
OLE INTERFACE

A.06.03.b

This manual describes the OLE interface of the ISA Dialog
Manager which is available as an option of the IDM for
Microsoft Windows. OLE (Object Linking and Embedding) is
a technology for communication between objects and embed-
ding them within each other. The manual explains how OLE
clients and servers can be implemented with the IDM.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 Introduction 9

1.1 Requirements 9
1.1.1 Developer 9
1.1.2 System 9
1.1.3 Container / Client 9
1.1.4 User 9

2 The control Object 11

2.1 Attributes 13
2.2 Specific Attributes 17

2.2.1 connect 17
2.2.2 mode 18
2.2.3 name 18
2.2.4 picture 19
2.2.5 uuid 20

3 The subcontrol Object 22

3.1 Attributes 22
3.2 Implicit Creation 23
3.3 Dynamic OLE Properties and Subcontrols 25
3.4 Garbage Collection 25

3.4.1 Example 26

4 Dialog Manager as OLE Client 29

4.1 Server Integration 29
4.2 Activation of Server 30
4.3 Using the Server 30
4.4 Identifying the Interfaces 32

4.4.1 Microsoft C++ Compiler Version 4.x 32
4.4.2 Microsoft C++ Compiler Version 5.0 34

4.5 Use of Grid Controls 36

A.06.03.b 5

4.6 Using the Internet Explorer 43

5 Dialog Manager as OLE Server 48

5.1 Basic Structure of Control as OLE Server 48
5.2 Unambiguous Interface 48
5.3 Single Usage and Multi-usage of an OLE Server 50
5.4 Attributes 51
5.5 Methods 51
5.6 Notifications 52
5.7 Events 52

5.7.1 The message Resource 52
5.8 Access to Attributes of any Object 53
5.9 Generating Interface Information 55

5.9.1 Generating the idl and reg Files 55
5.9.2 Server Registration 56
5.9.3 Further Processing of the idl File 56

5.10 Example 56
5.11 Exemplary Integration of a Server in Word 7.0 57

5.11.1 Server Dialog 57
5.11.2 Implementing the Client 58
5.11.3 Working with the Server 60

5.12 Summary of How to Provide an OLE Server 61

6 Server and Client Implementation 63

6.1 Client Structure 63
6.1.1 Server Activation 64
6.1.2 Querying and Setting Values in the Server 66
6.1.3 Reaction to Events 67
6.1.4 Reaction to Notifications 68
6.1.5 Calling Methods in the Server 69
6.1.6 The Client Dialog 71

6.2 Server Structure 80
6.2.1 Providing the Server 82
6.2.2 Querying and Setting Attributes 86
6.2.3 Calling Methods 86
6.2.4 Sending Events 87
6.2.5 Sending Notifications 89
6.2.6 The Server Dialog 90

6 ISA DialogManager

A.06.03.b 7

7 Dialog Manager Environment 99

Index 101

8 ISA DialogManager

1 Introduction
This manual describes how to use the Dialog Manager for OLE communications. First the Dialog Man-
ager is described as OLE client and then as OLE server. Both chapters contain examples illustrating
the basic working methods with OLE.

The COM technology (Component Object Model) offers possibilities to have applications com-
municate with one another, including graphic integration. This technology is better known as OLE.

The project team may expand the application possibilities of existing programs by integrating new pro-
grams which have been defined with the Dialog Manager on the basis of standard interfaces (OLE).
So, the Dialog Manager interfaces and features can be used in existing programs without that pre-
vious investments decrease in value.

1.1 Requirements

1.1.1 Developer
Using the OLE functionality requires working knowledge of the COM technology and Windows. You
should also have experience with .reg files,.idl and .tlb files as well as with the meaning of interfaces in
OLE and COM. Furthermore you should know the meaning of the terms "methods" and "properties"
with regard to the Idispatch interface.

1.1.2 System
OLE functionality only works on the Microsoft Windows operating systems. The dialog itself, however,
may run "standalone" on many other systems, on which the OLE server functionality described in the
dialog has no meaning.

1.1.3 Container / Client
The application (in the following called OLE client or client) should access the interfaces of the OLE
server via the IDispatch-Interface, in order to be able to use the methods and properties. Moreover
there must be several interfaces available to allow the Dialog Manager to establish a communication
with the client.

1.1.4 User
Users do not need special requirements, as they usually have no insight into the structure of the
application as OLE client and OLE server. Due to the time needed for the communication a time delay

A.06.03.b 9

10 ISA DialogManager

might occur when starting the server.

2 The control Object
The tasks of the control object depend on the way the control object is used. There are two pos-
sibilities:

If the control object is used as OLE client, then the communication with the server will be estab-
lished with this object. In addition, this object defines the area in which the server is to appear
within the client. All calls made to the server to set and query properties or to call methods will thus
be carried out via this control object.

If the control object is used as OLE server, it is used to define the interface and to communicate
with the client. Dialog Manager is not able to make all its objects, methods, resources and attrib-
utes, etc. available as interfaces. This would go beyond the scope of the interfaces in OLE and, in
addition, it is not recommendable offering the entire dialog to the external program. The attributes,
methods and events of the control object describe the interface of the OLE server to its clients.

Definition

{ export | reexport } { model } control { <Identifier> }
{

<standard attributes>
<plain attributes>
<geometry attributes>
<grid attributes>
<hierarchy attributes>
<layout attributes>
<object-specific attributes>

}

Events

extevent

finish

help

help

paste

select

start

Children

canvas

A.06.03.b 11

12 ISA DialogManager

checkbox

edittext

groupbox

image

listbox

menubox

menuitem

menusep

notebook

poptext

pushbutton

radiobutton

rectangle

scrollbar

spinbox

statictext

tablefield

treeview

window

Parent

dialog

groupbox

layoutbox

module

notepage

splitbox

toolbar

window

Menu

Pop-up menu

2.1 Attributes

Attributes RSD PID Properties Short Description

acc_label string
object

string
text

S.G/D/C overwrites the Automation
Identifier for MICROSOFT UI
Automation

acc_text object
string

text
string

S.G/D/C overwrites the Automation
Name for MICROSOFT UI
Automation

accelerator identifier accel S,G/D/C accelerator of object

active boolean active S,G/D/C state of server or client

bgc identifier color S,G/D/C background color of object

bordercolor identifier color S,G/D/C border color of object

borderwidth integer integer S,G/D/C width of object border

child[I] object object S,G/-/C accesses the I-th child
object

childcount integer integer -,G/-/- queries the number of
child objects

class class class -,G/-/- class of object

connect boolean boolean S,G/D/C state of connection to OLE
server or OLE client

cursor identifier cursor S,G/D/C cursor belonging to object

cut_pending boolean boolean S,G/-/- cut operation is still
pending

cut_pending_changed boolean boolean -,G/-/- changing state during cut
operation

dialog identifier instance -,G/-/- dialog for object

document[I] object document S,G/-/- accesses the I-th XML
Document

external boolean boolean -,G/-/- returns if the object class
is an USW class

A.06.03.b 13

14 ISA DialogManager

Attributes RSD PID Properties Short Description

external[I] class class -,G/-/- returns the I-th registered
USW class

fgc identifier color S,G/D/C foreground color of object

firstchild object object S,G/-/C accesses the first child
object

firstrecord object record S,G/-/C accesses the first record of
an object

firstsubcontrol object object S,G/D/C accesses the first sub-
control

focus object
boolean

instance
boolean

-,G/-/- keyboard focus of object

font identifier font S,G/D/C font of object

function identifier func S,G/D/C function of object

groupbox identifier instance -,G/-/- groupbox the object
belongs to

height integer integer S,G/D/C indicates height of object

help string
identifier

string
text

S,G/D/C helptext of object

index integer integer -,G/-/- current index of object in
the children list of its par-
ent

label string string S,G/D/C name (identifier) of object

lastchild object object S,G/-/C accesses the last child
object

lastrecord object record S,G/-/C accesses the last record of
an object

lastsubcontrol object object S,G/D/C accesses the last sub-
control

license_key string string S,G/D/C license key for an ActiveX
control

Attributes RSD PID Properties Short Description

member[I] attribute attribute -,G/-/- i-th user-defined attribute
of object

membercount integer integer -,G/-/- number of user-defined
attributes

menu identifier instance S,G/D/C menu of object

message[I] identifier message -,G/D/- messages to be sent to cli-
ent

mode enum enum S,G/D/C mode of control object,
either as client or as server

model identifier instance S,G/D/C model belonging to object

name string string -,G/D/- name or ProgID of server
or of client

notepage identifier instance -,G/-/- notepage the object
belongs to

parent identifier instance S,G/-/- parent of object

picture identifier instance S,G/D/C picture to be displayed in
inactive state

posraster boolean boolean S,G/D/C indication of position refers
to raster

real_height integer integer -,G/-/- real height of object

real_sensitive boolean boolean -,G/-/- real selectability of object

real_visible boolean boolean -,G/-/- real visibility of object

real_width integer integer -,G/-/- real width of object

real_x integer integer -,G/-/- real distance from the left
(in pixel)

real_xraster integer integer -,G/-/- width of internally used ras-
ter

real_y integer integer -,G/-/- real distance from top (in
pixel)

A.06.03.b 15

16 ISA DialogManager

Attributes RSD PID Properties Short Description

real_yraster integer integer -,G/-/- height of internally used
raster

record[I] object record S,G/-/C accesses the I-th record of
an object

recordcount integer integer -,G/-/- queries the number of
child records

reffont identifier font S,G/D/C reference font of object

scope integer
(1, 2, 3)

scope -,G/-/- queries the object type
(Default, Model or
instance)

sensitive boolean boolean S,G/D/C selectability of object

sizeraster boolean boolean S,G/D/C size refers to raster of par-
ent object

statushelp string
identifier

string
text

S,G/D/C text to be displayed in the
statusbar

subcontrol[I] object object S,G/D/C accesses the I-th sub-
control

subcontrolcount integer integer -,G/-/- queries the number of sub-
controls

toolhelp string
object

string
text

S,G/D/C gives a short explanation
of object at the cursor

userdata anyvalue anyvalue S,G/D/C userdata of object of any
datatype

uuid string string -,G/D/- unambiguous UUID of
OLE server

visible boolean boolean S,G/D/C visibility of object

width integer integer S,G/D/C current width of object

window identifier instance -,G/-/- window the object belongs
to

xauto integer
(-1, 0, 1)

integer S,G/D/C type of x-coordinates defin-
ition

Attributes RSD PID Properties Short Description

xleft integer integer S,G/D/C x-coordinate, distance
from the left

xraster integer integer S,G/D/C unit in x direction

xright integer integer S,G/D/C x-coordinate, distance
from the right

yauto integer
(-1, 0, 1)

integer S,G/D/C type of y-coordinates defin-
ition

ybottom integer integer S,G/D/C y-coordinate, distance
from bottom

yraster integer integer S,G/D/C unit in y direction

ytop integer integer S,G/D/C y-coordinate, distance
from top

2.2 Specific Attributes

2.2.1 connect
Identifier:

.connect

Classification: object-specific attribute

Definition

argument type: boolean

C definition: AT_connect

C datatype: DT_boolean

COBOL definition: AT-connect

COBOL datatype: DT-boolean

access: set, get

“changed”, i.e. attribute can be used to trigger rules.

