
DISTRIBUTEDDIALOGMANAGER (DDM)

A.06.03.b

In this manual the network option of the ISA Dialog Manager
(Distributed Dialog Manager, DDM) is depicted. With this
option distributed applications can be developed where the
user interface and the application logic reside on different
computers within a network.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 Distribution of Application to Various Hosts 7

2 General Architecture 8

3 Adaption of Non-distributed to Distributed Applications 9

3.1 Definition of Application Parts - Subdivision 9
3.2 Definition of a Fallback Strategy 9
3.3 Source Code Changes 10
3.4 Makefile Changes 10

4 Functionality and Syntax in the Dialog Script 12

4.1 Object Application 12
4.1.1 TCP/IP 13
4.1.2 IPv6 Support 13

4.2 Assignment of Functions 13
4.3 Example 13

5 Application Interface 15

5.1 C Interface 15
5.2 COBOL Interface 15
5.3 Records and Function Declaration 17

6 Principal Work in Distributed Environment 18

7 Command Line Options and Modes 19

7.1 General Command Line Options 19
7.2 Protocol TCP/IP 19

7.2.1 Option -IDMlisten 19
7.2.2 Option -IDMserve 20

A.06.03.b 5

8 Requirements 21

9 Compiling and Linking 22

10 Changes from Version A.05.01.d 23

10.1 Consequences for previous dialogs 23
10.2 Application example 24

10.2.1 Client 24
10.2.2 Server 28

10.3 Notes 29
10.4 Changes to the application object 29

10.4.1 start/finish-Event 30
10.4.2 Error behavior for application functions 30

10.5 Network application side 30

Index 31

6 ISA DialogManager

1 Distribution of Application to Various
Hosts
The Distributed Dialog Manager ("DDM") enables you to distribute an application to various pro-
cesses. The distribution should take place in useful units in order to keep the communication effort
between processes as low as possible. Otherwise there might occur a high load on the net or on the
host which will necessarily diminish the performance of the application.

One process handles the user interface and processes user interactions; the other processes handle
all the algorithmic part of the application.

These processes can run on different machines with different operating systems, for instance, the
user interface runs on Microsoft Windows under DOS and the application runs on an UNIX-based sys-
tem. Communication is handled by the DDM using basic communication services, and by the network
that links the machines.

Figure 1: Distributed Dialog Manager

A part of the application can of course remain on the display machine when the application is dis-
tributed in order to maximize the utilization of system resources, as well as to realize output of free
graphics or to request external interfaces.

A.06.03.b 7

8 ISA DialogManager

2General Architecture
The DDM is based on the basic communication services that have to be implemented on the
machine. In reference to the ISO OSI reference model of communication, the DDM realizes layer 5
("session layer") and layer 6 ("presentation layer").

For the DDM to run properly, the host has to provide layers 1 through 4 ("physical", "datalink", "net-
work", and "transport").

The DM sends a request to the application part if the user interface wants to call the application. The
DM packs and unpacks the information between processes. The communication mechanism
between the processes is equivalent to "rpc" (remote procedure call), i.e. individual processes get
stubs that are necessary for communication. These stubs are part of the DM.

Figure 2: General Architecture

A DM Network Executer is necessary to let the user interface run. This program handles com-
munication between the various parts of the application. The DM Network Executer can either be
provided (simulation program idmndx), or can be created by linking specific DM libraries.

Networkable applications are needed on the other side. Applications can be made networkable by link-
ing the application with the DM network library (libIDMnet.a) and adding networking functions to the
source code (AppInit, AppFinish). In order to be able to realize additional communication between
various parts of the application, the DM provides mechanisms that are used to call functions trans-
parently.

3 Adaption of Non-distributed to
DistributedApplications
Adapting a regular, non-distributed application to a distributed application requires changes in both
dialog file and source code.

Please follow this process in the included sample program list.

3.1 Definition of Application Parts - Subdivision
The existing dialog file has to be subdivided into useful units, so-called applications (application).
The changes are limited to the function definitions and can be described as follows:

Functions which are to be executed on the display machine (user interface), i.e. locally, have to be
defined globally for the dialog (as usual).

