 13, 20, 243

DM_StringInit 13, 20, 245

DM_StringReturn 13, 20, 248

DM_TraceMessage 13, 18, 25, 27, 151,
250-251

DM_Value 148, 150, 227, 230

DM_ValueChange 13, 20, 252

DM_ValueCount 13, 20, 256

DM_ValueGet 13, 20, 259

DM_ValueIndex 13, 20, 261

DM_ValueInit 13, 20, 265

DM_ValueReturn 13, 18, 269

DM_VectorValue 93

DM_WaitForInput 13, 26, 271

DME_WrongRunState 22

DMF_AcceptChild 228, 277

DMF_AppendValue 277

DMF_Checkfuncarg 164

DMF_CheckFuncarg 166, 277

DMF_CreateInvisible 59, 277

DMF_CreateModel 59, 277

DMF_Destroy 239

286 ISA DialogManager

DMF_DisableHandler 70, 164, 167, 277

DMF_DontFreeLastStrings 21, 42, 149,
151, 154, 277

DMF_DontTrace 202, 212, 278

DMF_DontWait 278

DMF_DonWait 80

DMF_EnableHandler 70, 164, 167, 278

DMF_FatalNetErrors 159, 278

DMF_ForceDestroy 66, 278

DMF_GetLocalString 148, 150, 154, 278

DMF_GetMasterString 148, 150, 154, 278

DMF_GetTextID 149-150, 154, 279

DMF_IgnoreExtEvent 271, 279

DMF_IncludeIdent 75, 279

DMF_IncludeModule 75, 279

DMF_IncludeSeverity 75, 279

DMF_IncludeText 75, 279

DMF_InheritFromModel 59, 279

DMF_Inhibit 208-209, 217, 227, 230, 233,
279

DMF_InhibitTag 250, 279

DMF_LogFile 250, 279

DMF_ModeAny 163, 167

DMF_ModeMsgManage 164

DMF_ModeMsgNotify 164

DMF_ModeRead 167

DMF_ModeWrite 167

DMF_NoCriticalSection 203, 213, 280

DMF_NoFocusFrame 280

DMF_OmitActive 96, 218, 280

DMF_OmitSensitive 96, 218, 280

DMF_OmitStrings 96, 218, 280

DMF_OmitUserData 96, 280

DMF_OperationMenu 280

DMF_PCREBinding 48, 53

DMF_Printf 152, 250, 280

DMF_RegisterHandler 70, 164, 167, 280

DMF_ReplaceFunctions 35, 280

DMF_RetError 271

DMF_RetExtEvent 271

DMF_RetInput 271

DMF_RetTimeout 271

DMF_SaveAll 280

DMF_SetCodePage 49, 54, 280

DMF_SetFormatCodePage 50, 55, 280

DMF_SetSearchPath 49, 54

DMF_SetUsepathModifier 49, 54

DMF_SetUserCodePage 55, 281

DMF_ShipEvent 208-209, 217, 227, 230,
233, 281

DMF_SignalMode 48, 53, 281

DMF_Silent 33, 281

DMF_SortBinary 281

DMF_SortLinguistic 281

DMF_SortReverse 281

DMF_StaticValue 281

DMF_Synchronous 202, 212, 281

DMF_UIAutomationMode 48, 53

DMF_UpdateScreen 47, 53, 281

DMF_UseUserData 217, 281

DMF_Verbose 33, 282

DMF_WaitForEvent 80, 282

DMF_WindowListMenu 282

DMF_WithdrawHandler 70, 164, 166-167

A.06.03.b 287

DMF_WithDrawHandler 282

DMF_XlateString 228, 231, 233, 282

dumpstate 72

E

error 19, 75

code 19

message 75

string 75

text 75

exchange 43

F

final state 22

focus border 228

format 11, 87-88

function 22, 87-88

string 87

formatting routine 87

function

overview 10

G

GetToolkitDataEx 115

GFX handler 188, 195

graphcs handler 188

graphics handler 195

example 192

H

handler 21

handling of strings 21

I

identifier 3

IDMtracefile 250, 279

IDMuser.h 20, 148, 208

in- and output parameter 10

initial state 22

initialized 22

input parameter 10

insert 43

interface function

options 277

ISO 8859-1 49, 54

L

linking

window system 18

logfile 250

M

main function 27-28

main program 38, 235

mainloop 22

memory 149, 151, 154

allocating 16

allocation 44, 178

portabel 16

memory administration function 16

messagebox 182

method 42

tablefield 42

model 66, 277

288 ISA DialogManager

MT_clear 43

MT_delete 43

MT_exchange 43

MT_insert 43

O

options 277

output parameter 10

P

parameter

input 10

options 277

output 10

printf 250

profile 175

program course 22

protection measures 22

R

reloading function 43

S

Setup 185

startup.o 18

state

Dialog Manager 22

status information 72, See also dumpstate

string functions 20

structure

DM_ErrorInfo 78

T

tablefield 43