This attribute defines the state of the connection to the OLE client or to the OLE server. The services
of the OLE server can only be used if there is a connection.

A.06.03.b 17

18 ISA DialogManager

2.2.2 mode
Identifier:

.mode

Classification: object-specific attribute

Definition

argument type: enum

value range: mode_none, mode_client, mode_server

C definition: AT_mode

C datatype: DT_enum

COBOL definition: AT-mode

COBOL datatype: DT-enum

access: set, get

“changed”, i.e. attribute can be used to trigger rules.

This attribute defines how to use the control object. There are three possibilities:

mode_none: The mode is not defined, i.e. control is not used, neither as client nor as server. For
example, you can set this value if you have implemented an OLE server, but if, for some reason,
you are not able to act as a server, e.g. because the program was started as a normal program.

mode_client: The control object will be regarded as OLE client, i.e. an OLE server will be
accessed via this object.

mode_server: The control object is used as OLE server and may be accessed by other clients.

2.2.3 name
Identifier:

.name

Classification: object-specific attribute

Definition

argument type: string

C definition: AT_name

C datatype: DT_string

COBOL definition: AT-name

COBOL datatype: DT-string

access: set, get

“changed”, i.e. attribute can be used to trigger rules.

This attribute defines the name of the corresponding server at the control object which is used as OLE
client. You may deposit either the name or the ProgID of the server in this attribute.

If the control object is used as OLE server, the given string in this attribute will be registered as server
name in the registry list.

Example

model control CtTest
{
 .mode mode_client;
 .name "InternetExplorer.Application.1";
 .visible true;
 .active true;
 .connect false;
}

2.2.4 picture
Identifier:

.picture

Classification: object-specific attribute

Definition

argument type: object

C definition: AT_picture

C datatype: DT_tile

COBOL definition: AT-picture

COBOL datatype: DT-tile

access: set, get

“changed”, i.e. attribute can be used to trigger rules.

A.06.03.b 19

20 ISA DialogManager

This attribute is used to define the picture which is to be displayed in the inactive state of the control
object.

See Also

Attribute picture

2.2.5 uuid
Identifier:

.uuid

Classification: object-specific attribute

Definition

argument type: string

C definition: AT_uuid

C datatype: DT_string

COBOL definition: AT-uuid

COBOL datatype: DT-string

access: get

This attribute must be set when the control object is used as OLE server. Via this UUID the object can
be clearly identified by other programs. This UUID will be generated by using the program
guidgen.exe.

Figure 1: Generation of GUID

If the control object is used as OLE client, you may deposit the server UUID in this attribute. This attrib-
ute thus replaces the attribute .name which is usually used to deposit the server name.

A.06.03.b 21

22 ISA DialogManager

3 The subcontrol Object
OLE objects that can be used as servers by the IDM through the IDM object control often have a
rather complex structure and can consist of several further child objects. For example, the OLE con-
trol “Word.Application” has a collection of “Documents”, which manages the open documents. In turn,
these documents have “Words”, “Sentences”, “Ranges”, etc. as their own children. To be able to
access these sub-objects from the Rule Language, i.e. to call methods or query attributes, the sub-
control object can be used. The subcontrol represents an OLE child object which can be directly or
indirectly managed by an OLE server. Therefore the starting point for accessing such an object is
always the control.

Definition

{ export | reexport } subcontrol { <Identifier> }
{

<hierarchy attributes>
<object-specific attributes>

}

Events

None

Children

document

record

subcontrol

transformer

Parents

control

subcontrol

Menu

None

3.1 Attributes
connect

control

dialog

document[I]

firstrecord

firstsubcontrol

groupbox

label

lastrecord

lastsubcontrol

layoutbox

model

module

notepage

parent

record[I]

recordcount

scope

subcontrol[I]

subcontrolcount

toolbar

transformer[I]

userdata

window

3.2 Implicit Creation
One notable feature of subcontrols is that these objects can be implicitly created without being stat-
ically defined as object in a dialog or being dynamically created with create() before. But please pay
attention to chapter “Dynamic OLE Properties and Subcontrols” when you work with dynamic OLE
properties which create subcontrols.

Probably the implicit use is the most common use of these objects in practice. For example, when
using Microsoft Word as an OLE server the individual can be accessed like this:

Let control“Co” be defined somewhere in the dialog.

child control Co
{
 .mode mode_client;
 .name "Word.Application";
 .visible true;

A.06.03.b 23

24 ISA DialogManager

 .connect true;
}

Then control Co can be used in a rule like this:

rule OLETest ()
{
 variable object Doc;
 Doc := Co.Documents:Add();
 // Word has a collection that is entitled "Documents".
 // Co.Documents is used to access this OLE object. In order to
 // address the object in IDM, a subcontrol with the identifier
 // "Documents" is implicitly created and registered as a child
 // of control Co. The :Add() method is a member of the
 // "Documents" collection. Therefor, the method can be applied
 // to the just created subcontrol. It creates a new document
 // in Word and returns a pointer to its IDispatch interface.
 // As a counterpart on the IDM side another subcontrol is
 // created as child of the first subcontrol and connected
 // with the Word document. Finally this object is assigned
 // to the variable "Doc".

 // The subcontrol in "Doc" now can be used to call methods of
 // the OLE document and to query or set its properties.
 print Doc.FullName;
}

In general, if a method or a property returns a pointer to an IDispatch interface, or if this is passed to
the IDM as a parameter, the IDM creates a subcontrol that is connected to the IDispatch interface.
This means that the .connect attribute of such a subcontrol is already set to true.

Normally the identifier (label) of such a created object is not set so that something similar to “sub-
control Co.SUBCONTROL[2]” appears in the trace file. One exception is the access of properties that
return OLE objects. Since these are usually collections whose names can be known to the IDM, an
implicitly created subcontrol receives the name of the property as identifier.

Example

Doc1 := Co.Documents:Add();
Doc2 := Co.Documents:Item(1); // Assumption: No other Word documents
 // were open before.

In this example, two subcontrols are created in the first line: One with the identifier “Documents”,
another with the identifier “SUBCONTROL”. The reason for the identifier of the second subcontrol is
that the IDM has no further information when processing the Add() method. In the second line only
one more subcontrol is created with “SUBCONTROL[2]” as its identifier. As the IDM recognizes that a
subcontrol for “Documents” already exists, it is unnecessary to create it once more. All of this leads to
the situation, that on the OLE side there are two objects: one is the “Documents” collection and the
other one an empty document. On the IDM side there are three objects: a subcontrol for the

“Documents” collection and two subcontrols in the variables “Doc1” and “Doc2”, both connected to the
empty document on the OLE side. It is a matter of good programming style to avoid heaps of unne-
cessary subcontrol objects.

One may wonder at this point, what happens to all these subcontrols if they are not needed anymore.
Chapter “Garbage Collection” deals with this.

3.3 Dynamic OLE Properties and Subcontrols
When dynamic properties of OLE objects are queried, this may lead to the creation of new sub-
controls when these properties return objects (e.g. “ActiveSheet” of MICROSOFT EXCEL). At first this is
no problem. In subsequent queries however, the IDM will not refer to a current, newly returned object
but to the already existing subcontrol which has been cached by the IDM.

If this caching is unwanted or leads to problems, it can be avoided by two means:

After the access of a OLE property that creates a subcontrol, this subcontrol can be destroyed with
the :destroy() method before the next access of the OLE property (provided that it is no longer
needed).

After the access of a OLE property that creates a subcontrol, the .label attribute of this subcontrol
can be set to an empty string (""). Hereby the subcontrol object remains connected and available.
It will be destroyed within the usual garbage collection (see chapter “Garbage Collection”). Further
accesses of the OLE property will create a new subcontrol as the prior object will not be found
(internal search relies on .label).

Setting .connect of the concerned subcontrol to false provides no solution however, because with this
the subcontrol persists, only all further accesses will fail.

3.4 Garbage Collection
All implicitly created subcontrols have to be deleted again. For this purpose, the IDM remembers by
how many objects a subcontrol is referenced. If it is determined that a subcontrol is no longer in use,
neither by a variable (local, global, static) nor by a user-defined attribute, then the subcontrol is des-
troyed. Currently two strategies are applied, which are explained below.

1. If an implicitly created subcontrol is assigned to a variable (or something similar), and later this
variable is overwritten with another value, the subcontrol can be released, provided that it has no
children.

Example
Doc := Co.Documents:Add(); // 2 Subcontrols are implicitly created (A for
Documents
 // and B for the document created by the Add()
method).
Doc := Co; // Subcontrol B is no longer used by the
variable Doc

A.06.03.b 25

26 ISA DialogManager

 // and therefore can be destroyed. Now
subcontrol A can
 // determine that it has no more children and
can destroy
 // itself too.

2. In awkward situations it may happen that a subcontrol does not notice it can be destroyed. This
happens for example, when a newly created subcontrol has not been assigned anywhere. This
situation lacks a trigger to throw away the object. For this reason the IDM occasionally starts a
cleanup in which implicitly created subcontrols are checked if they are still required. Otherwise
they are discarded.

Important

Since the IDM garbage collection only takes into consideration the references from the Rule Lan-
guage, great care should be taken, if ObjectIDs of subcontrols are managed from the C interface (as
well as the COBOL and C++ interfaces). If such an ID is temporarily stored in the application, this is
not realized by the IDM. After the call of interface functions, the IDM may determine that the sub-
control is not needed anymore and dispose it accordingly. If control is transferred back to the applic-
ation side, it can no longer be assumed that the previously saved ObjectID is still valid. Therefore it
should be avoided to save subcontrols in the application. If this is wanted still, it is important to ensure
that the object is still referenced in the Rule Language (for example by a global or static variable, or in
a user-defined attribute). This guarantees that the subcontrol will not be thrown away.