Functions which are to be executed on other hosts and in other parts of the application, have to be
defined in the application.

Functions may be defined only once, i.e. a function name may be used only once throughout a dis-
tributed application.

The application definition also includes the specifications of the program name, the host name, the
protocol to be used, and the connection establishment to the application. These specifications can be
changed during runtime by setting specific attributes (with limitations, see chapter "Object applic-
ation").

3.2 Definition of a Fallback Strategy
System-dependent errors can occur during the program runtime when a network is used, which is not
the case in local applications. As a consequence of such errors, not all functions necessary for the
application may be useable since other hosts or the network have failed. In distributed applications,
such errors can be recognized and at least partially be avoided or remedied. There are various pos-
sibilities of reacting to errors:

Dynamically change the host name or program name to the name of a host or program that can be
accessed during runtime. Then restart the relevant application parts.

Start or link application parts locally, which can be achieved by setting the attribute .local to true.
This method only makes sense if the local application contains the necessary function calls, but
does not use them in a normal situation because of performance considerations. If an application
is started locally, the corresponding start rule on <application> start is executed. The function that
transfers the locally provided functions to the DM can be called in this start rule. Then proceed as
usual.

A.06.03.b 9

10 ISA DialogManager

Example

In the example list, variant b is to be used, i.e. local linking. The start rule is changed so that the local
application is switched to local if starting the remote application does not succeed. The names of the
now locally available functions are transferred to the DM with the additional function InitTestAppl.
The function is called in the start rule of the application: on TestAppl start.

Those are all necessary changes to the dialog file. Additional changes are necessary in the applic-
ation source code.

3.3 Source Code Changes
At least two applications have to be linked for a complete distributed application:

the local part that is linked to the display (user interface),

the part that serves as remote application.

No changes are required for the local part. The program is started as usual with AppMain. The reg-
ular initialization has to be carried out, as in the non-distributed DM.

No AppMain may be contained in the remote application. However, the remote application has to con-
tain the functions

AppInit and

AppFinish

to initialize and finish the application. The task of the AppInit function is to initialize the actual applic-
ation and transfer the functions contained in it to the DM. The task of the AppFinish function is to cor-
rectly finish the corresponding application part.

Example "list"

In order to have only one source code file for both local and remote application, the source contains
conditional statements (ifdef). If XXX_NETWORK is defined, the four functions as well as AppInit
and AppFinish are called. If XXX_NETWORK is undefined, AppMain is defined as usual, plus the
function InitTestAppl.

For the example, the local linking of functions was implemented as a fallback, i.e. the local source file
contains the four functions required by the example in addition. However, they are used only if the
remote application can not be started.

3.4 Makefile Changes
Two programs are to be created instead of one. To achieve this, the remote application merely has to
be linked with the DM network library (libIDMnet.a).

In addition to the traditionally used

"libIDM.a" (Motif)

"dm.lib" (MS-Windows),

the local application has to be linked with the library for the DM Network Executer

"libIDMndx" (Motif)

"dmndx.lib" (MS-Windows)

in which the library for the DM Network Executer has to be given first.

The result are two application parts that can communicate with each other.

To adapt the application to your system environment, the host name given in the dialog file has to be
changed to a name available in your network.

A.06.03.b 11

12 ISA DialogManager

4 Functionality and Syntax in the
Dialog Script
In order to process distributed applications, new constructs have to be implemented in the dialog
description language. The object application is responsible for this implementation. The application
object contains information about the application, application functions, and type of communication.
The resulting applications can be started and ended individually.

The subdivision into application informs the DM how functions are assigned to each other and from an
application for the user.

4.1 Object Application
Basically, the application object is to be treated like a regular object, except that it contains no display
information at all. It has the following attributes.

Attribute Access Significance

.active RW Defines and requests whether the application is currently active.
Changing this attribute from false to true starts the application; changing
it from true to false ends the application.

.connect RW Defines that the application should connect to a running server process
which was started on the host (defined by the host name or IP address
and portnumber).

