
DEVELOPMENT ENVIRONMENT

A.06.03.b

This manual provides an overview of the ISA Dialog Manager
and its documentation. Furthermore, command line options,
environment variables, configuration file, tracing and func-
tions for error analysis are explained.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 Overview 7

1.1 Description of Structure and Components 7
1.2 Software 8
1.3 Documentation 8

1.3.1 Attributes, Objects and Resources 9
1.3.2 Programming 9

1.3.2.1 Built-in Rule Language 9
1.3.2.2 Application Programming Interfaces (APIs) 10
1.3.2.3 Communication and Integration 10

1.3.3 Development Environment 11

2 Command Line Options 12

2.1 Place Holders in File Names 22
2.2 Command Line Options for Setting Code Pages 23

2.2.1 Code Page Identifiers 23
2.2.2 Encoding Marks for Files 23

2.3 Command Line Options in the Simulation Program 24

3 Configuration File 33

4 Environment Variables 35

5 IDM Builder Process 36

5.1 Availability 36
5.2 The Builder Process Mode 36

5.2.1 Example 37
5.2.2 Usage Instructions 37
5.2.3 Usage Information for the IDM Eclipse Plugin 38
5.2.4 Particularities 38

5.3 Command Line Options for the Builder Process 39

A.06.03.b 5

6 Error messages of IDM 40

7 Functions for Error Analysis 41

7.1 Overview 41
7.1.1 Safety Tracing 42
7.1.2 Dumpstate 42

7.2 Exception Catcher 43

8 Dumpstate (Status Information) 44

8.1 Process 45
8.2 Errors 46
8.3 Callstack 46
8.4 Events 46
8.5 Usage 47
8.6 Memory 48
8.7 Slots 49
8.8 Visible Objects 49
8.9 Example 50
8.10 Noteworthy for Windows/Threads 52

9 Tracing 53

9.1 Description of Tracing 53
9.2 Configuration of Tracing 55
9.3 Time Marks during Tracing 58
9.4 Safety Tracing 59

Index 61

6 ISA DialogManager

1Overview
The Dialog Manager is a development tool for the generation of graphic user interfaces. This tool can
be used as a system-independent interface between an application and the window system of the rel-
evant target environment.

The Dialog Manager is based on a user interface model that includes

a presentation layer,

a dialog layer, and

an application layer.

All aspects of the presentation layer, i.e. the dialog appearance of the user interface can be manip-
ulated by setting values to object attributes. Please refer to the manuals “Editor”, “Object Reference”
and “Attribute Reference” for further details.

The dialog control is defined by the change of attribute values and by calling application functions.

Functions of the application can be called by referencing the function name and the necessary para-
meters. Please refer to the manuals “C Interface - Functions” and “COBOL Interface” for further
details.

1.1 Description of Structure and Components
The DM input file can be divided into two basic data groups.

The definition part contains the definitions for the dialog identifier, resources, default objects,
models and objects.

The operation rule part describes the course of the dialog.

The definition part has to be structured hierarchically, i.e. only references to already defined objects
or resources can be made. For example, if the object "window" is to use the background color "blue",
"blue" has to be defined before.

As a consequence, the definitions have to be made in the following order:

dialog;

resources;

default objects;

models;

objects;

rules.

A.06.03.b 7

8 ISA DialogManager

Since rule processing is controlled by the stream of events, no particular structure or order is neces-
sary within the rule definition.

1.2 Software
The standard development environment of the Dialog Manager comprises:

simulation component and runtime libraries

interactive WYSIWYG editor

C and C++ Interface

XML interface

Debugger and Profiler

Tracefile Analyzer (not available for the IDM FOR MOTIF)

The additional options available for the standard Dialog Manager are the following:

application programming interfaces (APIs)

COBOL Interface

COBOL Interface for MICRO FOCUS VISUAL COBOL

communication

Distributed Dialog Manager (DDM)

OLE interface

USW Interface to enhance the ISA Dialog Manager with user-supplied widgets

Eclipse Plugins

IDM Eclipse Plugin for creating and editing dialog scripts

ISA Makefile Generator

1.3 Documentation
Installation Guide

This guide explains the system requirements for the ISA Dialog Manager and how to install the
IDM on different systems.

Release Notes IDM 6
Release Notes IDM 5
Release Notes IDM 4

The release notes report bug fixes, changes and enhancements of each version of the ISA Dialog
Manager.

1.3.1 Attributes, Objects and Resources
Attribute Reference

In this manual all predefined attributes of the ISA Dialog Manager objects are described. It con-
tains the definitions and data types of the attributes in the Rule Language and the programming
languages C and COBOL.

Object Reference

In this manual all objects of the ISA Dialog Manager are described. For each object its predefined
attributes and methods are listed, as well as the events and child objects it supports.

Resource Reference

In this manual all resources of the ISA Dialog Manager are explained. Resources are objects like
cursors, colors, texts and fonts, which are used to define certain properties concerning the appear-
ance or behavior of IDM objects.

1.3.2 Programming

1.3.2.1 Built-in Rule Language

Manual Rule Language

This manual explains the Rule Language of the ISA Dialog Manager that is used to program the
dynamic behavior of the user interface. Some of the topics are event and rule processing, data
types, extent of the Rule Language, syntax of statements, and built-in functions.

Manual Programming Techniques

This manual provides basic techniques for the development of user interfaces with the ISA Dialog
Manager. Modularization, use of Models, object-oriented programming and the Datamodel are
among the topics covered.

Method Reference

In this manual all predefined methods of the ISA Dialog Manager objects are explained. It com-
prises the method definitions with their parameters and return values. It is also described, which
methods may be overwritten (redefined).

Manual User-defined Attributes and Methods

This manual explains the use of user-defined attributes and methods.

Manual XML Interface

This manual depicts the interface for processing XML (Extensible Markup Language) data with the
ISA Dialog Manager. It elucidates the objects available for it and their attributes and methods.

A.06.03.b 9

10 ISA DialogManager

1.3.2.2 Application Programming Interfaces (APIs)

Manual C Interface - Basics

In this manual the basic structure of the API (application programming interface) is depicted that
the ISA Dialog Managers offers for applications written in C. The manual describes the data types
as well as compiling and linking the applications.

Manual C Interface - Functions

This manual explains all C API (application programming interface) functions of the ISA Dialog
Manager. It contains the function definitions with their parameters and return values.

Manual C++ Interface

In this manual the API (application programming interface) of the ISA Dialog Manager for applic-
ations developed in C++ is described. It explains the classes to connect to the IDM and their meth-
ods. The functioning of the code generator and the code mixer is elucidated.

Manual COBOL Interface

In this manual the API (application programming interface) of the ISA Dialog Manager for applic-
ations written in COBOL is described. The data types, all API functions of the COBOL interface,
and compiling and linking of the applications are elucidated.

1.3.2.3 Communication and Integration

Manual Distributed Dialog Manager (DDM)

In this manual the network option of the ISA Dialog Manager (Distributed Dialog Manager, DDM)
is depicted. With this option distributed applications can be developed where the user interface
and the application logic reside on different computers within a network.

Manual User-defined Widgets (USW)

The USW interface (user supplied widgets) is an option of the ISA Dialog Manager to integrate
own widgets into the IDM. The manual describes the development of user-defined object classes
and their interaction with the IDM.

Manual OLE Interface

This manual describes the OLE interface of the ISA Dialog Manager which is available as an
option of the IDM for Microsoft Windows. OLE (Object Linking and Embedding) is a technology for
communication between objects and embedding them within each other. The manual explains
how OLE clients and servers can be implemented with the IDM.

Manual Automatic Testing and Accessibility

This manual explains features that the ISA Dialog Manager provides to support automatic user
interface testing and the development of accessible applications.

1.3.3 Development Environment
Manual Development Environment (this manual)

This manual provides an overview of the ISA Dialog Manager and its documentation. Fur-
thermore, command line options, environment variables, configuration file, tracing and functions
for error analysis are explained.

Editor Manual

In this manual the graphical Editor of the ISA Dialog Manager is described with which dialogs can
be created and changed interactively.

Debugger Manual

In this manual the Debugger of the ISA Dialog Manager is described. The Debugger is a tool that
helps to find errors in dialogs.

Profiler Manual

In this manual the Profiler of the ISA Dialog Manager is described. The Profiler is a tool to analyze
the runtime characteristics of dialogs.

Tracefile Analyzer Manual

This manual describes the Tracefile Analyzer of the ISA Dialog Manager, which provides several
tools for the analysis of trace files.

A.06.03.b 11

12 ISA DialogManager

2Command LineOptions
The following parameters can be specified in the command line that starts the ISA Dialog Manager:

-IDMbinerror <boolean>

When this binary option is set to false (-IDMbinerror=false), error messages are suppressed in
the binary reading process.

-IDMcallstack <boolean>

This option prevents the IDM from administering a callstack that stores the call list of rules, meth-
ods, built-in, application, and interface functions, which is output with the dumpstate.

Default Setting

true

Availability

IDM versions A.05.01.g3, A.05.01.h, since A.05.02.e

-IDMcatchexceptions <boolean>

This option prevents the installation of an exception catcher.

Default Setting

true

Availability

IDM versions A.05.01.g3, A.05.01.h, since A.05.02.e

-IDMcolor <integer>

This option sets the color variant to be used.

-IDMconfigfile <filename>

When this option is specified, the indicated file is used as configuration file, and the option is
removed from the argv parameter. When the option is not given, the IDM looks for the envir-
onment variable IDM_CONFIGFILE. The file specified in this variable is then used as configuration
file.

If a configuration file has been specified and the file can be opened, the options given in the file are
processed before the remaining options of the command line.

The configuration file contains a list of command line options. The characters BLANK (“ ”), TAB
(“\t”) and RETURN (“\n”) can be used as delimiters between options and their parameters.

All options are treated as if they had been input on the command line, which means that they are
also used by the application.

Note

-IDMerrfile cannot be used in the same command line.

-IDMconsole

This option causes log file and error messages to be written to the standard output channels
(STDOUT) on MICROSOFT WINDOWS – analog to Unix. If the process does not run within the con-
sole, a new console is opened for potential outputs. In the predecessor versions of Windows XP, a
new console is always opened.

Availability

Versions since A.05.02.f; platform Microsoft Windows

-IDMcp_appl <code page>
-IDMcp_format <code page>
-IDMcp_input <code page>
-IDMcp_io <code page>
-IDMcp_output <code page>

These are options to set the code page for various operations. See chapter “Command Line
Options for Setting Code Pages”.

-IDMcursor <integer>

This option sets the cursor variant to be used.

-IDMdumpstate <enum>

This option influences the output of IDM status information (dumpstate). Via the <enum> para-
meter the output of certain information is enforced.

Parameters

Value (enum) Meaning

dump_all All sections are written out in an abbreviated form.
This corresponds to the output in case of a FATAL ERROR.

dump_error The sections ERRORS, CALLSTACK and EVENTS are written out in
an abbreviated form.
This is the normal output in the case of EVAL ERRORS.

dump_events The section THISEVENT/EVENT QUEUE is written out in full.

dump_full All sections are written out in full.