3.4.1 Example
The following example shows how subcontrols can be used.

dialog Word

window WnWindow
{
 .active false;
 .width 400;
 .height 100;
 .title "Word.Document.8";

 on close
{

 if Co.connect then
 Co:Quit();
 endif
 exit();
 }

 child control Co
{

 .visible true;

 .active false;
 .xauto 0;
 .xleft 20;
 .xright 20;
 .yauto 0;
 .ytop 20;
 .ybottom 40;
 .mode mode_client;
 .name "Word.Application";
 .connect true;
 }

 child pushbutton PbOpen
{

 .xauto 1;
 .xleft 100;
 .width 76;
 .yauto -1;
 .height 27;
 .ybottom 10;
 .text "Open Doc";
 on select

{
 variable object Doc:=null;

 // Assumes that the file actually exists
Doc := Co.Documents:Open("c:/tmp/olddocument.docx");

 if Doc <> null then
 print "DocName: " + Doc.FullName;
 print "DocSaveStatus: " + Doc.Saved;
 endif
 }
 }

 child pushbutton PbAdd
{

 .xauto 1;
 .xleft 20;
 .width 76;
 .yauto -1;
 .height 27;
 .ybottom 10;
 .text "New Doc";
 on select

{

A.06.03.b 27

28 ISA DialogManager

 // Assumes that the file actually exists
 Co.Documents:Add("c:/tmp/newdocument.docx");
 }
 }

 child pushbutton PbClose
{

 .xleft 180;
 .width 92;
 .yauto -1;
 .height 27;
 .ybottom 10;
 .text "Close Doc";
 on select

{
 // Close first document (of the document list)
 Co.Documents:Item(1):Close();
 }
 }

 child pushbutton PbQuit
{

 .xauto -1;
 .width 85;
 .xright 20;
 .yauto -1;
 .height 27;
 .ybottom 10;
 .text "Quit";
 on select

{
 // Close Word
 Co:Quit();
 }
 }
}

on dialog start
{
 Co.Visible := true;
}

4 DialogManager asOLEClient
This chapter describes how to integrate OLE objects into Dialog Manager.

In the client mode, the control object establishes a connection to the OLE server. With the following
attributes you define which server is to appear, as well as the time and the form of its appearance.

.picture defines the displayed picture in the inactive state

.name defines the name of the external server

.connect defines the connection state

.visible defines the visibility

.active defines the activation state

.xleft, .ytop, ... defines the geometry

4.1 Server Integration
The server is actually integrated into the dialog via the Control object. The following attributes must
contain the corresponding values:

.name must contain the name or the ProgID of the used server

.xleft, .ytop, defines the position at which the server is to appear, if the Control object has not
been defined on top level

.visible defines whether Control is to be visible

.sensitive defines whether Control is to be selectable

.active defines whether server is to be active and thus accessible

.connect indicates whether there is a connection to the server

.picture contains the picture to be displayed in the inactive state of the server

Example

tile Server_Picture "IDM_IMAGES:isaicon.gif";
window WnClient
{

.title "Integrate OCX in IDM dialog";
child control Ctrl_Grid
{

.visible true;

.active false;

.xleft 11;

.width 249;

.ytop 48;

.height 169;

.picture Server_Picture;

A.06.03.b 29

30 ISA DialogManager

.mode mode_client;

.name "MSGrid.Grid";

.connect false;
 }
}

4.2 Activation of Server
The actual server activation is carried out by setting the attributes

.connect

.active

to value TRUE. If both attributes contain this value, there is a connection to the OLE server; i.e. meth-
ods may be called and/or attributes may be called and set.

You should always check whether the attribute .connect is set to TRUE, as it might occur that the
server cannot be started.

Example

rule void activation
{
 setvalue(Ctrl_Grid, .connect, true, true);
 !! this must be checked here
 !! as the connection
 !! might fail
 if (Ctrl_Grid.connect = true) then
 WnClient.title := "Client + Server";
 !! finally the client is made active
 Ctrl_Grid.active := true;
 else
 print "could not connect";
 endif
}

4.3 Using the Server
Calling methods as well as querying and setting attributes (properties) at the server is carried out
exclusively via the control object. For this purpose a syntax corresponding to the user-defined attrib-
utes and methods is used. These attributes and methods, however, must not be defined at the control
object. If a user-defined attribute is accessed at the control object and if this attribute is not defined
there, it will be passed on to the server. The same applies to the methods. If a method is called at the
control object and if this method is not defined there, this method will be called at the server. If it is not
defined there either, an error occurs, which will be traced in the tracefile or logfile.

Example

The attributes .Cols, .Rows and :GridLines are attributes of the used OLE server and may thus not be
defined in the control object.

child control Ctrl_Grid
{

.visible true;

.active false;

.xleft 11;

.width 249;

.ytop 48;

.height 169;

.picture Server_Picture;

.mode mode_client;

.name "MSGrid.Grid";

.connect false;

rule void activation
{

 variable integer Cols := 0;
 variable integer Rows := 0;

 setvalue(Ctrl_Grid, .connect, true, true);
 !! this must be checked here
 !! as the connection
 !! might fail
 if (Ctrl_Grid.connect = true) then

WnClient.title := "Client + Server";
Cols := atoi(EtCols.content);
Rows := atoi(EtRows.content);
!! set the specified lines and the given number of

 !! columns
if (Cols <> 0) then

 Ctrl_Grid.Cols := Cols;
endif
if (Rows <> 0) then

 Ctrl_Grid.Rows := Rows;
endif
Ctrl_Grid.GridLines := CbGridLines.active;
!! finally the client is made visible
Ctrl_Grid.active := true;

 else
print "could not connect";

 endif
}

A.06.03.b 31

32 ISA DialogManager

4.4 Identifying the Interfaces
If you want to use an OLE server you have to know the interfaces. These interfaces consist of attrib-
utes (properties) and methods. There are several possibilities to get to know these interfaces:

reading the manual: For the OLE servers you use you have to refer to the corresponding manual
in which the attributes and methods are clearly defined. This is the best way, but such manuals are
often difficult to find.

checking with Microsoft C++ compilers: From version 4.0 on, the Microsoft C++ compiler offers
means to query interfaces of OLE objects.

4.4.1 Microsoft C++ Compiler Version 4.x
To get information about OLE objects you have to proceed as follows with version 4 of the Microsoft C
compiler:

start OLE-COM Object Viewer via the Developer Studio (menu "Tools")

select relevant control

select relevant interfaces (usually IDispatch....) with a double click (in the displayed list only the
bold interfaces are really available)

select relevant information in the combobox on the top left in the new window

select relevant method in the upper left listbox or the relevant attributes in the upper right listbox to
get more information (datatype, parameter, ...).

Figure 2: OLE2 Object View of MSC version 4.0 after the start

A.06.03.b 33

34 ISA DialogManager

Figure 3: Selection of relevant attribute in MSC version 4.0

4.4.2 Microsoft C++ Compiler Version 5.0
To get information about OLE objects you have to proceed as follows with version 5 of the Microsoft C
compiler:

start OLE-COM Object Viewer

select item "Control" in the left list

select relevant control

select menuitem "View Type Information..." in menu "Object" or in popup menu

select relevant interfaces (usually dispinterface)

select item "Methods" to view methods, or "Properties" to query attributes

select relevant method or relevant attribute to get more information (datatype, parameter, ..)

Figure 4: Select control in MSC version 5.0

A.06.03.b 35

36 ISA DialogManager

Figure 5: Select a property in MSC version 5.0

4.5 Use of Grid Controls
This example shows how to integrate and use a grid control in a dialog.

dialog Ocx
{
}
color CLRed rgb(255,0,0), grey(0);
font FnInv "10.MS Serif";
tile Server_Picture "IDM_IMAGES:isaicon.gif";
model pushbutton MpbVisible
{

.xleft 458;

.ytop 157;

.text "Visible";

boolean Visible := false;
}
window WnClient
{

.active false;

.xleft 87;

.width 560;

.ytop 132;

.height 233;

.iconic false;

.title "Integration of OCX in IDM dialog";
on close
{

Ctrl_Grid.connect := false;
exit();

}
child control Ctrl_Grid
{

.visible true;

.active false;

.xleft 11;

.width 249;

.ytop 48;

.height 169;

.picture Server_Picture;

.mode mode_client;

.name "MSGrid.Grid";

.connect false;
rule void activation
{

 variable integer Cols := 0;
 variable integer Rows := 0;

 setvalue(Ctrl_Grid, .connect, true, true);
 !! this must be checked here
!! as connection
 !! might fail
 if (Ctrl_Grid.connect = true) then

WnClient.title := "Client + Server";
Cols := atoi(EtCols.content);
Rows := atoi(EtRows.content);
!! set specified lines and given number of columns
if (Cols <> 0) then

 Ctrl_Grid.Cols := Cols;
endif
if (Rows <> 0) then

A.06.03.b 37

38 ISA DialogManager

 Ctrl_Grid.Rows := Rows;
endif
Ctrl_Grid.GridLines := CbGridLines.active;
!! finally the client is made visible
Ctrl_Grid.active := true;

 else
print "could not connect";

 endif
}

}
child pushbutton PbStart
{

.xleft 282;

.width 90;

.ytop 32;

.height 50;

.text "Start Server";
on select
{

 Ctrl_Grid:activation();
}

}
child rectangle
{

.xleft 265;

.width 6;

.ytop 4;

.height 369;
}
child statictext
{

.sensitive false;

.xleft 276;

.width 204;

.ytop 10;

.text "Client";
}
child statictext
{

.sensitive false;

.xleft 7;

.width 206;

.ytop 10;

.height 18;

.text "Server area";
}

child pushbutton PbStop
{

.xleft 413;

.width 90;

.ytop 30;

.height 50;

.text "Stop Server";
on select
{

 Ctrl_Grid.connect := false;
}

}
child checkbox CbGridLines
{

.xleft 286;

.ytop 176;

.text "Grid lines";

.state state_checked;
on select
{

 Ctrl_Grid.GridLines := this.active;
}

}
child statictext StCols
{

.sensitive false;

.xleft 281;

.ytop 139;

.text "Columns:";
}
child statictext StRows
{

.sensitive false;

.xleft 282;

.ytop 100;

.text "Lines:";
}
child spinbox SpCols
{

.visible true;