.exec RW Defines that the application should start a process given by the path on
the host (defined by the host name or IP address). This attribute's value
contains the program name, path, host name, and miscellaneous inform-
ation.

.label RW Internal application name, identifier.

.local RW Defines whether the application runs locally or on a network.

.transport RW Defines the internal transport mechanism to be used by the application.
The following is possible: tcpip.

The attributes .transport, .connect, .local, and.exec can only be changed if .active is set to false.

The attributes .connect and .exec depend on the used transport, i.e. future new types of the transport
layer may imply different types of connection establishment.

4.1.1 TCP/IP
If the TCP/IP protocol is used, the syntax used for .connect is this:

"<host>:<portnumber>"

The <host> parameter contains the host name, the <port> parameter contains the port number.

If the TCP/IP protocol is used, the syntax used for .exec is this:

"<host>[%<username>[%<password>]]:<path>"

The <host> parameter contains the host name on which the program is to be started. The <user-
name> parameter may contain a user name existent on the host. The <password> parameter may
contain the valid password of that user. (These two parameters are optional, i.e. they are compelling
dependent on the kind of installation.)

The <path> parameter contains the path of the program to be started.

4.1.2 IPv6 Support
As of IDM version A.05.02.i, the DISTRIBUTED DIALOG MANAGER (DDM) supports the IPv6 protocol on
all architectures that natively support IPv6.

When an IPv6 address is defined in the dialog script, it has to be written in brackets ('[' and ']'), as is
the case with URLs (e.g. "[::1]").

4.2 Assignment of Functions
The functions contained in a dialog have to be distributed over various applications. The same func-
tion may not be assigned to more than one application.

The assignment to applications is carried out when the functions are declared. The functions for a spe-
cific application are declared within the declaration of that application, i.e. they are defined like the chil-
dren of an object. If functions are defined in a dialog outside of an application, they are assigned to the
dialog and have to be linked to the dialog.

4.3 Example
This example shows how the application can be split into two parts; one part in the dialog, one part as
a remote application.

dialog Example

application Remote
{

.exec "boole:/usr/bin/example1";

.active false;

A.06.03.b 13

14 ISA DialogManager

function c integer LoadDB; /* remote function */
}

function callback CheckValue; /* local function */

on dialog start
{

Remote.active := true;
if (not Remote.active) then

exit();
endif

}

5 Application Interface
In order to realize a networkable application, the application has to be equipped with specific functions
for starting and ending the application. Additionally, a DM utility function can be used for com-
munication between application parts. This function can be used to call network-independent func-
tions, no matter whether the function is realized locally or remotely.

5.1 C Interface
The main function AppMain has to be replaced by the functions

AppInit

AppFinish

if an application which is not linked to the dialog is to be started or ended in a distributed environment.

With help of the function DMCallFunction, functions of any application parts can be called.

Example

int DML_c AppInit __4(
(DM_ID, appl),
(DM_ID, dialog),
(int, argc),
(char **, argv))
{
 if (!DM_BindCallBacks(ApplFuncMap, ApplFuncCount, appl, DMF_Silent))
 DM_TraceMessage("There are some functions missing", 0);
 return 0;
}

int DML_c AppFinish __2(
(DM_ID, appl),
(DM_ID, dialog))
{
 return 0;
}

5.2 COBOL Interface
The COBOL main program COBOLMAIN has to be replaced by the functions

COBOLAPPINIT

COBOLAPPFINISH

A.06.03.b 15

16 ISA DialogManager

Example

* SET OSVS

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOLMAIN.

DATA DIVISION.
WORKING STORAGE SECTION.
COPY "IDMcobws.cob".

77 NULL-OBJECT PIC 9(9) BINARY VALUE 0.
77 FUNC_NAME PIC X(32) VALUE SPACES.
77 BUFFER PIC X(80) VALUE SPACES.

LINKAGE SECTION.
01 EXIT-STATUS PIC 9(4) BINARY.
01 APPLIC-ID PIC 9(9) BINARY.
01 DIALOG-ID PIC 9(9) BINARY.

PROCEDURE DIVISION USING EXIT-STATUS.
MAIN SECTION.