A.06.03.b 13

14 ISA DialogManager

Value (enum) Meaning

dump_locked The section SLOTS is written out in full. In addition, for locked objects
their attribute values are written out.

dump_memory The section MEMORY is written out in full.

dump_none No action (nothing is written out).

dump_process The section PROCESS is written out in full.

dump_short All sections (excluding SLOTS) are written out in an abbreviated form.

dump_slots The section SLOTS is written out in full.

dump_stack The section CALLSTACK is written out in full.

dump_usage The section USAGE is written out in full.

dump_uservisible The section VISIBLE OBJECTS is written out in full for all visible top-
level objects including their children, the pre-defined and user-defined
attributes.

dump_visible The section VISIBLE OBJECTS is completely written out.

Availability

IDM versions A.05.01.g3, A.05.01.h, since A.05.02.e

-IDMdumpstateseverity <string>

The output of a dumpstate normally occurs when an EVAL ERROR or a FATAL ERROR arises.
With this option, a dumpstate output can be enforced for other types of errors and messages.

Parameters

First Character Dumpstate Output…

E in case of normal error messages [E: …]

F in case of fatal error messages [F: …]

I in case of informative messages [I: …], warnings and error messages

O only in case of EVAL ERROR

W for warnings [W: …] and error messages

Default Setting

“F”

Availability

IDM versions A.05.01.g3, A.05.01.h, since A.05.02.e

-IDMenv <variable>=<value>

The ISA Dialog Manager allows setting environment variables from the command line. This is
especially useful with the IDM on Microsoft Windows. Microsoft Windows generally provides no
means to set environment variables for all applications.

With the command line option -IDMenv <variable>=<value> those variables can be set for an
IDM application. In doing so, the environment variables of Microsoft Windows are overwritten for
the IDM application. The environment variables are set only temporarily and only for the IDM
application.

Note

No blanks are allowed between the variable name, the equals sign and the variable value.

This option can be indicated several times in order to set different variables.

Example

Windows

idm -IDMenv BINARY=c:\idm\bin -IDMenv IF=c:\idm\if dialog.dlg

Unix

idm -IDMenv binary=/home/user1/bin -IDMenv IF=/usr/idm/interface
dialog.dlg

-IDMerrfile <filepath>|none

This option specifies an error file. The file traces all errors that occur while the application runs.

The same can be achieved by setting the environment variable IDM_LOGFILE to a file path.

The command line option overwrites the environment variable when both are set.

With the command line option and the environment variable, none can be specified instead of a
file path to prevent the creation of an error file.

In the file name, place holders can be used (see chapter “Place Holders in File Names”).

Note

When the option -IDMtracefile (or the respective environment variable) is used in coincidence
with this option, the error file specified with this option may not be created or may be left empty.
Possible error messages then have been written to the trace file.

-IDMerrwinfile <filepath>|none

This options redirects error messages, which are displayed as messageboxes or output to the con-
sole, to the specified file. This enables for example server processes (especially on Microsoft

A.06.03.b 15

16 ISA DialogManager

Windows) to run without any user interaction (like the confirmation of error dialogs).

The same can be achieved by setting the environment variable IDM_ERRWIN to a file path.

The command line option overwrites the environment variable when both are set.

With the command line option and the environment variable, none can be specified instead of a
file path. This prevents the display of error dialogs and the output of error messages to the con-
sole, as well as the creation of a file to trace the errors.

In the file name, place holders can be used (see chapter “Place Holders in File Names”).

Note

When the options -IDMerrfile or -IDMtracefile (or the respective environment variables) are used
in coincidence with this option, the file specified with this option may not be created or may be left
empty. Possible error messages then have been written to file specified with the other option.

-IDMfatalneterrors <boolean>

With -IDMfatalneterrors true a compatible behavior to the IDM versions before A.05.01.d is
set for the DISTRIBUTED DIALOG MANAGERS (DDM), enforcing an immediate termination on client
and server side when a network, protocol or version error occurs. This means that except for local
applications no more start and finish events will be triggered and AppFinish will not be called.

When using a command line option is impossible, the option DMF_FatalNetErrors of the function
DM_Initialize can be utilized instead of -IDMfatalneterros. DMF_FatalNetErrors takes pre-
cedence over -IDMfatalneterrors.

See Also

C function DM_Initialize

-IDMfont <integer>

This option sets the font variant to be used.

-IDMformat <integer>

This option defines, which variant of the format resources is used.

-IDMindent <indent>[:<tabsize>[:<traceindent>]]

This option controls the indenting in source code and optionally for tracing. Moreover, the replace-
ment of spaces through tabs can be configured.

For <indent>, which defines the indenting of source code, and for the optional <traceindent>,
which sets up the indenting within the trace file, integral numbers >=0 are allowed. For the optional
<tabsize> that controls the replacement of spaces through tabs, only the values 0 and 8 are
allowed.

For instance, to get an indenting of three characters for each level without tab replacement, you
specify “3:0”; an indenting of one tab for each level is achieved with “8:8”.

Note

For the trace file, the indenting can also be set up on the setup object.

-IDMkeyboard <integer>

This option sets the accelerator variant to be used.

-IDMlanguage <integer>

This option defines, which variant of the text resources is used.

-IDMno_yi_monitoring

With this option, the calling of monitoring functions, which have been registered with YiRe-
gisterUserEventMonitor, can be disabled. This option supports error analysis in the case where
a monitoring function is supect to cause the error.

The environment variable IDM_NO_YI_MONITORING can be used instead of this command line
option.

The command line option overwrites the environment variable when both are set.

Alternatively, the option .options[opt_yi_monitoring] of the setup object can be set to false. If mon-
itoring functions have been disabled through the command line option or the environment vari-
able, they cannot be enabled by setting .options[opt_yi_monitoring] = true on the setup object.

-IDMobjdump_fkey <func_key_no>

This command line option effects that the source code of the active window is written to the trace
file when the function key with the number <func_key_no> is pressed. In the trace file, the output
source code is marked with the trace codes “DC” and “DR”.

-IDMscale <integer>

The -IDMscale option determines the scaling with which the application is to be displayed. A value
of 0 switches off the scaling. The value is given in %.

Default setting:

The current scaling used by the system.

Attention

It is not recommended to use a scaling > 0 and < 100%, as this may impact the display and oper-
ation of objects.

Limitations WINDOWS:

This startup option can only be used to turn DPI awareness on or off. However, this option should
not be used under Microsoft Windows. Since DPI awareness is a property of the application, it
should only be specified via a manifest file. Using the startup option under Windows results in a
warning in the trace or log file.
For test purposes, DPI awareness can be switched on (value: 1) or off (value: 0), but should never
be changed while the application is running.

A.06.03.b 17

18 ISA DialogManager

Limitations QT:

Whether a scaling factor set here is actually applied depends strongly on the desktop environment
and its support for HighDPI.

Availability

Since IDM version A.06.03.a

See alsochaper“HighDPI UnterstützungSupport”in manual“Programming Techniques”

-IDMsearchpath <search path>

This option sets the search path in which dialog, module, interface and binary files for imports with
use are searched. This option overrides the search path, which can also be set by specifying the
environment variable IDM_SEARCHPATH.

The search path is a semicolon-separated list of paths (absolute or relative) with the following spe-
cial features:

~ or ~: Search beneath the directory in which the application is located.

"" (empty path) Search in the current working directory (same behavior as in previous ver-
sions).

<ENVNAME>: Search in the paths that are defined in the environment variable <ENVNAME>.

Note

The search path can also be set with DM_ControlEx() and the setup object.

Availability

Since IDM version A.06.02.g

See also

Chapter “Search Path for Interface, Module, Dialog, and Binary Files” in manual “Programming
Techniques”

-IDMserver

This option queries the version of the window system interface.

This option only works with the Motif version of the ISA Dialog Manager. With the Windows ver-
sion it produces an error.

-IDMshowerror

Outputs internal errors, which are handled by IDM, into the trace file too. Normally these errors
can be ignored. However, they may provide hints for the cause of other errors in some situations.

-IDMsource <integer>

This option defines, which variant of the source resources is used for drag&drop actions.

-IDMstrace

The trace file is used in safety mode. For this option to work, the tracing must be activated via the
-IDMtracefile <filepath> option.

In order to keep the trace file running during long application sessions without experiencing a
slower running system and the use of too many resources, safety tracing uses a limited ring buffer
that is held in the memory. The content of the ring buffer is saved to the file on termination of the
application.

Availability

IDM versions A.05.01.g3, A.05.01.h, since A.05.02.e

-IDMstracefile <filepath>

This option is the short form for the combination of the options -IDMtracefile <filepath> for activ-
ating the tracing and -IDMstrace for setting the safety mode.

In the file name, place holders can be used (see chapter “Place Holders in File Names”).

Availability

IDM versions A.05.01.g3, A.05.01.h, since A.05.02.e

-IDMstraceopts <string>

This option activates the safety tracing and at the same time defines the settings for this. For this
option to work, the tracing must be switched on via the -IDMtracefile <filepath> option.

The string parameter influences the setting as follows:

Template Setting

c<integer> Bytes per line

h Hierarchical output: Retention of as many hierarchical levels as possible

l<integer> Number of lines

r Rotating output (default): The oldest line is replaced by the newest

s<integer> Length limit for strings

Through concatenation it is possible to carry out numerous settings at the same time. The order is
arbitrary.

Instead of this option the environment variable IDM_STRACEOPTS can be used. The command
line option overwrites the environment variable when both are set.

Example

Safety tracing with 300 lines and 80 bytes per line is activated via the option -IDMstraceopts
l300c80.

A.06.03.b 19

20 ISA DialogManager

Availability

IDM versions A.05.01.g3, A.05.01.h, since A.05.02.e

-IDMtarget <integer>

This option defines, which variant of the target resources is used for drag&drop actions.

-IDMtile <integer>

This option sets the tile variant to be used.

-IDMtiledpi <integer>

This startup option specifies the DPI value to be applied to tiles. This DPI value plays a role if
images were created for a specific DPI value and are to be displayed accordingly. By default, 96
DPI is assumed.

Availability

Since IDM version A.06.03.a

See alsochaper“HighDPI UnterstützungSupport”in manual“Programming Techniques”

-IDMtracefile <filepath>

This option activates the tracing, which logs all function calls from the IDM, all calls from the IDM to
the application and all executed rules into the given file (trace file, see chapter “Tracing” for further
information).

The same can be achieved by setting the environment variable IDM_TRACEFILE to a file path.

The command line option overwrites the environment variable when both are set.

In the file name, place holders can be used (see chapter “Place Holders in File Names”).

-IDMtracetime <integer>

This option writes additional timestamps into the trace file , in which all IDM function calls, all calls
from the IDM to the application, and all executed rules are logged. It is thus possible to perceive
the absolute or relative time needed for functions or rules and to take tuning measures if neces-
sary.