.xleft 345;

.width 60;

.ytop 133;

.height 25;

.curvalue 2;
on scroll

A.06.03.b 39

40 ISA DialogManager

{
 variable integer Cols := 0;

 Cols := atoi(this.EtCols.content);
 if (Cols <> 0) then

Ctrl_Grid.Cols := Cols;
 endif

}
child edittext EtCols
{

.active false;

.xauto 0;

.xleft -1;

.xright 1;

.yauto 0;

.ytop 0;

.ybottom 0;

.maxchars 2;

.content "2";

.multiline false;

.startsel 0;

.endsel 1;
on charinput
{
variable integer Cols := 0;

Cols := atoi(this.content);
if (Cols <> 0) then

Ctrl_Grid.Cols := Cols;
endif
}

}
}
child spinbox SpRows
{

.xleft 345;

.width 60;

.ytop 97;

.curvalue 4;
on scroll
{

 variable integer Rows := 0;

 Rows := atoi(this.EtRows.content);
 if (Rows <> 0) then

Ctrl_Grid.Rows := Rows;

 endif
}
child edittext EtRows
{

.active false;

.xauto 0;

.xleft -1;

.xright 1;

.yauto 0;

.ytop -1;

.ybottom 1;

.maxchars 2;

.content "4";

.multiline false;

.startsel 0;

.endsel 1;
on charinput
{
variable integer Rows := 0;

Rows := atoi(this.content);
if (Rows <> 0) then

Ctrl_Grid.Rows := Rows;
endif
}

}
}

}

When starting this dialog you get the following picture:

A.06.03.b 41

42 ISA DialogManager

Figure 6: Example of grid control after the start

After selecting the "Start Server" pushbutton the OLE server is started and activated. The OLE server
will then be displayed instead of the picture in the client.

Figure 7: Active grid control

The attributes of the server can now be modified by using the spinboxes.

Figure 8: Grid control with modified attributes

4.6 Using the Internet Explorer
This example illustrates how to control the Internet Explorer from a Dialog Manager application.

dialog Client2
{
}
model control CtTest
{

.mode mode_client;

.name "InternetExplorer.Application.1";

.visible true;

.active true;

.connect false;
}
window Window1
{

.title "Internet Explorer Remote control";

.width 400;

.height 303;
object Ctrl := null;

child pushbutton Pb_Start
{

.xleft 37;

.ytop 43;

.text "Start";

 on select {
 if(Window1.Ctrl = null) then

A.06.03.b 43

44 ISA DialogManager

 !! now a control is generated which the server
 !! is to include.

Window1.Ctrl := create(CtTest, this.dialog, true);
 endif
 !! a connection is established
 !! the OLE server is set to visible
 !! now the server can be accessed, however
 !! it is not really visible
 Window1.Ctrl.connect := true;
 Window1.Ctrl.visible := true;
 if(Window1.Ctrl.connect <> true) then
 print "ERROR";
 print "Window1.Ctrl: " + Window1.Ctrl;
 endif
 }

}
child pushbutton Pb_Quit
{

.xleft 143;

.ytop 41;

.text "Quit";
 on select {
 !! quit Internet Explorer
 !! by calling the method
 Window1.Ctrl:Quit();
 !! destroy the control object
 destroy(Window1.Ctrl);
 }

}
child pushbutton Pb_visible
{

.xleft 34;

.ytop 126;

.text "Visible";

 on select {
 !! setting visible th OLE server
 Window1.Ctrl.Visible := true;
 }

}
child pushbutton Pb_navigate
{

.xleft 29;

.ytop 193;

.text "Navigate";
 on select{

 !! Remote control of Internet Explorer
 Window1.Ctrl:Navigate(Et1.content, nothing,
 nothing, nothing, nothing);
 }

}
child edittext Et1
{

.xleft 143;

.width 175;

.ytop 192;
}

}

After starting the application the following start window appears:

Figure 9:Window for Internet Explorer control

After selecting the "Start" pushbutton and the "Visible" pushbutton the Internet Explorer appears on
the screen:

A.06.03.b 45

46 ISA DialogManager

Figure 10: Started Internet Explorer

After entering an Internet location, here "www.sdr3.de", and after selecting the "Navigate" pushbutton
the Internet Explorer displays the corresponding site.

Figure 11: Internet Explorer after executing the navigation

A.06.03.b 47

48 ISA DialogManager

5 DialogManager asOLE Server
The Dialog Manager cannot make all its objects, methods, resources, attributes, etc. available as inter-
faces. This would go beyond the scope of the interfaces in OLE and, in addition, it is not recom-
mendable offering the entire dialog to the external program. The communication interface made
available by Dialog Manager has the form of an object. This object belongs to the control class . The
attributes, methods and events of the control object describe the interface of the OLE server to its cli-
ents.

5.1 Basic Structure of Control as OLE Server
The control class describes the interface to the client. Control may be instantiated several times, i.e. it
may be used several times as different instances in one and the same application. This is why the con-
trol object may be exported as model. However, it is also possible to permit only one instance; in this
case you have to declare the control as normal instance and not as model. Exported control objects
may be defined only in the dialog itself and not in the modules to be reloaded, as available controls
must be registered immediately on application start. This is why the control object must not be mod-
ified, e.g. by generating new attributes for this object.

Control has user-defined attributes and methods which correspond to the properties and methods in
the usual OLE language. Control can have exactly one child. This child is the object to appear in the
client. Apart from this child the control can have record objects which are not exported.

To be able to use a control object and its dialog as OLE server, the value mode_server must be
assigned to the attribute .mode.

Attributes describe the properties. It is always possible to set or to get these attributes. Valid attributes
are scalar, vector, and associative attributes with the data types and index types boolean, string and
integer. Shadowing other user-defined or predefined attributes is also valid.

Methods describe the methods of the interface. These methods can be used by the application. The
possible data types are restricted with regard to some parameters and return values: valid are
boolean, string and integer.

Control has the attribute .picture. The picture will be displayed in the client when the server is inactive,
provided that the client is able to do so. If no .picture is available, nothing will be displayed in the client.
If the client is to permit activation and deactivation, then the child of control will be displayed in the cli-
ent, as long as control is InPlace-active.

5.2 Unambiguous Interface
The client needs an unambiguous interface to be able to access the OLE server. This interface usu-
ally depends on the program and its version, as the client must always be able to identify the program
and its interface unambiguously. A 128-bit code at the OLE guarantees the non-ambiguity of the inter-
face. This 128-bit code is called UUID.

These UUIDs are given

at the dialog and

at each control used as OLE server.

This identification will then be used in the Registry and the Typelibrary to identify the relevant controls.
These codes must be inserted manually (guidgen.exe) into the corresponding object and attributes.
This UUID is generated via the program guidgen.exe, which has been installed with the Microsoft C++
compiler.

Figure 12: Generation of GUID

Example

dialog OLEServer
{
 .uuid "A5142E00-F4B7-11d0-AA13-00608C63F57F";
}
message Event;

model control Mcontrol
{
 .mode mode_server;
 .uuid "A5142E01-F4B7-11d0-AA13-00608C63F57F";
 string Property := "";
 rule void Method(string Param)

{
}
child record PrivateData

A.06.03.b 49

50 ISA DialogManager

{
}
child groupbox Childobject
{
}
}

5.3 Single Usage and Multi-usage of an OLE Server
Depending on how the control object is defined in the Dialog Manager, one OLE server can operate
one or more clients at the same time. If the control object is defined as model, several clients can con-
nect to this server. However, if the control object is defined as instance, only one single client can con-
nect to the server. For the next client a new server process will be started.

Both methods have their pros and cons:

If an individual server process is started for each client, several processes work simultaneously.
All these processes have to be maintained in the main memory, something which uses up a lot of
main memory resources. The advantage is that there is nothing special to observe when pro-
gramming. If the dialog is to run as "standalone" dialog without OLE client, the attribute ".mode" of
the control object in the dialog-start rule must be modified by assigning the value "mode_none" to
the attribute. Then the server is registered in the system and clients can connect to the server.

If a server is to operate several clients, the entire program must be able to handle changes of the
active client at any time, i.e. each time the Dialog Manager enters into the event processing, new
OLE calls can be activated for processing. This is why you must not work with global variables in
this case (neither in the Rule Language nor in the linked programs). The server must not be fin-
ished before having ended all its clients. Usually this is why the active connections to the clients
are also counted and the server will be closed, when the number is 0 again.

Example

model control MyControl
{

integer Count := 0;

on start
{

MyControl.Count := MyControl.Count + 1;
}
on finish
{

MyControl.Count := MyControl.Count - 1;
 if MyControl.Count=0 then

exit();
 endif

}

}

In this example the OLE server can be used simultaneously as many times as you want. Each time a
new user connects the count is increased; when the user terminates the connection, the count is
decreased accordingly. If the count reaches 0, the server will be closed.

control PropMethEvent
{
 .mode mode_server;
 .uuid "499593d1-a159-11d1-a7e3-00a02444c34e";

This OLE server can operate only one client at the same time. If a second client wishes to use the ser-
vices of that server a new server process will be started.

5.4 Attributes
The user-defined attributes of a control object correspond to the so-called properties of the IDispatch
name convention. Built-in attributes of the object are not exported; i.e. they cannot be set or get dir-
ectly from outside. However you can do so by explicitly providing user-defined attributes or methods.
Exported attributes must not be generated during runtime of program, but must be defined statically.
From these attributes the actual interface information which OLE clients need to call the server is gen-
erated.

Example

control PropMethEvent
{

.mode mode_server;

.uuid "499593d1-a159-11d1-a7e3-00a02444c34e";

.picture TiPropMethEvent;

.width 320;

.height 200;
integer I := 123;
string S := "Dialog Manager";
boolean B := true;

In this example the attributes "I", "S" and "B" can be queried by the client, whereas the attributes
".height" and "width" cannot.

5.5 Methods
User-defined methods of the control object can be accessed by the OLE client; built-in methods such
as :insert or :delete are not automatically available to the user using the control object.

Example

control PropMethEvent
{

A.06.03.b 51

52 ISA DialogManager

.mode mode_server;

.uuid "499593d1-a159-11d1-a7e3-00a02444c34e";
rule void M1
{
}
rule integer M2 (integer I input)
{

return 17;
}

In this example the methods "M1" and "M2" can be called by the client.