WAKING-UP.
 DISPLAY "COBOLMAIN CALLED".
 GOBACK.

 ENTRY "COBOLAPPINIT" USING EXIT-STATUS APPLIC-ID DIALOG-ID.
INIT SECTION.

WELCOME.
 DISPLAY "COBOLAPPINIT CALLED".

INITIALIZE -IDM.
 MOVE "@" TO DM-SETSEP.
 MOVE LOW-VALUE TO DM-GETSEP.
 MOVE "DMcob_Initialize" TO FUNC-NAME.
 CALL "DMcob_Initialize" USING DM-STDARGS DM-COMMON-DATA.

BIND-FUNCTIONS.
 CALL "BindFuncs" USING DM-STDARGS APPLIC-ID.
 PERFORM ERROR CHECK.
 GOBACK.

 ENTRY "COBOLAPPFINISH" USING EXIT-STATUS APPLIC-ID
 DIALOG-ID.
FINISH SECTION.

GOOD-BYE.
 DISPLAY "COBOLAPPFINISH CALLED".
GOBACK.

5.3 Records and Function Declaration
If you want to use records in an application, you have to create the necessary file with help of the sim-
ulator with the options

-application

and

+writetrampolin.

Call

idm +application <applicationname> +writetrampolin <filename> <dialogfile>

This created C-file has to be compiled as usual.

If you want to define C-function prototypes for an application, the simulator has to be started also with
the options +application and +writetrampolin.

Call

idm +application <applicationname> +writeproto <filename> <dialogfile>

A.06.03.b 17

18 ISA DialogManager

6 PrincipalWork in Distributed
Environment
The following conditions have to be noticed when programming distributed applications.

The function call has usually a very large overhead, i.e. function calls over the network are rel-
atively expensive.

The amount of data given at a function call has only minor significance for the computers' overall
load.

Thus, for programming with Dialog Manager, the following basic rules can be derived from this facts:

The functions should be distributed in the way that very often needed functions are to be realized
on the display machine.

All informations needed by the functions should be given when calling application functions.
These information can be packed in arbitrarily structured records and can be given to the applic-
ation function. This is much more efficient than later query attributes with the interface function
DM_GetValue.

Objects should be principally processed with the mightiest available function. Thus, when pro-
cessing listboxes and tablefields, the functions DM_GetContent and DM_SetContent should be
used.

7Command LineOptions andModes
The Dialog Manager supports various protocol types that can be used for the basic communication
services. Depending on the used protocol, there are various command line options.

7.1 General Command Line Options
The application part which builds the display part, understands all options which the non-distributed
program would understand, too (please refer to chapter “Command Line Options” in manual “Devel-
opment Environment”).

The server part does understand only the following options:

-IDMversion

-IDMtracefile

-IDMerrfile

I.e. all options are ignored which describe any display information.

7.2 Protocol TCP/IP
TCP/IP is available for most systems. To use this protocol, start the DM with the option -IDMtransport
tcpip.

The complete application consists of various executables. One application can be the “DM Network
Executer” (idmndx), if no part of the application is local. If any part of the application is local, that part
is a program linked with the DM. The other applications are your application parts that are linked with
the DM network library (libIDMnet.a) and the required system libraries for network functions.

This chapter lists the command line options that are needed when applications are started with the
DDM. These options are normally used only if

one or more parts of the applications are started as server;

the command line options are not completely defined in the relevant dialog description file, or are
to be overwritten.

Various attributes can be specified in the dialog description file to define the connection estab-
lishment, e.g. .transport, .connect, .exec (see object Application).

7.2.1 Option -IDMlisten
Starts the application in listen mode, i.e. the application waits to accept a connection to the other
application part on a remote machine. If the other part requests a connection, the connection is accep-
ted, and initialization was successful.

A.06.03.b 19

20 ISA DialogManager

Syntax

-IDMlisten <port>

The port with number <port> has to be available and unoccupied on your machine. Usually, <port>
should be larger than 1024, since most ports below 1024 are used by system services. Ports between
5800 and 7000 are used by the X Window System. To be sure that you use an available port, ask your
system management, or specify a port above 10000.