Value range

0
No times are logged in the trace file.

1
This value indicates start time mode. In this mode all start and end times are logged. The
time needed for a single structure may then be calculated with the difference. In this mode
only the system and user time will be considered.
The times are given in format [hh:mm:ss:uuu] at the beginning of line:

hh = hours

mm = minutes

ss = seconds

uuu = milliseconds

2
This value indicates the trace time mode. In this mode the time difference to the last logged
call is given. It is thus possible to easily recognize how much time is needed for individual
actions.
In this mode the time difference to the last trace output is given in the format [sss:uuu] at
the beginning of line:

ss = seconds

uuu = milliseconds

3
This value specifies the real-time mode. In this case the real time is indicated for each
action to be logged in the trace file.
In this mode the real time is given in format [hh:mm:ss] at the beginning of line:

hh = hours

mm = minutes

ss = seconds

-IDMusepathmodifier <string>

This option controls the conversion of a Use Path into a file name. It allows to control file name con-
version to upper and lower case. This option should only be used with caution.

The following options are available:

L The entire file path is converted to lower case.
The Use Path Base.Colors becomes the file namesbase/colors.if, base/colors.mod and
base/colors.bin.

U The entire file path including the extension is converted to upper case.
The Use Path Base.Colors becomes the file names BASE/COLORS.IF,
BASE/COLORS.MOD and BASE/COLORS.BIN.

u The entire file path except for the extension is converted to upper case.
The Use Path Base.Colors becomes the file names BASE/COLORS.if,
BASE/COLORS.if and BASE/COLORS.if.

l Only the first letter of each file path segments is converted to lower case.
The Use Path BaseModels.MWin becomes the file names baseModels/mWin.if,
baseModels/mWin.mod and baseModels/mWin.bin.

A.06.03.b 21

22 ISA DialogManager

Availability

Since IDM version A.06.02.g

-IDMversion

This option queries the version of the IDM runtime environment in use.

The version is output with the pattern

k.vn.sv.pl<additional_info>.

The meaning of the parts is:

k Kind of release (capital letter, “A” in most cases)

vn Version number, major release (two digits)

sv Sub-version number, minor release (two digits)

pl Patch level (lowercase letter and optionally one digit)

<additional_info> for internal purposes only

2.1 Place Holders in File Names
When it is stated for command line options or environment variables, that place holders can be used
in the file name, these are the available place holders:

%Y year

%O month

%D day

%H hour

%M minute

%S second

%J day of year

%C unique number

%A application name

%T tty ID

%U user ID

%P process ID

The place holders are substituted through the respective values at runtime.

2.2 Command Line Options for Setting Code Pages
The code page options allow to set the character encoding that IDM uses for different operations. The
following command line options are available, in which <code page> may be replaced by the code
page identifiers listed in chapter “Code Page Identifiers”.

Option Description

-IDMcp_appl <code page> Defines the code page for strings received or returned by
application functions.
The better solution however is to set this code page
through DM_Control from within the application.

-IDMcp_format <code page> Defines the code page for strings received or returned by
format functions.
The better solution however is to set this code page
through DM_Control from within the application.

-IDMcp_input <code page> Defines the code page which IDM uses for interpreting dia-
log-, module-, interface-, and init-files if the files carry no
encoding mark (see chapter “Encoding Marks for Files”).

-IDMcp_io <code page> Abbreviation for setting input and output code page at once
(-IDMcp_input and -IDMcp_output).

-IDMcp_output <code page> Defines the code page which IDM uses for output files. The
option applies to dialogs, modules, interfaces, init-, log-,
and trace-files as well as stdout and stdin.

2.2.1 Code Page Identifiers
With the command line options for setting code pages the identifiers listed below may be used for the
parameter <code page>:

acp ascii cp437 cp850 cp1252

dec169 hp15 iso6937 iso8859 no_conv

utf8 utf16 utf16b utf16l winansi

2.2.2 Encoding Marks for Files
Text files can contain encoding marks within their first 8 bytes that indicate the character encoding of
the files. Is an encoding mark is present it takes precedence over a command line option for IDM.

These are the encoding marks recognized by IDM:

A.06.03.b 23

24 ISA DialogManager

Encoding mark Character encoding

Byte sequence 0xfeff UTF-16 BE (big-endian)

Byte sequence 0xffef UTF-16 LE (little-endian)

// UTF8 or // utf8 UTF-8

// 8859 ISO-8859-1

// 1252 CP1252

The hexadecimal byte sequences “feff” and “ffef” are called “Byte Order Marks” (BOM) and are
defined in the Unicode standard. The define the sequence of bytes within character codes. “feff” indic-
ate “big-endian” order where bytes with higher numeric significance come first, “ffef” indicates “little-
endian” order, where bytes with lower numeric significance come first.

If the output code page is set to UTF-8, UTF-16, ISO-8859, or CP1252 through -IDMcp_output or
-IDMcp_io, IDM writes the appropriate encoding mark as prefix into dialogs, modules and interfaces.

Note

Text editors normally do not display the byte order marks “feff” or “ffef”, but they are visible when open-
ing files with a hex editor.

2.3 Command Line Options in the Simulation Program
The following options can only be used in the simulation program:

+application <applicationID>

This option is only valid with the option +writeproto!

When giving this option, the function prototypes of the functions included in the object applic-
ationID are written out.

-bindir <directory path>

This option allows the definition of the target directory where the binary files (with the file extension
.bin) are created. By default they are created in the working directory.

Die Option kann nur zusammen mit den Startoptionen -compile, -compile1, -recompile und
-recompile1 verwendet werden.

The option can only be used in combination with the command line options -compile, -compile1,
-recompile and -recompile1.

+/-builder

This option causes the IDM and PIDM to run in the builder mode. If it has not already happened, it
is started as IDM builder process in the background. All requests for writing interface, binary, fun-
cmap or trampoline files are passed to this IDM builder process. This process works in the shared

modules mode to save time when reloading imported modules.

With -builder, the server and client mode is determined by the actions (-writebin, -writeexport…)
while +builder explicitly activates the client mode. For -builder, client mode is automatically
assumed when it is used with an action. Without an action it works in the builder process (server).

Availability

Versions since A.05.02.f; platforms MICROSOFT WINDOWS, UNIX/LINUX

-builderid <builder-identifier>

Normally the IDM builder process and the IDM or PIDM, that use the process in the builder mode,
have the same father process. This can be bypassed by specifying an own builder ID as a file
name without the preceding path.

Availability

Versions since A.05.02.f; platforms MICROSOFT WINDOWS, UNIX/LINUX

-builderstop

With this option, a running IDM builder process can be stopped before reaching its time-out
period.

Availability

Versions since A.05.02.f; platforms MICROSOFT WINDOWS, UNIX/LINUX

-buildertimeout <secs>

With this option, the waiting time of the IDM or the PIDM in the builder process mode is defined in
seconds. After this time has been reached, the IDM builder process terminates. After the defined
waiting period, connection attempts and calls fail.

Note for UNIX/LINUX

If a too small builder timeout is chosen, this may result in no communication at all between client
and server. The pipe file (usually found under /tmp/pipe_idmbuilder…) that is created as a result
and not cleared by the system may then have to be deleted manually.

Availability

Versions since A.05.02.f; platforms MICROSOFT WINDOWS, UNIX/LINUX

-classname <classname>

This option limits the writing of class definitions of USW classes for the IDM ECLIPSE PLUGIN to the
specified class.

It is only valid with the option -writeclassdef.

-cleancompile
-cleancompile1

This option deletes all interface and binary files for the loaded dialog and module files as well as all
submodules imported with use.

A.06.03.b 25

26 ISA DialogManager

Die Option -cleancompile1 führt die Aktion lediglich für den geladen Dialog bzw. das geladenen
Modul und nicht für per use importierte Untermodule aus.

The option -cleancompile1 performs the action only for the loaded dialog or module and not for
submodules imported per use.

Availability

Since IDM version A.06.02.g

See also

Chapter “Compiling Interface and Binary Files for Imports with use” in manual “Programming Tech-
niques”

-cobbasename <basefilename>

Sets the base name used in the COPY statement of the generated COBOL file. This option over-
rides the value that is computed from the -cpyname, -cobname or -writetrampolin options.

Can only be used together with the option +/-writetrampolin.

Availability

Since IDM version A.06.02.g

-cobname <basefilename>

Sets the base name for the generated COBOL file. This option overrides the value that is com-
puted from the name specified with -writetrampolin.

The file extension of this file is “.cbl” if one of the options -ufcob, -mfviscob or -mfviscob-u is
given, otherwise “.cob”.

Can only be used together with the option +/-writetrampolin.

Availability

Since IDM version A.06.02.g

-compile
-compile1

This option causes the interface and binary files to be written for the loaded module or dialog and
for all loaded submodules imported per use.

However, these are only rewritten if the file date of the source file(s) is newer than the interface
and binary files. This option is intended for use in a Makefile.

Um die Zieldateien auf jeden Fall, ohne Prüfung des Dateidatums, neu zu erzeugen, kann die
Option -recompile verwendet werden.

To recreate the target files in any case, without checking the file date, the -recompile option can
be used.

Possibly necessary directories resulting from the Use Path are created if required. The output dir-
ectories of the target files can be controlled using the -ifdir and -bindir options.

Since the generated interface and binary files have predefined file extensions (.if and .bin), it is
possible to create these files mixed with the sources.

Attention

Existing files will be overwritten.

Die Option -compile1 führt die Aktion lediglich für den geladen Dialog bzw. das geladenen Modul
und nicht für per use importierte Untermodule aus.

The option -compile1 performs the action only for the loaded dialog or module and not for sub-
modules imported per use.

Availability

Since IDM version A.06.02.g

See also

Chapter “Compiling Interface and Binary Files for Imports with use” in manual “Programming Tech-
niques”

-cpyname <basefilename>

Sets the base name for the generated COBOL copy file. This option overrides the name that is
given by -cobname or -writetrampolin. The file extension of this file is “.cpy”.

Can only be used together with the option +/-writetrampolin.

Availability

Since IDM version A.06.02.g

-ifdir <directory path>

This option allows the definition of the target directory where the interface files (with the file exten-
sion .if) are created. By default they are created in the working directory.

Die Option kann nur zusammen mit den Startoptionen -compile, -compile1, -recompile und
-recompile1 verwendet werden.

The option can only be used in combination with the command line options -compile, -compile1,
-recompile and -recompile1.

-mfviscob

Generates COBOL copy files for MICRO FOCUS VISUAL COBOL.

Can only be used together with the options +writeheader and +/-writetrampolin.

Availability

COBOL Interface for MICRO FOCUS VISUAL COBOL only.

A.06.03.b 27

28 ISA DialogManager

-mfviscob-u

Generates COBOL copy files for MICRO FOCUS VISUAL COBOL with support for National Character
(Unicode, UTF-16).

Can only be used together with the options +writeheader and +/-writetrampolin.

Availability

COBOL Interface for MICRO FOCUS VISUAL COBOL only.