5.6 Notifications
A PropertyChanged notification is sent to the client when values of user-defined attributes are mod-
ified at a control object in the server mode. A client which has not been programmed by Dialog Man-
ager must support notifications via the standard interface IPropertyNotifySink interface.

Example

control PropMethEvent
{

.mode mode_server;

.uuid "499593d1-a159-11d1-a7e3-00a02444c34e";

.picture TiPropMethEvent;

.width 320;

.height 200;
integer I := 123;
string S := "Dialog Manager";
boolean B := true;

In this example the client receives notifications, when the attributes "I", "S" and "B" are modified, but
not when the attributes ".height" and "width" are modified.

5.7 Events
An OLE server can send events to its client. For this purpose the resource message is available in the
Dialog Manager and is defined at the dialog or module. At the control object the developer must spe-
cify which messages can be sent. The message object is available also in other object classes and
corresponds to the former extevent event.

5.7.1 The message Resource
Events must be defined before using them, including their parameters. For this purpose the resource
"message" is used, which is defined as follows:

<message> ::= {export} 'message' <label> { <messageSpec> };
<messageSpec> ::= '(' { <messageArg> [',' <messageArg>] } ')'
<messageArg> ::= <datatype> [<label>]

Events to be exported must be defined at the control object, if these are to be passed on to the client.
For this purpose the field attribute .message[] is available. This field can be used similarly to .content
[], i.e. it can be accessed with setvalue /getvalue and the size can be queried with .count[].

The message resource can also be used independently of OLE control to define "named" events. The
event can simply be sent to the control object with a sendevent(). Only those events defined in the
field .message[] will be sent to the client, all other events will be processed in the dialog itself, just like
external events.

Restrictions

The IDM OLE option supports the data types integer, string and boolean only. Other data types may
be defined at the message resource, however it is not possible to generate a type library. Thus these
data types cannot be used for data exchange via OLE.

Example

dialog D
message Msg(integer I, string S);
model control MC
{

.message[1] Msg;
:
pushbutton Pb
{

on select
{

sendevent(this.control,Msg,1998,"trigger action");
}

}
}

Notes and Restrictions

The client has to implement the event interface and link it to NotifySinks via the standard procedure.
The client may either generate the corresponding sink dynamically via the type-library of the server, or
statically use a sink for a known control. Sending unexpected, new events can produce a crash! This
is why you should specify a new control UUID for new events.

5.8 Access to Attributes of any Object
Usually only user-defined attributes of the control can be accessed from an external application.
However it is often helpful to access and manipulate certain attributes of the child object or its chil-
dren. You may program this possibility via methods or via the shadow mechanism of the Dialog

A.06.03.b 53

54 ISA DialogManager

Manager. When you create models, note that the attribute of the instance is "shadowed" and NOT the
attribute of the model.

Example

dialog D

model control Mcontrol
{
 .mode mode_server;
 string Visible shadows instance GrpBox.visible;
 string Content shadows instance Et.content;
 child groupbox GrpBox

{
 child edittext Et

{
 }
 }
}

If the control is used from outside in this example, an instance of this model will be generated. When
.Visible is accessed the value to be set will be passed on to groupbox GrpBox which will become vis-
ible in the container, but only if the container is InPlace-active. With the attribute .Content the .content
of textfield Et can be set and read.

Alternatively you may also use methods.

Example

dialog D

model control Mcontrol
{
 .mode mode_server;
 rule boolean GetVisible()

{
 return this.GrpBox.visible;
 }
 rule void SetVisible(boolean Value)

{
 this.GrpBox.visible := Value;
 }
 rule string GetContent()

{
 return this.GrpBox.Et.content;
 }
 rule SetContent(string Value)

{
 this.GrpBox.Et.content := Value;

 }
 child groupbox GrpBox

{
 child edittext Et

{
 }
 }
}

This example has the same effect. Here it becomes also clear why shadow instance must be used. In
this method the instance of the control including its children are accessed via "this". Dropping "this"
has the same effect as dropping the keyword instance at shadows: the objects of the model would be
referenced instead of the objects of the current instance.

5.9 Generating Interface Information
This chapter explains the procedures which are necessary to build an OLE server from a dialog with a
Control defined as ole_server.

5.9.1 Generating the idl and reg Files
With the -writeole <base name> option of the IDM simulation program idm.exe, the files required for
registration are generated from a dialog script containing Controls defined as OLE servers. An idl
and a reg file are generated.

The following additional options may be used to influence the generation:

+localserver <path of the actual executable>

+helpdir <directory of the help files>

+typelib <path of the type library>

+deficon <path of the default icon>

+proxy <name of the proxy stub>

-userregistry (since IDM version A.06.01.g)
Registration for the current user only (under HKEY_CURRENT_USER in the Windows Registry)

With idm.exe <dialog> -writeole <file>, the following default entries are written into the
registry file <file>.reg if they have not been overwritten by one of the options descibed above

LocalServer32 = "<path of idm.exe> <dialog> /Automation"
TypeLib = "<file>.tlb"
HelpDir = ""
DefIcon = ""

The name of the proxy stub is set to <base name>.dll by default.

A.06.03.b 55

56 ISA DialogManager

5.9.2 Server Registration
Double-clicking the reg file (provided that reg files are linked correctly in the system) or calling reged-
it.exe with the generated reg file as an argument registers the control with the system.

Example

server.reg server.idl: server.dlg
$(IDM) server.dlg \
-localserver "$(IDM) server.dlg -IDMtracefile server.log" \

-writeole server
regedit server.reg

In this example, the command line for the server is also specified so that it always generates a trace
file. Afterward the server is registered with the system.

5.9.3 Further Processing of the idl File
The idl file generated using the -writeole option must be processed using the MIDL compiler that
comes with MICROSOFT VISUAL STUDIO. The MIDL compiler generates a proxy DLL from the idl file,
which handles the “OLE marshaling” of the interface. The default path is the output name of -writeole
with the extension “.dll”, but this may be overridden with the option +proxy.

Example

server.tlb server_p.c server_i.c server.h dlldata.c: server.idl
midl /ms_ext /app_config /c_ext /tlb server.tlb /Zp1 \

/env win32 /Os server.idl

The files generated with the MIDL compiler must then be compiled with the C compiler and linked to a
DLL.

5.10 Example
This example defines a control that provides an “Answer” method and “Visible” and “Content” attrib-
utes. These attributes are defined as references to attributes of a child of the control. In this way, the
client can also query and change attributes that are not directly defined on the control.

dialog ExampleControl
{

.uuid "FC4D3263-F6DC-11d0-AA13-00608C63F57F";
}

model control MDeepThought
{

.mode mode_server;

.uuid "FC4D3264-F6DC-11d0-AA13-00608C63F57F";

boolean Visible shadows instance GrpBox.visible;
string Content shadows instance EQuestion.content;

rule integer Answer(string Question)
{

this.GrpBox.SAnswer.text := "42";
return 42;

}

child groupbox GrpBox
{

child edittext EQuestion {}
child statictext SAnswer {}

}
}

This control is registered using the -writeole option followed by the regedit.exe program. Thereafter,
a control is available to the applications, which can display a groupbox with an input field and a text in
the control, but only as long as it is activated “InPlace”. Trivially, the answer is always 42.

5.11 Exemplary Integration of a Server in Word 7.0
In Word 7.0 an OLE server which has been built with Dialog Manager is to be integrated with Visual
Basic for Applications. The server is only meant to provide methods which may be called by the client.

5.11.1 Server Dialog
The server consists of a listbox which can be displayed within the client area. For this purpose the con-
trol object is defined as usual, and the listbox is defined as its child.

dialog IDM_Server
{

.uuid "523E0007-F149-11d0-91F6-00A02444C34E";
}
tile TiCtrl "IDM_IMAGES:client.bmp";
variable integer Refcount := 0;
model control Serv
{

.mode mode_server;

.uuid "523E0008-F149-11d0-91F6-00A02444C34E";

.interfaceid "523E0009-F149-11d0-91F6-00A02444C34E";

.picture TiCtrl;
rule void Beep
{

this.Lb:Msg("Beep()");

A.06.03.b 57

58 ISA DialogManager

beep();
}
rule void PPrint (string S input)
{

this.Lb:Msg((("Print(" + S) + ")"));
}
rule void KKill
{

exit();
}
on start
{

Refcount := (Refcount + 1);
this.Lb:Msg(("Refcount: " + itoa(Refcount)));

}
on finish
{

Refcount := (Refcount - 1);
this.Lb:Msg(("Refcount: " + itoa(Refcount)));
if (Refcount <= 0) then
exit();
endif

}
child listbox Lb
{

.width 300;

.height 400;

.firstchar 1;
rule void Msg (string S input)
{

 this.content[(this.itemcount + 1)] := S;
 updatescreen();

}
}

}

This server is integrated into the system, so that the OLE simulation program "idmole" loads this dia-
log. Then you can program in Word 97.

5.11.2 Implementing the Client
To implement the client Word 97 is used. Pushbuttons are created to start and close the OLE server.
In addition, two more pushbuttons are created to call the methods in the server.

Figure 13: Client definition in Word 97

The programming in Visual Basic for applications is as follows:

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 'True
END
Attribute VB_Name = "ThisDocument"
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = True
Public OLE As Object

Private Sub EtPrint_Change()

End Sub

A.06.03.b 59

60 ISA DialogManager

Private Sub PbEnde_Click()
OLE.OLEFormat.Object.KKill
End Sub

Private Sub PbPrint_Click()
OLE.OLEFormat.Object.PPrint EtPrint.Text
End Sub

Private Sub PbBeep_Click()
OLE.OLEFormat.Object.Beep
End Sub

Private Sub PbStart_Click()
Set OLE = ActiveDocument.Shapes.AddOLEObject(ClassType:="IDM_Server.Serv",
Width:=250, Height:=200)

End Sub

5.11.3 Working with the Server
After selecting the start pushbutton the server is activated and appears in the client. By selecting the
pushbuttons "Beep" and "Print" the corresponding methods can be called in the server.

Figure 14:Word 7.0 client with integrated server

5.12 Summary of How to Provide an OLE Server
The following steps must be performed when implementing an OLE server:

1. Implement a Control object.

As model: the server can be used by several clients simultaneously.

As instance: an individual server process is started for each client.

2. Specify a unique UUID with the program guidgen.exe.

3. Generate the idl and reg files with the option -writeole.

4. Register the server in the system with the program regedit.exe.

5. Generate the necessary C and TBL files with the MIDL compiler.

6. Compile the generated C files.

7. Link a DLL, which is necessary to call the server from the client.

A.06.03.b 61

62 ISA DialogManager

If the OLE server is installed on another computer, the registration must be carried out again and
adjusted if necessary, otherwise the OLE server cannot be used.