After the actual application has terminated, the application started in listen mode is also terminated.
If the application is to be restarted, the application in listen mode has to be started, too. Therefore,
this option is usually used while a distributed application is developed, or if an application is only used
infrequently.

This option is available on UNIX systems.

7.2.2 Option -IDMserve
Start the application in server mode, i.e. the application waits to accept a connection two one or more
clients. If a client requests a connection, the server accepts the connection, searches for a free port,
switches the connection part to the free port, and forks itself. Thus, the application runs twice after the
application has accepted a connection. One application still waits for a connection, and the other
application runs as usual.

Syntax

-IDMserve <port>

The port with number <port> has to be available and unoccupied on your machine (cf. above). During
or after the execution of an application, the server is able to accept new connections. If the user wants
to restart the application, only the other part of the application has to be restarted. The server can only
be stopped by interrupting or canceling the relevant process. Therefore, this option is usually used if
the application is started frequently or by more than one user at the same time.

This option is available only on systems that have implemented a fork process.

8 Requirements
Various requirements have to be met in order to utilize the DDM on different hardware platforms. Gen-
erally, the machines have to be part of a working network with a functioning communication mech-
anism. Additionally, the system requirements for the regular Dialog Manager have to be met.

On UNIX systems “BSD sockets” in form of libraries have to exist on the target machine.

Other Installation Requirements

Motif:

UNIX

C-Compiler, Motif 2.0 or CDE (based on Motif 1.2) including development environment (libraries,
include files)

with COBOL interface for:

MICRO FOCUS COBOL

with networking capabilities:

Network requires development environment (libraries, include files)

A.06.03.b 21

22 ISA DialogManager

9Compiling and Linking
The program has to be compiled as usually with the correct options for Dialog Manager.

Subsequently, the application parts have to be linked as follows:

Local part:

1. local application parts

2. DM library (libIDM.a or libIDMaw.a and dm.lib)

3. DM Network Executer library (libIDMnx.a and ndx.lib)

4. window system-specific libraries plus libraries for communication services

Remote part:

1. remote application parts

2. DM Network library (libIDMnet.a)

See Also

Chapter “Compiling and Linking DM Programs” in manual “C Interface - Basics”

Chapter “Compiling and Linking Dialog Manager Programs” in manual “COBOL Interface”

10Changes fromVersion A.05.01.d
The previous behavior of the distributed Dialog Manager (DDM) to react to network errors with an
immediate termination of client or server has been abolished with version A.05.01.d.

The application object as a link and abstraction concept to define application parts (which are avail-
able e.g. locally, C/COBOL, via a dynamic library or via network) for the rule language gets the ability
to detect errors and to react to them appropriately.

The following brief set of rules is intended to describe the IDM's expected behavior in this regard:

An error is given if either a technical network error occurs (errors reported by the network system
functions, e.g. hardware defects, connection loss due to "aborted" server process), the IDM ver-
sions between client and server side are incompatible or the IDM network protocol is violated. The
latter case should certainly be reported to IDM Support.
If the application is a dynamically linked library, it may just as well be a file that is not found.
Another error is the missing link for the application type (e.g. idmndx library was not linked).
An abort of the program e.g. by a "KILL" signal or by terminating a process via the "Task Manager"
cannot be recognized as an application error. The other side will only get this reported as a net-
work error.
The .active attribute on the application object reflects the activation state, as before.

As soon as an error is detected, the associated application is deactivated. In addition, an error
code is placed on the error stack.

A start event is triggered for a successfully activated application (initially, as well as when the .act-
ive attribute is converted). For an application that is deactivated (e.g. by exit(), DM_StopDialog, as
well as by converting the .active attribute) a finish event is triggered.
start/finish events occur initially or at the end of the application before or after a dialog start/finish,
but otherwise asynchronously!

The .errorcode and .systemerror attributes contain more detailed information about the error that
occurred.

If an error occurs during the execution of an application function, the application is deactivated and
either the simulation rule is called or a Fail is generated.

If the DDM server detects an error, the network service loop is exited after processing the current
server application function and AppFinish() is called, but with 0-IDs.