trace option 250

tracefile 250

transition 23

U

UI Automation 48, 53

uninitialized 22

user-defined attributes 151

utilities 17

V

variables

changing in canvas functions 26

vector attributes 153, 232

Visual 102, 120

W

Widget 102, 120

window system

linking 18

+writefuncmap 35

X

XEvent

handler 70

Xt-Application-Class 223

XtDispatchEvent 70

A.06.03.b 289

Y

YI_APP_MONITOR 273-274

YI_OBJ_MONITOR 273

YI_OJ_MONITOR 274-275

YiRegisterUserEventMonitor 14, 21, 273

290 ISA DialogManager

	Notation Conventions
	Table of Contents
	1 Introduction
	2 Functions of the DM Interface
	2.1 Overview of Functions
	2.2 Initializing and Starting Dialog Manager
	2.3 Access Functions
	2.3.1 Access to Dialog Manager Identifiers
	2.3.2 Access to Object Attributes
	2.3.3 Handling Vectorial Attributes
	2.3.4 Handling Complex Vectorial Attributes
	2.3.5 Creating and Destroying Objects
	2.3.6 Memory Administration Functions
	2.3.7 Service Functions (Utilities)
	2.3.8 Special Functions
	2.3.9 Linking a Window System

	2.4 Error Processing
	2.4.1 Information in the Error Code

	2.5 Working with Collections
	2.6 String Functions
	2.7 Integrating Custom Functions (Handlers)
	2.8 Handling of String Parameters
	2.9 Protection in the Programming Interface
	2.9.1 States of Dialog Manager
	2.9.2 Transitions between States
	2.9.3 Permitted States for Functions
	2.9.4 SetValue from Canvas Functions

	3 Functions in Alphabetical Order
	3.1 AppMain
	3.1.1 AppInit
	3.1.2 AppFinish

	3.2 DM_ApplyFormat
	3.3 DM_BindCallBacks
	3.4 DM_BindFunctions
	3.5 DM_BootStrap
	3.6 DM_CallFunction
	3.7 DM_CallMethod
	3.8 DM_Calloc
	3.9 DM_CallRule
	3.10 DM_Control
	3.11 DM_ControlEx
	3.12 DM_CreateObject
	3.13 DM_DataChanged
	3.14 DM_Destroy
	3.15 DM_DialogPathToID
	3.16 DM_DispatchHandler
	3.17 DM_DumpState
	3.18 DM_ErrMsgText
	3.19 DM_ErrorHandler
	3.20 DM_EventLoop
	3.21 DM_ExceptionHandler
	3.22 DM_Execute
	3.23 DM_FatalAppError
	3.24 DM_FmtDefaultProc
	3.25 DM_Free
	3.26 DM_FreeContent
	3.27 DM_FreeVectorValue
	3.28 DM_GetArgv
	3.29 DM_GetContent
	3.30 DM_GetMultiValue
	3.31 DM_GetToolkitData
	3.31.1 Motif
	3.31.2 Microsoft Windows
	3.31.3 Qt

	3.32 DM_GetToolkitDataEx
	3.32.1 Motif
	3.32.2 Microsoft Windows
	3.32.3 Qt

	3.33 DM_GetValue
	3.34 DM_GetValueIndex
	3.35 DM_GetVectorValue
	3.36 DM_IndexReturn
	3.37 DM_Initialize
	3.38 DM_InitMSW
	3.39 DM_InputHandler
	3.39.1 Microsoft Windows
	3.39.2 Motif

	3.40 DM_InstallNlsHandler
	3.41 DM_InstallWSINetHandler
	3.41.1 User defined functions

	3.42 DM_LoadDialog
	3.43 DM_LoadProfile
	3.44 DM_Malloc
	3.45 DM_NetHandler
	3.46 DM_OpenBox
	3.47 DM_ParsePath
	3.48 DM_PathToID
	3.49 DM_PictureHandler
	3.50 DM_PictureReaderHandler
	3.51 DM_ProposeInputHandlerArgs
	3.52 DM_QueryBox
	3.53 DM_QueryError
	3.54 DM_QueueExtEvent
	3.55 DM_Realloc
	3.56 DM_ResetMultiValue
	3.57 DM_ResetValue
	3.58 DM_ResetValueIndex
	3.59 DM_SaveProfile
	3.60 DM_SendEvent
	3.61 DM_SendMethod
	3.62 DM_SetContent
	3.63 DM_SetMultiValue
	3.64 DM_SetToolkitData
	3.64.1 Motif
	3.64.2 Microsoft Windows

	3.65 DM_SetValue
	3.66 DM_SetValueIndex
	3.67 DM_SetVectorValue
	3.68 DM_ShutDown
	3.69 DM_StartDialog
	3.70 DM_StopDialog
	3.71 DM_StrCreate
	3.72 DM_Strdup
	3.73 DM_StringChange
	3.74 DM_StringInit
	3.75 DM_StringReturn
	3.76 DM_TraceMessage
	3.77 DM_ValueChange
	3.78 DM_ValueCount
	3.79 DM_ValueGet
	3.80 DM_ValueIndex
	3.81 DM_ValueInit
	3.82 DM_ValueReturn
	3.83 DM_WaitForInput
	3.84 YiRegisterUserEventMonitor
	3.84.1 YI_APP_MONITOR
	3.84.2 YI_OBJ_MONITOR
	3.84.3 YI_OBJFRAME_MONITOR

	4 Options for the Interface Functions
	Index