6 Server andClient Implementation
In this example an OLE client as well as an OLE server will be implemented in the Dialog Manager
and the different possibilities for the data exchange are described.

6.1 Client Structure
The client consists of a notebook and an edittext. Via the notebook the server is controlled and in the
listbox the results, replies and notifications of the server are traced.

On the first page of the notebook the server is activated and deactivated. On the second page the
properties of the server can be queried and set. On the third page the methods of the server can be
called.

Figure 15: Client window

The control object is defined as follows:

window WiControl
{

.title "OLE Control";

.width 60;

.height 20;

.xleft 450;

.visible := false;

A.06.03.b 63

64 ISA DialogManager

control C
{

.mode mode_client;

.name "IdmTest.PropMethEvent";
 .width 300;
 .height 300;

}
}

Figure 16: State of application after starting the server

6.1.1 Server Activation
By selecting the "visible" checkbox the server is started. By selecting the "connect" checkbox a con-
nection to the server is established and by selecting the "active" checkbox the server is activated and
is available for communication.

Figure 17: Server after having established the connection

The necessary rules are as follows:

First a general model is defined to define the rules:

model checkbox MCb
{

boolean Value := false;

on activate,deactivate
{

this.Value := this.active;
 if this.Value <> this.active then

Info("changing "+this.text+" FAILED");
 endif

}
}

The actual definition of the objects is as follows:

child notepage NpControl
{

.active true;

.title "Control";
MCb CbVisible
{

.text "Visible";

.Value shadows WiControl.visible;
}

A.06.03.b 65

66 ISA DialogManager

MCb CbConnect
{

.ytop 1;

.text "Connect";

.Value shadows WiControl.C.connect;
}
MCb CbActive
{

.ytop 2;

.text "Active";

.Value shadows WiControl.C.active;
}

}

6.1.2 Querying and Setting Values in the Server
To query and set values in the server you have to switch to the second page of the notebook, where
you have the possibility to query and set attributes.

Figure 18: Querying and setting values in the server

The rules that are necessary in the client are as follows:

child pushbutton PbGet
{

.yauto -1;

.height 1;

.text "&Get";

.defbutton true;

on select
{

 Info("Try to get .I, .S and .B");
if fail(this.parent.Integer.Value := this.window.C.I) then

Info("getvalue of .I FAILED");
 endif

if fail(this.parent.String.Value := this.window.C.S) then
Info("getvalue of .S FAILED");

 endif
if fail(this.parent.Boolean.Value := this.window.C.B) then

Info("getvalue of .B FAILED");
 endif

}
}
child pushbutton PbSet
{

.yauto -1;

.height 1;

.text "&Set";

.xleft 14;
on select
{

 Info("Try to set .I, .S and .B");
if fail(this.window.C.I := this.parent.Integer.Value) then

Info("setvalue of .I FAILED");
 endif

if fail(this.window.C.S := this.parent.String.Value) then
Info("setvalue of .S FAILED");

 endif
if fail(this.window.C.B := this.parent.Boolean.Value) then

Info("setvalue of .B FAILED");
 endif

}
}

As you can see here, the attributes "I", "S" and "B" of the control object are accessed in the rules,
although these are not defined there. These attributes are passed on to the server and are processed
there.

6.1.3 Reaction to Events
If the server can send notifications to the client, these notifications must be caught up at the client.
The client can thus react to these events which will arrive in the Rule Language as "external events"
and which must be programmed accordingly. If these events are to receive parameters from the
server, the events must be defined as parameters of the rule.

control C

A.06.03.b 67

68 ISA DialogManager

{
 on extevent "Msg1"

{
Info("extevent Msg1()");

 }
 on extevent "Msg2" (integer I)

{
Info("extevent Msg2("+I+")");

 }
 on extevent "Msg3" (string S)

{
Info("extevent Msg3("+S+")");

 }
 on extevent "Msg4" (boolean B)

{
Info("extevent Msg4("+B+")");

 }
 on extevent "Msg5" (integer I, string S, boolean B)

{
Info("extevent Msg5("+I+","+S+","+B+")");

 }
 on extevent "Msg6" (integer P1, string P2, boolean P3,
 integer P4, string P5, boolean P6)

{
Info("extevent Msg6("+P1+","+P2+","+P3+","+P4+","

+P5+","+P6+")");
 }
}

6.1.4 Reaction to Notifications
If the server is able to send notifications to the client, they can be caught up at the client. Then the cli-
ent can react to the modifications of values. In the Rule Language these notifications arrive as
"changed events" and must be programmed accordingly.

control C
{
 on .I changed

{
Info(".I changed");

if fail(NpProperties.Integer.Value := this.I) then
Info("getvalue of .I FAILED");

endif
 }
 on .S changed

{
Info(".S changed");

if fail(NpProperties.String.Value := this.S) then
Info("getvalue of .S FAILED");

endif
 }
 on .B changed

{
Info(".B changed");

if fail(NpProperties.Boolean.Value := this.B) then
Info("getvalue of .B FAILED");

endif
 }
}

6.1.5 Calling Methods in the Server
The call of methods including its corresponding parameters must be implemented in the client, so that
methods of the server may be called from the client. The method itself must not be defined.

The rule code for calling methods at the server is as follows:

child pushbutton PbCall
{

.yauto -1;

.height 1;

.text "&Call";

.defbutton true;
integer I shadows instance NpMethods.Integer.Value;
boolean B shadows instance NpMethods.Boolean.Value;
string S shadows instance NpMethods.String.Value;
on select
{

case this.parent.LbMethods.activeitem
in 1:

Info("call :M1();");
this.parent.Retval.Value := "";
if fail(this.window.C:M1()) then
Info("FAILED");
endif

in 2:
Info("call :M2("+this.I+");");
this.parent.Retval.Value := "";
if fail(this.parent.Retval.Value:=

""+this.window.C:M2(this.I)) then
Info("FAILED");

endif

in 3:

A.06.03.b 69

70 ISA DialogManager

Info("call :M3("+this.S+");");
this.parent.Retval.Value := "";
if fail(this.parent.Retval.Value:=

""+this.window.C:M3(this.S)) then
Info("FAILED");

endif

in 4:
Info("call :M4("+this.B+");");
this.parent.Retval.Value := "";
if fail(this.parent.Retval.Value:=

""+this.window.C:M4(this.B)) then
Info("FAILED");

endif

in 5:
Info("call :M5("+this.I+","+this.S+","+this.B+");");
this.parent.Retval.Value := "";
if fail(this.parent.Retval.Value:=

""+this.window.C:M5(this.I,this.S,this.B)) then
Info("FAILED");

endif
in 6:

Info("call :M6("+this.I+","+this.S+","+this.B+","+
this.I+","+this.S+","+this.B+","+this.I+","+
this.S+");");
this.parent.Retval.Value := "";

if fail(this.parent.Retval.Value:=
""+this.window.C:M6(this.I,this.S,this.B,this.I,this.S,
this.B,this.I,this.S)) then
Info("FAILED");

endif

otherwise:
Info("Error - unknown method");

endcase
}

}

Figure 19: Calling methods in the OLE server

6.1.6 The Client Dialog
dialog Client
{
}
color ColWin
{

0: rgb(47,175,207), grey(255), white;
1: rgb(192,192,192), grey(255), white;

}
color ColInput
{

0: rgb(111,159,175), grey(200), white;
1: rgb(255,255,192), grey(200), white;

}
color ColBlack "BLACK", grey(0), white;
color ColWhite "WHITE", grey(0), white;
color ColRed "RED", grey(0), white;
color ColGreen "GREEN", grey(0), white;
color ColBlue "BLUE", grey(0), white;
color ColYellow "YELLOW", grey(0), white;

A.06.03.b 71

72 ISA DialogManager

font FontNormal "8.Helv";
font FontBig "14.Helv";
font FontFixed "12.System VIO";

model groupbox MInteger
{

.height 1;
integer Value := -123456789;
.xauto 0;
on .Value changed
{

this.Et.content := itoa(this.Value);
}
child statictext
{

.text "Integer:";
}
child edittext Et
{

.xleft 8;

.format "%-9d";

.xauto 0;

.content "-123456789";
on charinput
{

 if fail(this.parent.Value := atoi(this.content)) then
this.parent.Value := 0;

 endif
}

}
}
model groupbox MString
{

.xauto 0;

.height 1;
string Value shadows instance MString.Et.content;
string Text shadows instance MString.St.text;
child statictext St
{

.text "String:";
}
child edittext Et
{

.xleft 8;
 .xauto 0;

.content "Dialog Manager";

}
}
model groupbox MBoolean
{

.height 1;
boolean Value shadows instance Cb.active;
.width 80;
.height 20;
child statictext
{

.text "Boolean:";
}
child checkbox Cb
{

.xleft 8;

.text "";
}

}

window WiControl
{

.title "OLE Control";

.width 60;

.height 20;

.xleft 450;

.visible := false;

control C
{

.mode mode_client;

.name "IdmTest.PropMethEvent";
.width 300;

.height 300;
on .visible changed
{
CbVisible.Value := this.visible;

}
on .connect changed
{
CbConnect.Value := this.connect;

}
on .active changed
{
CbActive.Value := this.active;

}
on extevent "Msg1"

A.06.03.b 73

74 ISA DialogManager

{
Info("extevent Msg1()");

}
on extevent "Msg2" (integer I)
{

Info("extevent Msg2("+I+")");
}
on extevent "Msg3" (string S)
{

Info("extevent Msg3("+S+")");
}
on extevent "Msg4" (boolean B)
{

Info("extevent Msg4("+B+")");
}
on extevent "Msg5" (integer I, string S, boolean B)
{
Info("extevent Msg5("+I+","+S+","+B+")");

}
on extevent "Msg6" (integer P1, string P2, boolean P3,

integer P4, string P5, boolean P6)
{
Info("extevent Msg6 ("+P1+","+P2+","+P3+","+P4+"," +P5+","

+P6+")");
}
on .I changed
{

Info(".I changed");
if fail(NpProperties.Integer.Value := this.I) then

Info("getvalue of .I FAILED");
endif

}
on .S changed
{

Info(".S changed");
if fail(NpProperties.String.Value := this.S) then

Info("getvalue of .S FAILED");
endif

}
on .B changed
{

Info(".B changed");
if fail(NpProperties.Boolean.Value := this.B) then

Info("getvalue of .B FAILED");
endif

}

}
}
rule void Info(string S)
{

LbInfo.content[LbInfo.itemcount+1] := S;
LbInfo.topitem := LbInfo.itemcount;