10.1 Consequences for previous dialogs
There are some implications that should be considered as an IDM application developer.

The IDM application (client) or server part does not terminate anymore, or not immediately!

The start/finish event is fired not only for a local application, but also for network applications and for
local applications with dynlib transport.

A.06.03.b 23

24 ISA DialogManager

From the rule language side, an error in a previously existing active application can be detected by a
finish event indicating that the application has been deactivated; also by a sudden failure of an applic-
ation function or by calling the simulation rule.

On the server side, an AppFinish() is called when an error is detected, thus giving the application
developer the opportunity to "clean up". Errors during the processing of an application function should
be handled correctly, since the server function is still being processed.

10.2 Application example
The following client/server example shows the use of simulation rules and how to react to start/finish
events.

10.2.1 Client
!! sample.dlg
dialog D

default edittext
{ .borderwidth 0; }

default statictext
{ .sensitive false; }

default window
{ on close { exit(); } }

application Appl
{

.active false;

integer SimCount := 0; // Counter for calls of
// simulation rules

integer FailCount := 0; // Counter for occurred fails

function string FuncSimple(integer I)
{

!! Simulation rule in case of error
this.SimCount := this.SimCount + 1;
return "SIM-" + this.SimCount;

}

!! Server function that calls rule on the client side.
!! Now without simulation rule, error is caught by fail()
function string FuncComplex(object Rule, integer I);

on start
{

StStatus.text := "CONNECTED";
PbSimple.sensitive := this.active;
PbComplex.sensitive := this.active;
CbConnect.active := this.active;

}
on finish
{

if this.errorcode <> error_none then
StStatus.text := "FAIL: " + this.errorcode + " - " +

this.systemerror;
else

StStatus.text := "";
endif

PbSimple.sensitive := this.active;
PbComplex.sensitive := this.active;
CbConnect.active := this.active;

}
}

rule string Convert(integer I)
{

return "CONV-" + I;
}

window Wi
{

.title "DDM NetErrors";

.width 400;

.height 200;

integer SimCount := 0;

checkbox CbConnect
{

.width 80;

.active false;

.text "Connect";
on activate
{

Appl.connect := EtConnect.content;
Appl.active := true;
EtConnect.sensitive := false;

}

A.06.03.b 25

26 ISA DialogManager

on deactivate
{

EtConnect.sensitive := true;
Appl.active := false;

}
}

edittext EtConnect
{

.xauto 0;

.xleft 80;

.content "localhost:4711";
}

statictext StStatus
{

.ytop 30;

.xauto 0;
}

pushbutton PbSimple
{

.ytop 60;

.text "Call Simple-Func";

.sensitive false;

on select
{

variable integer I;

Appl.SimCount := 0;
Appl.FailCount := 0;

if fail(I := atoi(EtCount.content)) then
I := 0;

endif
while(I>0) do

if fail(StCount.text := FuncSimple(I)) then
!! Fail occurs only if function is not connected
!! from server was connected.
!! Normally simulation rule is called in case of
!! error
Appl.FailCount := Appl.FailCount + 1;
StCount.text := "FAILED-" + Appl.FailCount;

endif
updatescreen();

I := I-1;
endwhile

}
}

edittext EtCount
{

.ytop 60;

.xleft 200;

.content "2000";
}

pushbutton PbComplex
{

.ytop 90;

.text "Call Complex-Func";

.sensitive false;

on select
{

variable integer I, FailCount:=0;
this.window.SimCount := 0;
Appl.SimCount := 0;
Appl.FailCount := 0;
if fail(I := atoi(EtCount.content)) then

I := 0;
endif
!! Trigger loop via extevent so that
!! processing of finish is possible
sendevent(this,1,I);

}

on extevent 1(integer I)
{

!! Calling the network function which in turn
!! calls Convert rule.
if (I>0) then

if fail(StCount.text := FuncComplex(Convert,I)) then
!! Network errors are caught via fail()
Appl.FailCount := Appl.FailCount + 1;
StCount.text := "FAILED-" + Appl.FailCount;

else
I := I-1;
sendevent(this,1,I);

endif
updatescreen();