-noif

This option suppresses the generation of interface files.

Die Option kann nur zusammen mit den Startoptionen -compile, -compile1, -recompile und
-recompile1 verwendet werden.

The option can only be used in combination with the command line options -compile, -compile1,
-recompile and -recompile1.

+/-profile <filename>

With help of this option a configuration file is loaded.

-profile configuration file is loaded before DM_StartDialog

+profile configuration file is loaded after DM_StartDialog

See Also

C interface function DM_LoadProfile

COBOL interface function DMcob_LoadProfile

-recompile
-recompile1

Diese Option bewirkt, dass für das geladene Modul bzw. den geladenen Dialog sowie alle per use
importierten, geladenen Untermodule die Interface- und Binärdateien geschrieben werden.

This option causes the interface and binary files to be written for the loaded module or dialog and
for all loaded submodules imported per use.

Anders als bei der Option -compile werden die Zieldateien immer neu erzeugt. Es findet keine
Datumsprüfung statt.

Unlike the option -compile, the target files are always regenerated. There is no date check.

Eventuell notwendige Verzeichnisse, die sich aus dem Use-Pfad ergeben, werden wenn erforder-
lich angelegt. Die Ausgabeverzeichnisse der Zieldateien können über die Optionen -ifdir und -
bindir gesteuert werden.

Possibly necessary directories resulting from the Use Path are created if required. The output dir-
ectories of the target files can be controlled using the -ifdir and -bindir options.

Da die erzeugten Interface- und Binärdateien vorgegebene Dateiendungen (.if und .bin) besitzen,
ist die Erzeugung dieser Dateien gemischt mit den Quellen möglich.

Since the generated interface and binary files have predefined file extensions (.if and .bin), it is
possible to create these files mixed with the sources.

Attention

Vorhandene Dateien werden überschrieben.

Existing files will be overwritten.

Die Option -recompile1 führt die Aktion lediglich für den geladen Dialog bzw. das geladenen
Modul und nicht für per use importierte Untermodule aus.

The option -recompile1 performs the action only for the loaded dialog or module and not for sub-
modules imported per use.

Availability

Since IDM version A.06.02.g

See also

Chapter “Compiling Interface and Binary Files for Imports with use” in manual “Programming Tech-
niques”

+searchsymbol

A module is searched in a path which is defined via an environment variable. If the corresponding
file is found in a directory, it will be loaded and the further search will be interrupted.

In order for this environment variable to be considered on loading the modules, the following
option has to be indicated additionally when creating the interface file:+searchsymbol IDMLIB.
All file names will then be prefixed by the symbol “IDMLIB”.

General Syntax

idm +writeexport <export file name> +searchsymbol <environment variable>
<module name>

Example

idm +writeexport color.if +searchsymbol IDMLIB color.mod

See Also

Chapter “Modularization” in manual “Programming Techniques”

-ufcob

Generates COBOL copy files for MICRO FOCUS COBOL.

Can only be used together with the options +writeheader and +/-writetrampolin.

A.06.03.b 29

30 ISA DialogManager

-userregistry

This option can be specified in addition to -writeole to register an OLE control for the current user
only. The registration data is then written to the Windows Registry under HKEY_CURRENT_
USER.

Availability

Since IDM version A.06.01.g

-writebin <binaryfile>

A binary file is created from the ASCII dialog file when this option is specified.

The binary file has a significantly shorter load time, and it cannot be edited by the end user.

-writeclassdef <xmlfile>

With this option the class definitions of all registered USW classes are written to the specified file,
which can be used with the IDM ECLIPSE PLUGIN. The class definitions are required by the IDM
ECLIPSE PLUGIN, e.g to enable content assist to propose the attributes for USW classes.

+/-writedialog <filename>

With this option a dialog or module in its current state can be written as text file to “filename”. The
character encoding (code page) of the file can be set through -IDMcp_output or -IDMcp_io (see
chapter “Command Line Options for Setting Code Pages”). Without these options, the dialog or
module will be ASCII encoded.

+writeexport <interfacefile>

With this option the developer can create the interface file out of her/his module. Comments which
are prefixed by !! and which are attached before the actual objects are included in the interface
file. In doing so, the commenting of dialog sources can be made available also to the user of a
module.

See Also

Chapter “Modularization” in manual “Programming Techniques”

+writefuncmap <basefilename>

This option creates a C file and an include file. The include file contains the function prototypes for
all functions declared in the DM dialog file (see also option +writeproto). A function table is put in
the C file so that, to link the functions, the contained function BindFunctions_<name of dialog>
has to be called.

See Also

Manual “C Interface - Basics”

+writeheader <basefilename>

The command line option +writeheader may be used to generate prototypes and record defin-
itions for dynamically connected functions.

The command line for the simulation is built like this:

pidm [+application <name of application>] +writeheader <basefilename>
<dialogfile>

If there are C functions, a header file with the suffix .h is created that contains the appropriate func-
tion types and record definitions. If COBOL functions with record parameters exist, the copy sec-
tions are written to the file with the extension .cpy. If no respective functions are present, no file
will be generated.

The command line option is sort of a mixture between the options +writefuncmap and +/-writet-
rampolin, but without the generation of C and COBOL code. Therefore it is only suitable for the
dynamic binding of application functions.

Availability

Since IDM version A.06.01.d

-writeole <basefilename>

With this option, the ISA Dialog Manager generates the necessary files to register an OLE server
with the system. An idl file for creating the type library and a reg file with the registry entries are
generated. The registry entries are stored under HKEY_LOCAL_MACHINE in the Windows
Registry so that the registration is effective for all users.

To register an OLE control for the current user only, you can additionally specify the option
-userregistry.

Note

The Windows tool regedit.exe usually sets no error status in case of an error. If there are prob-
lems with the start of an OLE control, the registry should be checked to see if the registry data was
loaded at all. Changes to the Windows Registry should be made with caution, as Windows may
fail to start in case of errors.

See Also

Chapter “Generating Interface Information” in manual “OLE Interface”

+writeproto <filename>

This option creates a file that contains function prototypes for all function declared in the DM dia-
log file. This file can be used as C include file for the application to check the correctness of the
function call.

+writerefs <filename>

By means of this option you can check for any dialog whether all defined models are really used
within this dialog.

If a model is not used, i.e. it has 0 references, it can be possible that this model is used in a rule to
create objects dynamically. Therefore, the output of this option should be used as a hint for a used
model.

A.06.03.b 31

32 ISA DialogManager

Example

idm +writerefs TestRefs.txt Test.dlg

+/-writetrampolin <basefilename>

To provide functions for dialogs including records with an application, the C modules generated by
the DM have to be compiled and linked. The modules are generated by calling the simulation via
the option +/-writetrampolin:

idm +writetrampolin <outfile> <dialogscript>

This statement generates the necessary modules from a dialog script in order to call the functions.
The corresponding header files (C and/or COBOL) are created according to the kind of functions
using such records.

In combination with +/-writetrampolin the following options can be used:

-ufcob, -mfviscob and -mfviscob-u to create copy files for MICRO FOCUS COBOL or MICRO

FOCUS VISUAL COBOL respectively.

-cobbasename, -cobname and -cpyname to customize the base names of the created files.

3Configuration File
Configurable variables and records can be redefined by the user in the configuration file.

The configuration file can be loaded with DM_LoadProfile.

Within the configuration file, any number of entries of the following scheme are valid:

Syntax

<variable> := <value> ;
<record> . <attribute> { [<index>] } := <value> ;

// <comment up to end of line>
/* <comment, multi-line too> */

<variable> has to be indicated as configurable with config.

At <record>, <attribute> has to be .configurable true, and the wished attribute has to be available as
DM-internal or user-defined attribute.

These attributes can optionally also be addressed indexed. Then, however, they have to be defined in
the corresponding record.

As <value>, all constant values are permitted which can be used when defining variables with ini-
tialization and when initializing user-defined attributes. The corresponding values' data types have of
course to match the variables' and the record attributes' data types.

Example

Dialog Script

dialog Example

config variable string Name := "Jack";

color C1 "red";
color C2 "green";

model window WinMod
{

.bgc C1;
}

record Settings
{

.configurable true;

boolean Mode[3];

A.06.03.b 33

34 ISA DialogManager

.Mode[1] := true;

.Mode[2] := false;

.Mode[3] := false;

object Windowcolor shadows WinMod.bgc;
}

Configuration File

// configuring a variable
Name := "Peter";
// configuring a record
Settings.Mode[2] := true
// the model is configured directly with shadows
Settings.Windowcolor := C2;

4 Environment Variables
The external information should always be loaded by means of environment variables from the Rule
Language as well as from the programming interface (see also functions DM_LoadDialog or DM_
LoadProfile in manual “C Interface - Functions”). These variables are:

external pictures of a tile

interface and module descriptions

dialog files

profiles

The indicated name may have the following structure (the same applies to all file accesses):

<environment variable>:<name of dialog file>

whereby the environment variable may be an arbitrary path under which the dialog file shall be
searched for. This path is checked on loading and the first data which is found will be loaded.

This can easily be configured on the target computer.

Example

Rule Language:

tile Checkbox "IDM_IMAGEPATH:Check.gif";

Before the program start the environment variable IDM_IMAGEPATH has to be set to the directory in
which the GIF file is located.

MICROSOFT WINDOWS

set IDM_IMAGEPATH =d:\appl\images

UNIX

setenv IDM_IMAGEPATH /usr/local/appl/images

A.06.03.b 35

36 ISA DialogManager

5 IDM Builder Process

5.1 Availability
Platforms: The builder process mode is only available for MICROSOFT WINDOWS and UNIX respect-
ively LINUX, but not for VMS.

Versions: since A.05.02.f

5.2 The Builder Process Mode
For complex, modular IDM applications, the time requirement for the creation of the application with
make or other build management tools are significantly determined by the loading times of the mod-
ules and dialogs.

Every call of the simulation (IDM or PIDM) for the creation of an interface, binary, funcmap or tram-
poline file necessarily loads the specified dialog or module file. If the application consists of several
modules with many deep import dependencies, long loading times are primarily caused by reloading
the imported modules.

A clear reduction of this reloading time can be achieved by using the IDM or the PIDM in the builder
process mode.

Here an IDM simulation program runs in the background in the builder process mode as server and
waits for requests to create interface, binary, funcmap and trampoline files. Hereby, this IDM builder
process runs in the shared modules mode which is normally activated by setting the environment
variable DM_SHARED_MODULES. In this process, the reuse of imported modules is based on the
equality of the interface name and not, as is usually the case, on the import descriptor and the super-
ordinate import. This leads to a clear reduction of loading time for modules with many imports.

The IDM or PIDM calls required during the creation of the application merely connect as client to the
IDM builder process. The necessary arguments are sent to the server and the return status is passed
on.

The IDM builder process is not started manually, but starts automatically when correctly used (option
+builder). After a definable time-out period (option: -buildertimeout <secs>) it stops automatically.
The process may also be stopped manually before the time-out period ends (option -builderstop).