}
model checkbox MCb
{

boolean Value := false;

on activate,deactivate
{

this.Value := this.active;
if this.Value <> this.active then

Info("changing "+this.text+" FAILED");
endif

}
}
window WiMain
{

.width 60;

.height 20;

.title "Control Window";

on close
{

exit();
}
object C shadows WiControl.C.self;

child groupbox Gb
{

.xauto 0;

.yauto 0;

.borderwidth 0;
child notebook Nb
{

.xauto 0;

.yauto 1;

.height 10;
child notepage NpControl
{

.active true;
.title "Control";
MCb CbVisible

A.06.03.b 75

76 ISA DialogManager

{
.text "Visible";
.Value shadows WiControl.visible;

}
MCb CbConnect

{
.ytop 1;
.text "Connect";
.Value shadows WiControl.C.connect;

}
MCb CbActive

{
.ytop 2;
.text "Active";
.Value shadows WiControl.C.active;

}
}

child notepage NpProperties
{

.title "Properties";
child MInteger Integer
{
}
child MString String
{

.ytop 1;
}
child MBoolean Boolean
{

.ytop 2;
}
child pushbutton PbGet
{

.yauto -1;

.height 1;

.text "&Get";

.defbutton true;
on select
{

Info("Try to get .I, .S and .B");
if fail(this.parent.Integer.Value :=

this.window.C.I) then
Info("getvalue of .I FAILED");

endif
if fail(this.parent.String.Value :=

this.window.C.S) then
Info("getvalue of .S FAILED");

endif
if fail(this.parent.Boolean.Value :=

this.window.C.B) then
Info("getvalue of .B FAILED");

endif
}

}
child pushbutton PbSet
{

.yauto -1;

.height 1;

.text "&Set";

.xleft 14;
on select

{
Info("Try to set .I, .S and .B");

if fail(this.window.C.I :=
this.parent.Integer.Value) then
Info("setvalue of .I FAILED");

endif
if fail(this.window.C.S :=

this.parent.String.Value) then
Info("setvalue of .S FAILED");

endif
if fail(this.window.C.B :=

this.parent.Boolean.Value) then
Info("setvalue of .B FAILED");

endif
}

}
}

child notepage NpMethods
{

.title "Methods";
child listbox LbMethods

{
.xauto 1;
.width 20;
.yauto 0;
.ybottom 1;
.content[1] "void M1()";
.content[2] "integer M2(integer)";
.content[3] "string M3(string)";
.content[4] "boolean M4(boolean)";

A.06.03.b 77

78 ISA DialogManager

.content[5] "void M5(integer,string,boolean)";

.content[6] "string M6(integer,string,boolean,
integer,string,boolean,integer,string)";

.activeitem 1;

.firstchar 1;
on select
{

this.parent.Integer.sensitive :=
(0 <> stringpos(this.content[this.activeitem], "integer"));

this.parent.String.sensitive :=
(0 <> stringpos(this.content[this.activeitem], "string"));

this.parent.Boolean.sensitive :=
(0 <> stringpos(this.content[this.activeitem], "boolean"));

}
}

child MInteger Integer
{

.sensitive false;

.xleft 22;

.yauto 1;

.Et.active false;
}
child MString String
{

.sensitive false;

.xleft 22;

.yauto 1;

.ytop 1;
}
child MBoolean Boolean
{

.sensitive false;

.xleft 22;

.yauto 1;

.ytop 2;
}
child MString Retval
{

.Text := "Retvalue:";

.Value := "";

.xleft 22;

.yauto 1;

.ytop 4;
}
child pushbutton PbCall
{

.yauto -1;

.height 1;

.text "&Call";

.defbutton true;
integer I shadows instance NpMethods.Integer.Value;
boolean B shadows instance NpMethods.Boolean.Value;
string S shadows instance NpMethods.String.Value;
on select
{

case this.parent.LbMethods.activeitem
in 1:

Info("call :M1();");
this.parent.Retval.Value := "";
if fail(this.window.C:M1()) then
Info("FAILED");
endif

in 2:
Info("call :M2("+this.I+");");
this.parent.Retval.Value := "";
if fail(this.parent.Retval.Value:=

""+this.window.C:M2(this.I)) then
Info("FAILED");

endif

in 3:
Info("call :M3("+this.S+");");
this.parent.Retval.Value := "";
if fail(this.parent.Retval.Value:=

""+this.window.C:M3(this.S)) then
Info("FAILED");

endif

in 4:
Info("call :M4("+this.B+");");
this.parent.Retval.Value := "";
if fail(this.parent.Retval.Value:=

""+this.window.C:M4(this.B)) then
Info("FAILED");

endif

in 5:
Info("call :M5("+this.I+","+this.S+","+this.B+");");
this.parent.Retval.Value := "";
if fail(this.parent.Retval.Value:=

""+this.window.C:M5(this.I,this.S,this.B)) then
Info("FAILED");

A.06.03.b 79

80 ISA DialogManager

endif
in 6:

Info("call :M6("+this.I+","+this.S+","+this.B+","+
this.I+","+this.S+","+this.B+","+this.I+","+
this.S+");");
this.parent.Retval.Value := "";

if fail(this.parent.Retval.Value:=
""+this.window.C:M6(this.I,this.S,this.B,this.I,this.S,
this.B,this.I,this.S)) then
Info("FAILED");

endif

otherwise:
Info("Error - unknown method");

endcase
}

}
}
}
}
child listbox LbInfo
{

.xauto 0;

.yauto 0;

.ytop 10;

.firstchar 1;
}

}

6.2 Server Structure
The server also consists of a notebook and a listbox. The server is controlled via the notebook and
in the listbox the results and requests of the client are logged. The server is operated “InPlace”, that
is, it uses the area within a window of the client for its presentation.

If there is a connection to the server but the server has not yet been activated, a picture is displayed in
the client area. After activation, the objects of the server appear in the client.

In order for the server to be executable, the dialog and the control object have each been assigned a
unique UUID.

dialog IdmTest
{

.uuid "499593d0-a159-11d1-a7e3-00a02444c34e";
}

tile TiPropMethEvent "IMD_IMAGES:isaicon.gif";

default control CONTROL
{

integer Count := 0;

on start
{

CONTROL.Count := CONTROL.Count + 1;
}

on finish
{

CONTROL.Count := CONTROL.Count - 1;
if CONTROL.Count=0 then

exit();
endif

}
}

control PropMethEvent
{

.mode mode_server;

.uuid "499593d1-a159-11d1-a7e3-00a02444c34e";

.picture TiPropMethEvent;
}

A.06.03.b 81

82 ISA DialogManager

Figure 20: Active OLE server

6.2.1 Providing the Server
Unlike the client, some steps must be taken at the server to allow the server to operate as an OLE
server.

Initially, the -writeole option of the IDM simulation program is used to generate the reg file necessary
to register the OLE server and the idl file necessary to provide the runtime components. The com-
mand line looks like this:

$(THIS).reg $(THIS).idl: $(THIS).dlg
$(IDM) $(THIS).dlg -localserver "$(IDM) $(THIS).dlg \

-IDMenv MODLIB=$(THISDIR) -IDMerrfile $(THIS).log" \
-writeole $(THIS)

regedit $(THIS).reg

The regedit command directly registers the server in the system.

Then, the generated idl file is compiled using the MIDL compiler.

$(THIS).tlb $(THIS)_p.c $(THIS).h dlldata.c: $(THIS).idl
midl /ms_ext /app_config /c_ext /tlb $(THIS).tlb /Zp1 \

/env win32 /Os $(THIS).idl

Finally, a DLL is generated from the object files.

$(OUTFILE) : $(OBJS) $(TARGET).res $(DEFFILE)
echo ++++++++++
echo Linking $@
echo $(LINK) > $(TARGET).lrf
echo $(ENTRY) >> $(TARGET).lrf
echo -def:$(THIS).def >> $(TARGET).lrf
echo -out:$(OUTFILE) >> $(TARGET).lrf
echo -machine:IX86 >> $(TARGET).lrf
echo -subsystem:windows5.01 >> $(TARGET).lrf
echo -align:0x1000 >> $(TARGET).lrf
echo $(OBJS1) >> $(TARGET).lrf
echo $(OBJS2) >> $(TARGET).lrf
echo $(OBJS3) >> $(TARGET).lrf
echo $(OBJS4) >> $(TARGET).lrf
echo $(OBJS5) >> $(TARGET).lrf
echo $(OBJS6) >> $(TARGET).lrf
echo $(TARGET).res >> $(TARGET).lrf
echo $(LIBS) >> $(TARGET).lrf
echo $(LIBS32) >> $(TARGET).lrf
link @$(TARGET).lrf
del $(TARGET).lrf

After that, the server can be used by a client.