A.06.03.b 27

28 ISA DialogManager

endif
}

}

statictext StCount
{

.ytop 90;

.xleft 200;

.xauto 0;
}

}

10.2.2 Server
// sample.c
#include <stdio.h>
#include <IDMuser.h>
#include <samplefm.h>

static trace_errors(char *txt)
{

DM_ErrorCode errbuf[100];
uint nerrors, i;

nerrors = DM_QueryError(errbuf, sizeof(errbuf), 0);
for (i=0; i<nerrors; i++)
DM_TraceMessage("%s - error #%d", DMF_LogFile|DMF_Printf,

txt, errbuf[i]);
}

DM_String DML_default DM_ENTRY FuncSimple __1((DM_Integer, I))
{

static char buf[100];

sprintf(buf, "FUNC-%d", I);

return buf;
}

DM_String DML_default DM_ENTRY FuncComplex __2((DM_ID, ID),
(DM_Integer, I))

{
DM_Value args[1], retval;
DM_String str = NULL;

args[0].type = DT_integer;

args[0].value.integer = I;

if (DM_CallRule(ID, ID, 1, args, &retval, 0)
&& retval.type == DT_string)

{
str = retval.value.string;

}
else

trace_errors("callrule");
return str;

}

int DML_c AppInit __4((DM_ID, appl), (DM_ID, dialog),
(int, argc), (char **, argv))

{
DM_TraceMessage("AppInit called", DMF_LogFile);

BindFunctions_Appl (appl, dialog, 0);

return 0;
}

int DML_c AppFinish __2((DM_ID, appl), (DM_ID, dialog))
{

DM_ErrorCode errbuf[100];
uint nerrors, i;

DM_TraceMessage("AppFinish (%d,%d) called",
DMF_LogFile|DMF_Printf, appl, dialog);

trace_errors("appfinish");

return 0;
}

10.3 Notes
In principle, the IDM does not perform an automatic/periodic check of the network connection. If this is
desired by the application, this can be realized e.g. via the Timer object.

10.4 Changes to the application object
The attributes .errorcode and .systemerror have been newly introduced. For more details see applic-
ation object.

A.06.03.b 29

30 ISA DialogManager

10.4.1 start/finish-Event
The start event is triggered at the application object when the application has been successfully activ-
ated (without errors).

The finish event is triggered when the application was previously active and deactivated, this can hap-
pen due to an error, initially when the activation fails as well as by terminating the application or chan-
ging the .active attribute.

If an error occurs during the event loop, the start/finish events of the application are processed accord-
ing to the event sequence. However, this also means that the then current .active state does not
necessarily match the event.

The activation of an application object, whose .active is initially set to true, takes place when the dia-
log is started via DM_StartDialog or start() from the rule language. The start/end rule is executed
before the dialog start rule is processed, thus ensuring that the local applications can connect their
functions.

If you end a dialog, e.g. via exit(), with a still active application, the finish rule is executed not until after
the finish rule of the dialog.

10.4.2 Error behavior for application functions
If an error occurs during the execution of an application function, the application is deactivated and an
existing simulation rule is called. If no simulation rule is available, a fail is returned to the rule inter-
preter.

10.5 Network application side
If an error (network error or protocol error) is detected on the network side during the call of a DM-func-
tion, the function returns with a status expressing an error.

Der Netzwerk-Stub wird nach Beendigung der Server-Funktion bei einem Fehler verlassen. Die
AppFinish()-Funktion wird auch aufgerufen wenn dies Aufgrund eines Netzwerk- oder Pro-
tokollfehlers passiert solang vorher ein AppInit() aufgerufen wurde. Allerdings wird keine Applikation-
ID oder Module-ID mitgegeben. Auch in diesem Fall liegt ein entsprechender Fehler auf dem Fehler-
stack.

The network stub is exited after the server function has finished in case of an error. The AppFinish()
function is also called if this happens due to a network or protocol error as long as an AppInit() was
called before. However, no application ID or module ID is passed. Also in this case there is a cor-
responding error on the error stack.