With this, the previous use of the IDM or the PIDM should be converted to the use in the builder pro-
cess mode with relative ease and without any problems.

5.2.1 Example

Makefile With a Simple Modularized Dialog

PIDM=pidm
IDMARGS=-IDMenv MODPATH=if;.
IDMARGS_WRITEBIN=$(IDM_ARGS) +searchsymbol MODPATH –writebin
IDMARGS_WRITEIF=$(IDM_ARGS) –writeexport
all:: bin/dialog.dlg
bin/dialog.dlg: dialog.dlg if/defaults.if

$(PIDM) $(IDMARGS_WRITEBIN) $@ dialog.dlg
if/defaults.if: defaults.mod

$(PIDM) $(IDMARGS_WRITEIF) $@ dialog.dlg
bin/defaults.mod: defaults.mod

$(PIDM) $(IDMARGS_WRITEBIN) $@ defaults.mod

Converted Makefile

The activation of the builder process mode is underlined

PIDM=pidm
IDMARGS=-IDMenv MODPATH=if;. +builder
Windows:
IDMARGS=-IDMconsole -IDMenv MODPATH=if:. +builder
IDMARGS_WRITEBIN=$(IDM_ARGS) +searchsymbol MODPATH –writebin
IDMARGS_WRITEIF=$(IDM_ARGS) –writeexport
all:: bin/dialog.dlg builderstop
bin/dialog.dlg: dialog.dlg if/defaults.if

$(PIDM) $(IDMARGS_WRITEBIN) $@ dialog.dlg
if/defaults.if: defaults.mod

$(PIDM) $(IDMARGS_WRITEIF) $@ dialog.dlg
bin/defaults.mod: defaults.mod

$(PIDM) $(IDMARGS_WRITEBIN) $@ defaults.mod
builderstop:: # optional

$(PIDM) –builderstop

5.2.2 Usage Instructions
For the reuse of the same IDM builder process (i.e. the same IDM or PIDM in the builder process
server mode), the process number of the father process of the IDM or PIDM client must be identical.
Otherwise, the option -builderid can be used and the IDM builder process can be manually started
and stopped. It is advisable that IDM specific construction steps take place successively to enable the
reuse of the IDM builder process within the adjustable time-out period.

No IDM builder process runs initially. It is automatically started with the option +builder and contains
the environment of the process being started. During the communication between the builder client
and the server, the environment variables and the work directory of the builder client set with -IDMenv

A.06.03.b 37

38 ISA DialogManager

are passed on. These variables therefore overlay the variable set in the IDM builder process.
Changing the work directory ensures an identical situation for client and server. If no connection can
be established between client and server, this leads to the typical error messages such as “… can’t
open/connect builder pipe…”.

The IDM builder process is not intended to parallelize the build. Only one client at a time can connect
to the IDM builder process.

If the maximum number of modules has been reached (ca. 4,000 modules can be loaded sim-
ultaneously) in the IDM builder process during loading, the IDM builder process is restarted and the
message “[I: restart build server]” is output. Here, the loaded, reusable import modules are lost.

5.2.3 Usage Information for the IDM Eclipse Plugin
For the use of the builder process mode with the MAKEGEN PLUGIN, the options -IDMconsole and
+builder should be used. They enable Eclipse CDT (C/C++ Development Tooling) for Makefile Pro-
jects, to check IDM error messages from the IDM or PIDM error parser of the IDM ECLIPSE PLUGIN.

5.2.4 Particularities
If an IDM builder process has to be started first, this is followed by a short delay as the process
start must be waited for.

During the build run, waiting times may arise that are caused by the delayed completion of the
builder following a time-out or by the make process waiting for the termination of all child pro-
cesses or the closing of the output channels. In this case, the IDM builder process can simply be
stopped by calling IDM or PIDM with the -builderstop option.

Communication between the IDM or the PIDM in the builder process client server mode is per-
formed via a named pipe (on UNIX, typically in the /tmp directory). The respective safety settings
and access authorizations should also be made. A forced termination of IDM or PIDM – e.g. with
kill -9 – should be avoided in order to ensure the cleanup of the pipe files.

When using +builder the forwarding of the output of the trace or the log file (e.g. via the options
-IDMerrfile and -IDMtracefile) is not effective as the IDM build process is started without redir-
ection.

On MICROSOFT WINDOWS the error messages of the IDM or PIDM are normally displayed as mes-
sageboxes and other outputs are written to the IDM log file. To receive error messages in one con-
sole, the option -IDMconsole may be used. This option is passed on when starting the IDM
builder process. This should enable the build processes to pass on its relevant error messages
and outputs to stdout or stderr.

5.3 Command Line Options for the Builder Process

IDM and PIDM

+/-builder
Starts the IDM or PIDM in builder mode

-builderid <builder identifier>
Indicates an identifier for the IDM builder process

-builderstop
Stops the IDM builder process

-buildertimeout <secs>
Waiting time before the IDM builder process stops

See

Chapter “Command Line Options in the Simulation Program” for descriptions of the options.

IDM Library

-IDMconsole (MICROSOFT WINDOWS)
Redirects log file and error messages to STDOUT

See

Chapter “Command Line Options” for the description of the option.

A.06.03.b 39

40 ISA DialogManager

6 Errormessages of IDM
Error messages from the IDM are typically output in a dialog box in Windows, but in a log- or trace-
file in UNIX/Linux. Although the -IDMerrwinfile startup option can also be used under Windows to
redirect to a file, if this option is not used it can lead to a large number of error messages, which
usually tempts the user to “kill” the IDM application program. The error message dialog box has
now been equipped with a Cancel button, so that further popping up of error messages in a dialog
box is prevented. Instead, these messages are written to the log file as [E:...] messages. However,
the application is not aborted, nor is it possible to abort the application, but only to prevent the dia-
log boxes from popping up. If desired, this can be done by the application programmer in an error
handler. The loading of a dialog/module is treated as an atomic block. This means that the sup-
pression of the dialog boxes is effective until the end of this block. In principle, it is not possible to
suppress ASSFAIL dialog boxes.

7 Functions for Error Analysis
Availability

The functions for error analysis described in this chapter are available in the IDM versions A.05.01.g3
and A.05.01.h as well as from A.05.02.e

7.1 Overview
The purpose of the functions described here is to further assist the developer in the analysis and clas-
sification of errors in special situations such as: interpreter error messages, application crashes1 or
fatal error messages. The following table contains a rough classification of possible errors in relation
to typical points of error and the likely impact of such errors. The effect that an error remains undetec-
ted, leads to a changed or faulty functionality or may be transferred onto another component, is not
explicitly mentioned in the table.

Point of
Error

Description Impact

Rule Code Error in rule code of an IDM application, e.g. invalid
access to an attribute or object, type errors or uninitialized
values.

*** Eval Error
in log or trace file
[E: …] or [W: …] mes-
sages, YE- error codes
in trace file

Application
Function

Several error types, e.g. access violations, damaged
memory management that in some cases may show
through their impacts on the rule processing or the IDM lib-
rary.

eventual crash

IDM Library Faulty conditions within the IDM are normally secured
through an assertion. However, an error can have an
effect on the rule processing or it can appear as an applic-
ation error.

FATAL ERROR
in log or trace file

[E: …] or [W: ..] mes-
sages
in trace file

External
Functions

External, IDM-independent functions, e.g. in a different
thread or different library, can contain errors which can
then be brought into other areas via actions such as over-
writing memory or faulty synchronization.

e.g. crash

1A crash in this sense is an unhandled or a non-interceptable error situation, i.e. invalid memory
access, division through 0.

A.06.03.b 41

42 ISA DialogManager

In the following further information pertaining to the new additions for easier error analysis and their
purpose can be found.

Notes

In principle the new additions are not meant to replace or substitute a debugger or a tool such as
“Dr. Watson” on MICROSOFT WINDOWS. They are to be seen as add-ons in order to deliver mean-
ingful information that cannot be delivered by the mentioned tools.

If previous serious errors have already occurred, then the correctness of the given information can-
not be completely guaranteed.

7.1.1 Safety Tracing
In order to use the tracing function within the IDM for situations, in which application errors occur only
after a longer period of time, the safety tracing mode can be used.

Normally, if the tracing function is running alongside application use this can lead to a decrease in per-
formance and to a very large, cumbersome trace file. In the safety mode the tracing takes place in a
ring buffer with a limited number of lines and line lengths thatis kept in the main memory. The buffer is
then written in the trace file only after an application has been ended or after an error event.

Further information about safety tracing can be found with the comand line options -IDMstrace,
-IDMstracefile and -IDMstraceopts in chapter “Command Line Options” and in chapter “Safety Tra-
cing”.

7.1.2 Dumpstate
Without tracing, the user receives no clues when crashes, “FATAL ERROR” or “Error in Eval” mes-
sages occur in applications that use binary files and the IDM runtime library. The dumpstate reveals
status information of the IDM specifics which include the callstack, the errorstack, events and hints
pertaining to the number of IDM objects and the use of memory through the IDM.

The primary goal is to output as much information as possible when an error occurs in order to be able
to properly assess the error and at the same time simplify the causal research. Only information that is
known to the IDM can be gathered; no information pertaining to the application or foreign functions.
The writing of the dumpstate can be programmatically achieved via the Rule Language or the DM
interface function.

Important Note

Security-related information, e.g. passwords that are entered into a log-in window, should be deleted
by the application immediately after they have been used so that they cannot be revealed through a
dumpstate and as a result be made accessible to others.

Further information about dumpstate output can be found with the command line options
-IDMcallstack, -IDMdumpstate and -IDMdumpstateseverity in chapter “Command Line Options”
and in chapter “Dumpstate (Status Information)”.

7.2 Exception Catcher
In order to be able to write out the safety tracing as well as the dumpstate after a crash, a global excep-
tion catcher is registered for the application. The exception catcher passes on the exception in order
to allow for its further usual processing through the operating system (core dump on UNIX/LINUX or the
writing of a dump file on MICROSOFT WINDOWS via “Dr. Watson”).

Note

When installing own exception catchers, please ensure that they pass on the exceptions.

The registration of an exception catcher can be prevented through the command line option
-IDMcatchexceptions (see chapter “Command Line Options”).

A.06.03.b 43

44 ISA DialogManager

8 Dumpstate (Status Information)
Availability

The dumpstate output is available in the IDM versions A.05.01.g3 and A.05.01.h as well as from
A.05.02.e.

The dumpstate is the status information of IDM-relevant information in order to simplify the error ana-
lysis within an IDM application. The content of the dumpstate is divided into different sections that are
variable and that are adapted to the error situation. In addition, the dumpstate is influenced by the
errors that have previously occurred. For example an unsuccessful memory allocation leads to inform-
ation concerning the memory usage by the IDM in the next dumpstate output. If no IDM objects or
identifiers can be created, then the utilization of IDM objects and identifiers is dumped.

The dumpstate information is always encased between “*** DUMP STATE BEGIN ***” and “*** DUMP
STATE END ***” and can have the following sections, which are described in detail in the paragraphs
below:

PROCESS: Process and thread number, date/time.

ERRORS: Complete content of set error codes.

CALLSTACK: Contains rules, DM interface functions and application functions directly called by
the IDM.

THISEVENTS and EVENT QUEUE: Actual processed thisevent objects and their values as well
as events that are still in the queue.

USAGE: The number of created objects, modules and identifiers and the size of the memory that
is used by the rule interpreter and for string transfer.

MEMORY: Memory usage as far as it can be detected by the IDM.

SLOTS: Hints about IDM objects that have not been correctly released.

VISIBLE OBJECTS: A list of the visible objects and their respective values.

In order to keep the output to a minimum, this is usually displayed in a shortened form. Normally, a
shortening of the IDM strings (in "…") to a maximum of 40 characters always occurs. Their entire
length is attached in []. Byte size information is given in kilo, mega or gigabytes (k/m/g).

The dumpstate is normally automatically written to the log file or the trace file when one of the fol-
lowing situations occurs. Hereby, the situation also influences the dumpstate content.

Error Type Dumped Sections

The rule interpreter delivers an “EVAL ERROR”. Errorstack, Callstack, Events.

The IDM library recognizes an error of its own
and delivers a “FATAL ERROR”.

All.

Error Type Dumped Sections

An catchable exception (e.g. access violation,
stack overflow, division by zero) comes about
and the IDM exception catcher is active.

All – in addition, the exception code (MICROSOFT

WINDOWS) or the signal number (UNIX) is initially
displayed.
On UNIX since IDM version A.05.02.e no com-
plete dumpstate is output after an INT signal any-
more, but only the sections Stack, Errors,
Process and Events.

Normal shutdown via DM_ShutDown() but
information about errors are at hand.

According to the hints.

Important Note

Safety-related information, for example passwords that are typed in a log-in window, should be
deleted after being used by the application, so that they cannot be output in a dumpstate and thus be
exposed.

The writing of the dumpstate can explicitly take place via the builtin function dumpstate() or the inter-
face function DM_DumpState(). In addition, it is also possible to influence the dumpstate output inde-
pendent of the type of error or to define the type of error in which a dumpstate output takes place via
the options -IDMdumpstate and –IDMdumpstateseverity.

Due to the amount of complex information that is gathered by the dumpstate, crashes within the dump-
state functionality can happen and cannot be intercepted.

The following contains a detailed description of the various sections that can be found in the dump-
state:

8.1 Process
This area contains the process ID, the number of the thread in which the dumpstate is called as well
as the thread number of the IDM main thread. If the dumpstate is not called from the IDM main thread,
then the following message is displayed:

ATTENTION: not in IDM main thread!

When this happens extreme care should be taken. This indicates either an application error, an error
in an external function or the improper use of the IDM. Please note that the callstack only contains the
call list of the IDM main thread!

PROCESS:
pid=2984, thread=4080, IDM-thread=4080, date=2009-11-10, time=16:20:38

A.06.03.b 45

46 ISA DialogManager

8.2 Errors
Lists all currently set error codes. See also interface function DM_QueryError in manual “C Interface -
Functions”.

ERRORS:
#0: IDM-E-UnkAttr: Attribute not available for this type of object
[object/thing:639]

8.3 Callstack
The callstack (call list) is the most important tool in order to recognize if the reason behind a system
crash is due to an error that occurred in an application function, in a rule or method, in the IDM library
or in an external function.

The callstack contains all calls of rules, methods, built-in functions, IDM interface functions as well as
the application functions called by the IDM. Hereby, the parameter values are displayed. However, in
order to minimize the effect on performance it is not possible to carry out a correct string coding in
every situation.

In addition, the this-object, the file name in which the rule is found, for ASCII dialogs the start-line of
the rule as well as a %-output, which delivers the approximate position in the intermediate code of the
rule, is also included. For the first rule on the stack the local variables (locvars list) as well as the con-
tent of the value stack (valstack), which is necessary for the expression evaluation, is also listed.

STACK:
#0: rule D.AfterError, this=dialog D, file=dumping.dlg:68+39%

locvars=[dialog D, "initvar2", nothing]
valstack=[100]

#1: rule on dialog start, this=dialog D, file=dumping.dlg:78+35%
#2: DM_StartDialog(dialog D, null)

Abridgements

Only the first 20 and the last 20 entries are listed.

Important

If the message “ATTENTION: not in IDMmain thread!” appears at the beginning of the dumpstate out-
put, extreme care should be taken. The callstack only displays the callstack of the IDM main thread!

8.4 Events
In this section the actual processed events (THISEVENTS) and the events that are currently waiting
in line (EVENT QUEUE) to be processed are listed.

The source indicates the event trigger: dialog, setval, destroy or external. This reveals whether this
has to do with an event that was triggered by a user or the system, if it was triggered by a change in
value of an attribute, if it has to do with the destruction of a module or if it has to do with an external
event.

The object, which is the recipient of the event, is also shown. The event queue, the data value and the
arguments as well as the specific attributes of THISEVENTS (e.g. .x, .y) are also displayed.

THISEVENTS:
#0: source=dialog, object=dialog D, event=start
EVENT QUEUE#1:
#0: source=dialog, object=window D.Wi, event=activate
#1: source=external, object=pushbutton D.Wi.Pb, data=1, args=["EvData"]

Abridgements

A maximum of 10 events are listed

8.5 Usage
This section is made up of three tables:

Information concerning the number of IDM objects, their distribution on defaults, models and
instances, their total number and their approximate memory need in the IDM core (not the dis-
played user interface elements). This table is sorted in an ascending order in the columns alloc
and count.

Information pertaining to dialogs and modules. The number of all dialogs and modules is dis-
played. Furthermore, the sum of the object slots contained in the dialogs and modules, the
memory that is needed for the slot administration, the complete number of identifiers and the
memory needed for this is also shown. In the <maximum> line the dialogs and modules with the
largest values are listed in the individual columns. This makes the dialogs and modules, upon
which no further objects can be created or whose space for identifiers is becoming scarce, easier
to identify.

The third table is of an informative nature and contains the number and the memory size of the
rule frames that are used by the rule interpreter. It also contains information pertaining to the num-
ber and memory size of buffers that are necessary for the storage of interim results.

class defaults models instances count alloc
------------------- --------- --------- --------- --------- ---------

thisevclass 0 0 1 1 84
clipboard 0 0 1 1 100

setupclass 0 0 1 1 140
accelerator 1 1 2 4 336

module 0 0 1 1 628
pushbutton 1 0 1 2 752

dialog 0 0 1 1 783

A.06.03.b 47

48 ISA DialogManager

text 1 1 7 9 828
edittext 1 0 1 2 980

window 1 1 1 3 2k
rule 2 3 5 10 19k

<total> 7 6 22 35 25k

module count slots alloc labels labelsize name
--------- --------- --------- --------- --------- --------- -----------------
--

dialog 1 27 3k 29 3k
module 1 8 3k 1 3k

<maximum> 27 3k 29 3k dialog D

frames f-alloc scratch s-alloc values v-alloc
--------- --------- --------- --------- --------- ---------

2 22k 4 4k 69 17k

The columns values and v-alloc of the third table are not output in the IDM versions A.05.01.g3 and
A.05.01.h.

Abridgements

A maximum of 126 classes are listed. No object class-related allocation sizes are determined (column
contains only zeros).

8.6 Memory
This section contains the size of the allocated heap storage and gives clues about the amount of
memory used for the entire application. This functionality is only available under Windows or with an
activated IDM memory debugging. The sum of the allocated memory blocks is determined via
HeapWalk() and for the C-runtime via _heapwalk. The heap that is used directly by the IDM is marked
with “*” and the default heap of the process is marked with “P”.

MEMORY:
heap alloc other

- ---------- --------- ---------
* crt 386k 56k

0x02CC0000 4k 61k
0x02BA0000 5k 167k
0x029C0000 386k 613k
0x02A10000 9k 56k
0x006F0000 7k 999k
0x00340000 12k 52k
0x00630000 11k 53k

P 0x007B0000 137k 797k
<total> 568k 3m

Abridgements

Only the first 20 heaps are displayed.

Note

Please be aware that the heaps also contain IDM-foreign memory allocations that are, for example,
used by the application function, system routines or external functions (DLL, In-Process-OLE-Con-
trol).

8.7 Slots
The output of slots serves especially for the recognition of errors in the IDM library, which are related
to the referencing, the release and the destruction of objects. A list of object slots, which could not be
completely eliminated or that displayed suspiciously high referencing and locking counters, is cre-
ated.

SLOTS:
slot class refs locks drop hull object

------------ ----------- ---------- ----- ---- ---- --------------------
[0x00020028] window 1 1 1 0 window D.WINDOW:[1]

Abridgements

A maximum of 20 slots is listed. All locked slots are displayed in full.

If the command line option, bulit-in or interface function with the parameter dump_locked (see com-
mand line option -IDMdumpstate <enum> in chapter “Command Line Options”) is used for the dump-
state output, then additionally all attributes of the locked objects are dumped. Attribute values of
resources, rules and functions cannot be dumped.

8.8 Visible Objects
In this section all of the visible objects are written out including the values of their pre-defined attrib-
utes and visible child objects. This section should deliver copies of most of the relevant objects and
attributes when display problems occur in order to be able to reproduce errors more quickly.

VISIBLE OBJECTS:
window Wi {

.repos_id "";

.userdata nothing;

.visible true;

.sensitive true;

.navigable true;

.fgc null;

.bgc null;

A.06.03.b 49

50 ISA DialogManager

.font null;
:
}

In the dump_full and dump_uservisible mode (see command line option -IDMdumpstate <enum> in
chapter “Command Line Options”) all visible objects that are directly attached under a dialog or a mod-
ule are written out. All of the pre-defined and user-defined attributes including all of the visible and
invisible child objects and child records are written out for these objects.

In principle no resources, rules, methods or functions can be dumped.

Abridgements

Only the top visible objects are dumped, without value/child objects.

8.9 Example

Constellation

An IDM application started an individual thread via C that crashed after 10 seconds because it was try-
ing to access an invalid storage address. In the thread approximately 5 x 10MB memory is allocated.
During this process the IDM is constantly creating windows and records whereby the windows are
eventually destroyed, but not the records.

In this case the end of the log file looks somewhat like the following:

FATAL ERROR: Exiting due to exception 0xC0000005 (ACCESS VIOLATION)
*** DUMP STATE BEGIN ***

ATTENTION: not in IDM main thread!