A

active 12

algorithmic part 7

AppFinish 8, 10, 15

AppInit 8, 10, 15

application 7, 9, 17

distributed 9

function 12, 18

interface 15

part 19

AppMain 10, 15

assignment

functions 13

B

BSD sockets 21

C

C-file 17

C-function prototype 17

C-Interface 15

COBOL

interface 16

COBOL interface 21

COBOL main program 15

COBOLAPPFINISH 15

COBOLAPPINIT 15

COBOLMAIN 15

command line option 19

communication 7, 15

mechanism 8, 21

services 8, 19, 22

compiling 22

connect 12, 19

connection 19-20

establishment 9, 19

D

DDM 7, 21

declaration

functions 13

description file 19

dialog

description

file 19

language 12

file 11-12

display information 12, 19

display machine 7, 9, 18

distributed application 9, 18, 20

distribution 7

DM Network Executer 8, 19, 22

DM network library 8, 10, 19

DM Network library 22

dm.lib 11, 22

DM_GetContent 18

DM_GetValue 18

DM_SetContent 18

dmndx.lib 11

Index

A.06.03.b 31

E

error 9

exec 12, 19

executable 19

F

fallback strategy 9

fork process 20

function 13

function declaration 17

H

hardware platform 21

host 9, 13

host name 9, 11-12

I

identifier 3

IDMerrfile 19

IDMlisten 19

idmndx 8, 19

IDMserve 20

IDMtracefile 19

IDMtransport 19

IDMversion 19

initialization 19

installation requirements 21

internal transport mechanism 12

IP address 12

IPv6 13

IPv6 address 13

ISO OSI reference model 8

L

label 12

libIDM.a 11, 22

libIDMaw.a 22

libIDMndx 11

libIDMnet.a 8, 10, 19, 22

libIDMnx.a 22

linking 22

list 9

listbox 18

listen mode 20

load 18

local 12

local linking 10

local part 10, 22

M

makefiles changes 10

Micro Focus COBOL 21

Motif 21

N

ndx.lib 22

network 7, 9, 11, 18, 21

function 8, 19

independent functions 15

networkable application 15

O

object application 12

32 ISA DialogManager

overhead 18

P

password 13

path 13

port 20

portnumber 12-13

process 7

program name 9

protocol 9, 19

protocol type 19

R

records 17-18

remote

application 10

machine 19

procedure call 8

remote part 22

requirements 21

S

server 19-20

server mode 20

simulation program 8

simulator 17

source code 8

source code changes 10

start mode 19

stub 8

subdivision 9

system requirements 21

T

tablefield 18

target machine 21

TCP/IP 12, 19

protocol 13

transport 12, 19

type of communication 12

U

Unix 20-21

user interaction 7

user interface 7, 9-10

username 13

utility function 15

W

+/-writetrampolin 17

A.06.03.b 33

	Notation Conventions
	Table of Contents
	1 Distribution of Application to Various Hosts
	2 General Architecture
	3 Adaption of Non-distributed to Distributed Applications
	3.1 Definition of Application Parts - Subdivision
	3.2 Definition of a Fallback Strategy
	3.3 Source Code Changes
	3.4 Makefile Changes

	4 Functionality and Syntax in the Dialog Script
	4.1 Object Application
	4.1.1 TCP/IP
	4.1.2 IPv6 Support

	4.2 Assignment of Functions
	4.3 Example

	5 Application Interface
	5.1 C Interface
	5.2 COBOL Interface
	5.3 Records and Function Declaration

	6 Principal Work in Distributed Environment
	7 Command Line Options and Modes
	7.1 General Command Line Options
	7.2 Protocol TCP/IP
	7.2.1 Option -IDMlisten
	7.2.2 Option -IDMserve

	8 Requirements
	9 Compiling and Linking
	10 Changes from Version A.05.01.d
	10.1 Consequences for previous dialogs
	10.2 Application example
	10.2.1 Client
	10.2.2 Server

	10.3 Notes
	10.4 Changes to the application object
	10.4.1 start/finish-Event
	10.4.2 Error behavior for application functions

	10.5 Network application side

	Index