PROCESS:
pid=3024, thread=5176, IDM-thread=4684, date=2009-11-16, time=16:58:52

STACK:
#0: create(window, dialog D, true)
#1: rule D.Test ("c-thread-access-violation"), this=dialog D,
file=bad.dlg:78+40%

valstack=["c-thread-access-violation", window, true]
#2: rule on extevent 1 , this=dialog D, file=bad.dlg:112+71%
#3: DM_EventLoop(null)
THISEVENTS:
#0: source=external, object=dialog D, data=1

USAGE:
class defaults models instances count alloc

------------------- --------- --------- --------- --------- ---------
record 1 0 24704 24705 0

window 1 0 1 2 0
clipboard 0 0 1 1 0

dialog 0 1 1 2 0
module 0 0 1 1 0

setupclass 0 0 1 1 0
thisevclass 1 0 1 2 0
accelerator 1 0 3 4 0

function 0 0 6 6 0
rule 1 1 5 7 0
text 1 6 16 23 0

<total> 6 8 24740 24754 0

module count slots alloc labels labelsize name
--------- --------- --------- --------- --------- --------- -----------------
--

dialog 1 24745 99k 28 3k
module 1 9 3k 1 3k

<maximum> 24745 99k 28 3k dialog D

frames f-alloc scratch s-alloc
--------- --------- --------- ---------

2 13k 5 5k

VISIBLE OBJECTS:
#0: window D.WiMain

MEMORY:
heap alloc other

- ---------- --------- ---------
* crt 11m 3m

0x030D0000 4k 61k
0x030E0000 5k 167k
0x00300000 11k 54k
0x02EF0000 11m 4m
0x027A0000 6k 58k
0x00030000 13k 52k

P 0x00A50000 48m 791k
<total> 59m 5m

*** DUMP STATE END ***

The following can be read from the dumpstate output:

The message “ATTENTION: not in IDMmain Thread!” implies that the crash (ACCESS
VIOLATION) does not take place in the IDM. For this reason the callstack is, in this situation,
unsuspicious. When the crash occurred in another thread the IDM was calling the built-in function
create.

A.06.03.b 51

52 ISA DialogManager

The number of record instances in the USAGE section is suspiciously high. This can be seen in
the record line of the class table as well as in the <maximum> line of the module sub-table. In
addition, the enormous storage need is reflected in the crt line of the MEMORY table.

The MEMORY table shows that an enormous amount of memory (over 50 MB) has been accu-
mulated in the default heap of the process (labeled as “P”).

8.10 Noteworthy for Windows/Threads
The IDM manages its own callstack for rule calls, methods, builtin functions, IDM interface functions
and IDM application functions (see also chapter “Callstack”). For the IDM interface functions (except
for DM_SendEvent, DM_QueueExtEvent, which do not appear on the callstack) a check takes
place to see if they are called from the same thread in which the IDM was initialized. If this is not the
case, then an error message is sent.

For the most part (with only a few exceptions) the IDM and its interfaces are not designed for use in
multi-threading situations. The callstack only serves to manage IDM-specific functions and not for
arbitrary application functions.

9 Tracing
With help of various command line switches, processing in the DM can automatically be debugged
and tested.

9.1 Description of Tracing
With help of the tracing facility, the DM application can be debugged. The tracefile contains all
executed rules, all called application functions and all called DM functions with their current para-
meters (please refer also to manual “C Interface - Basics”).

The following is also traced:

built-in functions with side-effects (e.g. create),

setvalues (always - not only when a changed event was created),

call to format and canvas functions,

DM-calls in network applications on the server part.

The general layout of the file is as follows:

[<Abbreviation>]<Action>

The explanation of what has currently be done is given in the <Action>.

The <Abbreviation> stands for the DM action. The following codes are possible:

[AC] AppMain call. This is the call to the main user program called AppMain.

[AR] AppMain return. This is the return value of AppMain to the DM.

[BA] Builder action: Start of an action (e.g. -writeexport) in builder process mode.

[BC] Built-in function call. A built-in function was called by the Dialog Manager.

[BD] Builder return: End of an action (e.g. -writeexport) in builder process mode.

[BM] Builder message: IDM message in builder process mode.

[BR] Built-in function return. This is the return value of a built-in function.

[BX] Builder command: Command for the IDM in builder process mode, e.g.
-buildertimeout.

[DC] Dump Call. Source code output of the active window triggered by pressing the function key
defined with the command line option -IDMobjdump_fkey.

A.06.03.b 53

54 ISA DialogManager

[DE] Dialog event. This is a user event which was triggered by the user when interacting with
the system.

[DR] Dump Return. End of source code output of the active window triggered by pressing the
function key defined with the command line option -IDMobjdump_fkey.

[DS] Dialog start. This is the execution of the dialog start rule.

[EC] Error Handler Call. An error handler is called.

[EE] Exit. The application does not exit normally. The exit status is written into the trace file.

[EQ] Return executing SQL statement. Return value after the execution of a SQL statement.

[ER] Error Handler Return. Return from an error handler.

[EX] External event.

[FA] Function assignment phase. The parameters passed with write access (declared as out-
put) are now assigned to their object attributes.

[FC] Function call. A function of the application was called by the DM.

[FE] Finish dialog. This is the dialog finish event which was triggered by calling the function exit
in a rule.

[FR] Function return. This is the return value of an application function

[IA] Interface argument. This is an argument which was passed from the application to a DM
function.

[IC] Interface call. A DM function was called by the application.

[IE] Interface error. The DM function returns an error.

[IR] Interface return. This is the return value of a DM function.

[IV] Interface value. Additional values passed on to or returned of interface functions..

[MC] Method call. Call of a method.

[MR] Method return. Return value of a method.

[NI] Network information. This message describes which transport is tried out and which one
was started.

[PD] Finish of perform rule. The execution of a sub-rule is finished.

[PR] Perform rule. This is the call of a sub-rule from another rule.

[RC] Rule call. This is the call of a named rule.

[RR] Rule return. This is the return value of a rule.

[SC] Simulated function call.

[SE] Setval event. This is an internal event which was triggered by setting an object attribute.

[SQ] Execute SQL statement. Execution of a SQL statement.

[SR] Simulated function return. Return value of a simulated function.

[SV] SetValue. This a SetValue to an attribute of an object.

[TD] Tracing disabled. Tracing is switched off.

[TE] Tracing enabled. Tracing is switched on.

[UM] User message. This message was written by the application with a call of DM_TraceMes-
sage.

[VS] Version string of the used DM version (5 lines).

[WE] Window system event

[XD] Finish execution of a rule.

[XR] Execution rule. The execution of a rule is started.

9.2 Configuration of Tracing
If enormous dialogs are being processed the tracefiles increase accordingly. This is why the tracing
can be configured. In addition the possibility to switch on and off the tracing (setup.tracing :=
true/false) is available.

The configuration of tracing enables you to switch off the tracing for special trace events. This is help-
ful for e.g. loops or other trace-intensive rules or program codes. You may switch off trace events at
the Setup object. The attribute .tracing is indexed with a string:

setup.tracing["<abbreviation>"] := false;

Example

setup.tracing["RR"] := false;

This definition switches off all return values of named rules.

By switching off certain trace events – e.g. ["RC"] (call of a named rule) – you may also obtain a group-
ing effect: in the above example the calls of named rules are oppressed as well as the return values of
named rules (see table below, column “Grouping”).

A.06.03.b 55

56 ISA DialogManager

Note

Please note that the following trace events cannot be switched off:

important trace events (see table below, column “Can be toggled by user”.)

trace events via DM_TraceMessage

Warning

If you need IDM support, do not switch off too many trace messages, as we might not be able to help
you efficiently. If important trace messages are missing it is not possible to get a satisfactory analysis.

Please not the following programming hints.

Right

variable boolean I_NEED_HELP_FROM_ISA_SUPPORT := true;
...
rule MyCode()
{

TraceEvent("RC", false);
...

}

rule TraceEvent(string TraceTag, boolean Value)
{

!! Check the global variable for support.
if (not I_NEED_HELP_FROM_ISA_SUPPORT) then

setup.tracing[TraceTag] := Value;
endif

}

Wrong

rule MyCode()
{

!! Do not look for help in your rules without a trace.
!! Nobody knows which rule was called!
setup.tracing["RC"] := false;
...

}

The following table summarizes how trace events are grouped and indented in the trace file. It also
indicates whether the trace messages can be turned off by the user. In the table mean:

“Abbreviation” of relevant trace event: Please refer to chapter “Description of Tracing”.

“Grouping”: Trace event which also switches trace event in the first column.

“Indention”:

= no indention

> to the right

< to the left

Abbreviation Grouping Indention Can be Toggled by User

IC IC > yes

IR IC < yes

IE -- = no

IA IC = yes

IV IC = yes

FC FC > yes

FR FC < yes

FA FC = yes

EE -- = no

VS -- = no

UM -- = no

AC AC > yes

AR AC < yes

NI -- = no

TE -- = no

TD -- = no

SV -- = yes

PR PR > yes

PD PR < yes

SQ SQ > yes

EQ SQ < yes

BC BC > yes

A.06.03.b 57

58 ISA DialogManager

Abbreviation Grouping Indention Can be Toggled by User

BR BC < yes

RC RC > yes

RR RC < yes

MC MC > yes

ME ME = no

ML ME = no

MR MC < yes

DS -- = yes

FE -- = yes

SE -- = yes

EX -- = yes

DE -- = yes

XR XR > yes

XD XR < yes

SC SC > yes

SR SC < yes

WE -- = yes

EC -- > yes

ER EC < yes

9.3 Time Marks during Tracing
The option -IDMtracetime <No.> is used to protocol the absolute or relative time needed for functions
and rules during program run. It is thus possible to identify very time-consuming functions or rules for
which tuning measures could then be taken .

There are three types of time measurement, which can be set using the <No.> parameter:

0
No times are logged in the trace file.

1
This value indicates start time mode. In this mode all start and end times are logged. The time
needed for a single structure may then be calculated with the difference. In this mode only the
system and user time will be considered.
The times are given in format [hh:mm:ss:uuu] at the beginning of line:

hh = hours

mm = minutes

ss = seconds

uuu = milliseconds

2
This value indicates the trace time mode. In this mode the time difference to the last logged call
is given. It is thus possible to easily recognize how much time is needed for individual actions.
In this mode the time difference to the last trace output is given in the format [sss:uuu] at the
beginning of line:

ss = seconds

uuu = milliseconds

3
This value specifies the real-time mode. In this case the real time is indicated for each action to
be logged in the trace file.
In this mode the real time is given in format [hh:mm:ss] at the beginning of line:

hh = hours

mm = minutes

ss = seconds

9.4 Safety Tracing

Availability

The safety mode of tracing is available in the IDM versions A.05.01.g3 and A.05.01.h as well as from
A.05.02.e.

Safety tracing is a special trace file mode. In order to keep the trace file running during long applic-
ation sessions without experiencing a slower running system and the use of too many resources,
safety tracing uses a limited ring buffer that is held in the memory. For this use the option
-IDMstracefile <filepath> instead of -IDMtracefile <filepath> or when using -IDMtracefile <file-
path> switch on safety mode with the option -IDMstrace.

With respect to the ring buffer, limited means that the number of lines and the number of characters
per line (without indents) is restricted. In addition, the length of the string values (typically displayed in
"…") is shortened and the string length is attached in brackets []. The limitations can be influenced via

A.06.03.b 59

60 ISA DialogManager

the option -IDMstraceopts. For the hierarchical indentation in the trace file two blank spaces are
used. This cannot be influenced by the option -IDMindent. If the issued lines are discontiguous this is
marked by a line and a colon. If the maximum length of the line is exceeded, this is marked with a tilde
(~).

The content of the ring buffer is written to the trace file only after the application has been ended. It is
necessary to have an active exception catcher in order to guarantee that files are saved in case of sys-
tem crashes (see chapter “Exception Catcher”).

Switching off the tracing or the output of certain trace codes is not possible in the safety tracing.

The following limitations apply within the safety tracing:

Minimum Maximum Default

Bytes per line 20 65,536 200

Lines 20 100,000 1,000

String length 40

Indent depth 50 (100 white spaces)

A

AC (AppMain call) 53

application 24

application layer 7

AppMain call 53

AppMain return 53

AR (AppMain return) 53

Auflösung 20

B

BA (Builder action) 53

BC (builtin function call) 53

BD (Builder return) 53

big-endian 24

BindFunctions 30

-bindir 24

BM (Builder message) 53

BOM 24

BR (builtin function return) 53

builder 24, 37-38

Builder action 53

Builder command 53

Builder message 53

builder process 36

client 36-37

command line options 39

communication 37-38

environment variables 37

IDM Eclipse Plugin 38

log file 38

makefile 37

MakeGen Plugin 38

Microsoft Windows 38

particularities 38

process number 37

server 36-37

time-out 37

tracing 38

usage 37-38

working directory 37

builder process mode 36

Builder return 53

builderid 25, 37

builderstop 25, 38

buildertimeout 25

builtin function call 53

builtin function return 53

BX (Builder command) 53

Byte Order Mark 24

C

callstack 12, 46

character encoding 23

classname 25

-cleancompile 25

cleancompile1 25

-cleancompile1 25

-cobbasename 26

-cobname 26

Index

A.06.03.b 61

COBOL

Unicode 28

code page 23

encoding mark 23

command line option 12

place holder 22

command line options

builder process 39

set code pages 23

command line switch 53

-compile 26

compile1 26

-compile1 26

config 33

configurable 33

configuration

tracing 55

configuration file 12, 28, 33-34

copy file 32

-cpyname 27

D

DC (Dump call) 53

DE (Dialog event) 54

debugging 53

default

object 7

definition part 7

development environment 8

dialog 7

control 7

event 54

start 54

dialog layer 7

DM_SHARED_MODULES 36

DPI 17, 20

DR (Dump return) 54

Drag&Drop 18, 20

DS (dialog start) 54

dumpstate 13-14, 44

callstack 46

Errors 46

Event Queue 46

events 46

Heap 48

IDM main thread 45

Memory 48

Process 45

sections 44

Slots 49

Stack 46

Thisevents 46

Usage 47

Visible Objects 49

E

EC (Error Handler Call) 54

EE (Exit) 54

encoding mark 23

environment variable

IDM_CONFIGFILE 12

IDM_ERRWIN 16

IDM_LOGFILE 15

IDM_NO_YI_MONITORING 17

62 ISA DialogManager

IDM_STRACEOPTS 19

IDM_TRACEFILE 20

place holder 22

environment variables 15, 35, 37

ER (ErrorHandler Return) 54

error file 15

error handler 54

Errors 46

EX (external event) 54

exception catcher 12

execute SQL statement 55

execution rule 55

exit 54

external event 54

F

FA (function assignment phase) 54

FC (Function call) 54

FE (Finish dialog) 54

file access 35

finish

dialog 54

execution rule 55

perform rule 54

FR (function return) 54

function

assignment phase 54

call 54

return 54

function prototype 30

function table 30

G

global variable 33

H

header file 30, 32

Heap 48

HighDPI 17, 20

I

IA (interface argument) 54

IC (interface call) 54

identifier 3

idl file 31

IDM builder process 36

IDM Eclipse Plugin 30

IDM_CONFIGFILE 12

IDM_ERRWIN 16

IDM_LOGFILE 15

IDM_NO_YI_MONITORING 17

IDM_SEARCHPATH 18

IDM_STRACEOPTS 19

IDM_TRACEFILE 20

IDMbinerror 12

IDMcallstack 12

IDMcatchexceptions 12

IDMcolor 12

IDMconfigfile 12

IDMconsole 13, 38

IDMcp_appl 23

IDMcp_format 23

IDMcp_input 23

A.06.03.b 63

IDMcp_io 23

IDMcursor 13

IDMdumpstate 13

IDMdumpstateseverity 14

IDMenv 15, 37

IDMerrfile 13, 15

IDMerrwinfile 15

-IDMfatalneterrors 16

IDMfont 16

IDMformat 16

IDMindent 16

IDMkeyboard 17

IDMlanguage 17

IDMno_yi_monitoring 17

-IDMobjdump_fkey 17

IDMscale 17

-IDMsearchpath 18

IDMserver 18

-IDMshowerror 18

IDMsource 18

IDMstrace 19

IDMstracefile 19

IDMstraceopts 19

IDMtarget 20

IDMtile 20

IDMtiledpi 20

IDMtracefile 20

IDMtracetime 20, 58

-IDMusepathmodifier 21

IDMversion 22

IE (interface error) 54

-ifdir 27

IMDcp_output 23

include file 30

indenting

source code 16

tracing 16

initialization 33

interface

argument 54

call 54

return 54

Interface

error 54

interface value 54

IR interface return 54

IV (interface value) 54

L

little-endian 24

M

make 36

makefile 37

MC (method call) 54

Memory 48

method call 54

method return 54

-mfviscob 27

-mfviscob-u 28

model 7, 31

MR (method return) 54

Muster 20

64 ISA DialogManager

N

National Character 28

network

information 54

NI (network information) 54

-noif 28

O

object 7

OLE server 31

operation rule part 7

option

-bindir 24

-cleancompile 25

-cleancompile1 25

-cobbasename 26

-cobname 26

-compile 26

-compile1 26

-cpyname 27

-IDMfatalneterrors 16

-IDMobjdump_fkey 17

-IDMsearchpath 18

-IDMshowerror 18

-IDMusepathmodifier 21

-ifdir 27

-mfviscob 27

-mfviscob-u 28

-noif 28

-recompile 28

-recompile1 28

-ufcob 29

-userregistry 30

+writefuncmap 30

+writeheader 30

-writeole 31

+/-writetrampolin 32

application 24

bindir 24

builder 24

builderid 25

builderstop 25

buildertimeout 25

classname 25

cleancompile 25

cleancompile1 25

compile 26

compile1 26

IDMbinerror 12

IDMcallstack 12

IDMcatchexceptions 12

IDMcolor 12

IDMconfigfile 12

IDMconsole 13

IDMcursor 13

IDMdumpstate 13

IDMdumpstateseverity 14

IDMenv 15

IDMerrfile 15

IDMerrwinfile 15

IDMfont 16

IDMformat 16

IDMindent 16

A.06.03.b 65

IDMkeyboard 17

IDMlanguage 17

IDMno_yi_monitoring 17

IDMscale 17

IDMsearchpath 18

IDMserver 18

IDMsource 18

IDMstrace 19

IDMstracefile 19

IDMstraceopts 19

IDMtarget 20

IDMtile 20

IDMtracefile 20

IDMtracetime 20

IDMusepathmodifier 21

IDMversion 22

ifdir 27

noif 28

profile 28

recompile 28

recompile1 28

writeclassdef 30

writedialog 30

Option

-cleancompile1 25

-compile1 26

-recompile1 28

cleancompile1 25

compile1 26

IDMtiledpi 20

recompile1 28

options 8

Options in the Simulation Program 24

P

pattern 17

PD (finish of perform rule) 54

perform rule 54

finish 54

place holder

command line option 22

environment variable 22

PR (perform rule) 54

presentation layer 7

Process 45

process number 37

profile 28, 33

R

RC (rule call) 54

RC (simulated function return) 55

-recompile 28

recompile1 28

-recompile1 28

record 32

configurable 33

reg file 31

resource 7

Return executing SQL statement 54

RR (rule return) 55

rule 7

call 54

return 55

66 ISA DialogManager

S

safety mode 19

safety tracing 19, 59

SC (simulated function call) 55

SE (setval-event) 55

search path 18

searchsymbol 29

setval-event 55

SetValue 55

shared modules mode 36

simulated function call 55

simulated function return 55

Slots 49

source code

indenting 16

SQ (execute SQL statement) 55

Stack 46

status information 44, See also dumpstate

SV (SetValue) 55

T

TD (tracing disabled.) 55

TD (tracing enabled.) 55

testing 53

tile 17

Tile 20

time 20, 58

time-out 37

timestamp 20

trace file 20

tracefile 53

tracing 38

description 53

indenting 16

safety mode 19, 59

tracing disabled 55

tracing enabled 55

tuning measures 58

U

-ufcob 29

UM (user message) 55

Unicode 28

Use Path 21

user message 55

-userregistry 30

V

variable

configurable 33

version string 55

Visible Objects 49

W

WE (window system event) 55

windows system event 55

working directory 37

writebin 30

writeclassdef 30

writedialog 30

+writefuncmap 30

+writeheader 30

-writeole 31

A.06.03.b 67

writeproto 31

writerefs 31

+/-writetrampolin 32

X

XD (finish execution rule) 55

XR (execution rule) 55

68 ISA DialogManager

	Notation Conventions
	Table of Contents
	1 Overview
	1.1 Description of Structure and Components
	1.2 Software
	1.3 Documentation
	1.3.1 Attributes, Objects and Resources
	1.3.2 Programming
	1.3.2.1 Built-in Rule Language
	1.3.2.2 Application Programming Interfaces (APIs)
	1.3.2.3 Communication and Integration

	1.3.3 Development Environment

	2 Command Line Options
	2.1 Place Holders in File Names
	2.2 Command Line Options for Setting Code Pages
	2.2.1 Code Page Identifiers
	2.2.2 Encoding Marks for Files

	2.3 Command Line Options in the Simulation Program

	3 Configuration File
	4 Environment Variables
	5 IDM Builder Process
	5.1 Availability
	5.2 The Builder Process Mode
	5.2.1 Example
	5.2.2 Usage Instructions
	5.2.3 Usage Information for the IDM Eclipse Plugin
	5.2.4 Particularities

	5.3 Command Line Options for the Builder Process

	6 Error messages of IDM
	7 Functions for Error Analysis
	7.1 Overview
	7.1.1 Safety Tracing
	7.1.2 Dumpstate

	7.2 Exception Catcher

	8 Dumpstate (Status Information)
	8.1 Process
	8.2 Errors
	8.3 Callstack
	8.4 Events
	8.5 Usage
	8.6 Memory
	8.7 Slots
	8.8 Visible Objects
	8.9 Example
	8.10 Noteworthy for Windows/Threads

	9 Tracing
	9.1 Description of Tracing
	9.2 Configuration of Tracing
	9.3 Time Marks during Tracing
	9.4 Safety Tracing

	Index