The corresponding makefile looks like this:

THISDIR=h:\ole\clntserv
THIS=$(THISDIR)\server
IDM=idmole.exe

CL32 = -G3s
WX =
LINKDLL = /DLL
DEFDLL = -D_DLL
ENTRY = -entry:LibMain32

DEFUNICODE = -DWIN32ANSI
LINKD32 = -debug:full $(LINKDLL) -debugtype:cv
LINKN32 = -debug:none $(LINKDLL)
DEFS32 = -DWIN32 $(DEFDLL) -D_X86_=1 $(DEFUNICODE)
TLBDEFS = -DWIN32
#BOOKLIB = inole.lib
LIBS32A = msvcrt.lib kernel32.lib user32.lib gdi32.lib comdlg32.lib
advapi32.lib
LIBS32B = ole32.lib oleaut32.lib uuid.lib
LIBS32 = $(LIBS32A) $(LIBS32B) $(BOOKLIB)

LIBS = rpcrt4.lib

A.06.03.b 83

84 ISA DialogManager

CONTIN =

CFLAGS = -c -Od -Z7 -Ze -W3 -nologo $(CL32) \
-D_WIN32_WINNT=0x400

LINK = $(LINKD32) /NOD
DEFS = $(DEFS32) -DSTRICT -DDEBUG

.SUFFIXES: .h .obj .exe .dll .cpp .res .rc .tlb .odl

OUTFILE = $(THIS).dll
TARGET = $(THIS)
DEFFILE = $(THIS).def

OBJS1 = $(THIS)_i.obj $(THIS)_p.obj
OBJS2 = dlldata.obj libmain.obj
OBJS3 = ""
OBJS4 = ""
OBJS5 = ""
OBJS6 = ""
OBJS = $(OBJS1) $(OBJS2)

###

.c.obj:
echo ++++++++++
echo Compiling $*.c
cl $(CFLAGS) $(DEFS) $*.c

.cpp.obj:
echo ++++++++++
echo Compiling $*.c
cl $(CFLAGS) $(DEFS) $*.cpp

.rc.res:
echo ++++++++++
echo Compiling Resources
rc -r $(DEFS) $(DOC) -fo$@ $*.rc

###

all: $(THIS).reg $(THIS).idl $(THIS).tlb $(THIS).dll

clean:
del $(THIS).tlb
del $(THIS).reg
del $(THIS).dll
del $(THIS).odl

del $(THIS)_i.c
del $(THIS)_p.c
del $(THIS).h
del dlldata.c
del *.obj
del *.exe
del *.lrf

$(THIS).reg $(THIS).idl: $(THIS).dlg
$(IDM) $(THIS).dlg -localserver "$(IDM) $(THIS).dlg \

-IDMenv MODLIB=$(THISDIR) -IDMerrfile $(THIS).log" \
-writeole $(THIS)

regedit $(THIS).reg

$(THIS).tlb $(THIS)_p.c $(THIS).h dlldata.c: $(THIS).idl
midl /ms_ext /app_config /c_ext /tlb $(THIS).tlb /Zp1 \

/env win32 /Os $(THIS).idl

$(THIS)_p.obj: $(THIS)_p.c
$(THIS)_i.obj: $(THIS)_i.c
dlldata.obj: dlldata.c
libmain.obj: libmain.cpp

##

$(OUTFILE) : $(OBJS) $(TARGET).res $(DEFFILE)
echo ++++++++++
echo Linking $@
echo $(LINK) > $(TARGET).lrf
echo $(ENTRY) >> $(TARGET).lrf
echo -def:$(THIS).def >> $(TARGET).lrf
echo -out:$(OUTFILE) >> $(TARGET).lrf
echo -machine:IX86 >> $(TARGET).lrf
echo -subsystem:windows5.01 >> $(TARGET).lrf
echo -align:0x1000 >> $(TARGET).lrf
echo $(OBJS1) >> $(TARGET).lrf
echo $(OBJS2) >> $(TARGET).lrf
echo $(OBJS3) >> $(TARGET).lrf
echo $(OBJS4) >> $(TARGET).lrf
echo $(OBJS5) >> $(TARGET).lrf
echo $(OBJS6) >> $(TARGET).lrf
echo $(TARGET).res >> $(TARGET).lrf
echo $(LIBS) >> $(TARGET).lrf
echo $(LIBS32) >> $(TARGET).lrf
link @$(TARGET).lrf
del $(TARGET).lrf

A.06.03.b 85

86 ISA DialogManager

6.2.2 Querying and Setting Attributes
In order that the client can query attributes on the server, nothing needs to be programmed in the
server. All attributes defined on the control object can be requested and set automatically by the cli-
ent.

In the example, the attributes “I”, “S” and “B” can be queried by the client.

control PropMethEvent
{

integer I := 123;
string S := "Dialog Manager";
boolean B := true;

}

6.2.3 Calling Methods
For the client to call methods in the server, these must be defined as normal methods of the control
object. The methods can then access all objects and attributes defined in the dialog.

In this example, the methods look like this:

control PropMethEvent
{

.message[1] Msg1;

.message[2] Msg2;

.message[3] Msg3;

.message[4] Msg4;

.message[5] Msg5;

.message[6] Msg6;

rule void M1
{

Info("M1() called.");
sendevent(this, Msg1);

}

rule integer M2 (integer I input)
{

Info("M2(" + I + ") called. Return -123456789");
return -123456789;

}

rule string M3 (string S input)
{

Info("M3(" + S + ") called. Return \"Bye\"");
return "Bye";

}

rule boolean M4 (boolean B input)
{

Info("M4(" + B + ") called. Return " + (not B));
return (not B);

}

rule void M5 (integer I input, string S input, boolean B input)
{

Info("M5(" + I + ", " + S + ", " + B + ") called.");
}

rule string M6 (integer P1 input, string P2 input,
boolean P3 input, integer P4 input, string P5 input,
boolean P6 input, integer P7 input, string P8 input)

{
Info("M6(" + P1 + ", " + P2 + ", " + P3 + ", " + P4 +

", " + P5 + ", " + P6 + ", " + P7 + ", " + P8 +
") called. Return \"Abracadabra!\"");

return "Abracadabra!";
}

}

6.2.4 Sending Events
If the server shall send events to the client, these must be defined in the server and programmed
accordingly. The definition of such events is done using the message resource. The events are then
sent to the client with the built-in function sendevent.

These events are defined in the example as follows:

message Msg1;
message Msg2 (integer I);
message Msg3 (string S);
message Msg4 (boolean B);
message Msg5 (integer I, string S, boolean B);
message Msg6 (integer P1, string P2, boolean P3,

integer P4, string P5, boolean P6);

In addition, the events to be sent by a control must be defined on the control object in the attribute
.message[integer]. The messages defined in this attribute are then passed on to the client.

control PropMethEvent
{

.mode mode_server;

.uuid "499593d1-a159-11d1-a7e3-00a02444c34e";

.picture TiPropMethEvent;

A.06.03.b 87

88 ISA DialogManager

.message[1] Msg1;

.message[2] Msg2;

.message[3] Msg3;

.message[4] Msg4;

.message[5] Msg5;

.message[6] Msg6;
}

The sending of the events takes place on selection of the pushbutton “Send” in the following rule:

child pushbutton PbSend
{

.yauto -1;

.height 1;

.text "Send";

.defbutton true;
integer I shadows instance NpEvents.Integer.Value;
boolean B shadows instance NpEvents.Boolean.Value;
string S shadows instance NpEvents.String.Value;

on select
{

case this.parent.LbEvents.activeitem
in 1:

sendevent(this.control, Msg1);
Info("sendevent(Msg1);");

in 2:
sendevent(this.control, Msg2, this.I);
Info("sendevent(Msg2, " + this.I + ");");

in 3:
sendevent(this.control, Msg3, this.S);
Info("sendevent(Msg3, " + this.S + ");");

in 4:
sendevent(this.control, Msg4, this.B);
Info("sendevent(Msg4, " + this.B + ");");

in 5:
sendevent(this.control, Msg5, this.I, this.S, this.B);
Info("sendevent(Msg5, " + this.I + ", " + this.S + ", " +

this.B + ");");
in 6:

sendevent(this.control, Msg6, this.I, this.S, this.B,
this.I, this.S, this.B);

Info("sendevent(Msg6, " + this.I + ", " + this.S + ", " +
this.B + ", " + this.I + ", " + this.S + ", " +
this.B + ");");

otherwise:
Info("Error - unknown event");

endcase

}
}

Figure 21: Sending events

6.2.5 Sending Notifications
In order to send notifications about attribute changes to the client, nothing has to be programmed in
the server. As soon as an attribute changes on the control, a notification is automatically sent to the cli-
ent.

The rule code for the assignment within the server looks like this:

child pushbutton PbApply
{

.yauto -1;

.height 1;

.text "Apply";

.defbutton true;

on select
{

this.control.I := this.parent.Integer.Value;
this.control.S := this.parent.String.Value;
this.control.B := this.parent.Boolean.Value;

A.06.03.b 89

90 ISA DialogManager

}
}

Figure 22: Exchange of notifications on selection of the Apply pushbutton

6.2.6 The Server Dialog

dialog IdmTest
{

.uuid "499593d0-a159-11d1-a7e3-00a02444c34e";
}

tile TiPropMethEvent "IMD_IMAGES:isaicon.gif";

message Msg1;
message Msg2(integer I);
message Msg3(string S);
message Msg4(boolean B);
message Msg5(integer I, string S, boolean B);
message Msg6(integer P1, string P2, boolean P3,

integer P4, string P5, boolean P6);

model groupbox MInteger
{

.height 1;

.xauto 0;
integer Value := 123;

child statictext { .text "Integer:"; }

child edittext Et
{

.xleft 8;

.xauto 0;

.format "%-9d";

.content "123";

on charinput
{

if fail(this.parent.Value := atoi(this.content)) then
this.parent.Value := 0;

endif
}

}
on .Value changed
{

this.Et.content := itoa(this.Value);
}

}

model groupbox MString
{

.height 1;

.xauto 0;
string Value shadows instance MString.Et.content;

child statictext { .text "String:"; }

child edittext Et
{

.xleft 8;

.xauto 0;

.content "Dialog Manager";
}

}

model groupbox MBoolean
{

.height 1;
boolean Value shadows instance Cb.active;

A.06.03.b 91

92 ISA DialogManager

child statictext { .text "Boolean:"; }

child checkbox Cb
{

.xleft 8;

.text "";
}

}

default control CONTROL
{

integer Count := 0;

on start
{

CONTROL.Count := CONTROL.Count + 1;
}

on finish
{

CONTROL.Count := CONTROL.Count - 1;
if CONTROL.Count=0 then

exit();
endif

}
}

model control PropMethEvent
{

.mode mode_server;

.uuid "499593d1-a159-11d1-a7e3-00a02444c34e";

.picture TiPropMethEvent;

.message[1] Msg1;

.message[2] Msg2;

.message[3] Msg3;

.message[4] Msg4;

.message[5] Msg5;

.message[6] Msg6;

integer I := 123;
string S := "Dialog Manager";
boolean B := true;

rule void M1
{

Info("M1() called.");
sendevent(this, Msg1);

}

rule integer M2 (integer I input)
{

Info("M2(" + I + ") called. Return -123456789");
return -123456789;

}

rule string M3 (string S input)
{

Info("M3(" + S + ") called. Return \"Bye\"");
return "Bye";

}

rule boolean M4 (boolean B input)
{

Info("M4(" + B + ") called. Return " + (not B));
return (not B);

}

rule void M5 (integer I input, string S input, boolean B input)
{

Info("M5(" + I + ", " + S + ", " + B + ") called.");
}

rule string M6 (integer P1 input, string P2 input,
boolean P3 input, integer P4 input, string P5 input,
boolean P6 input, integer P7 input, string P8 input)

{
Info("M6(" + P1 + ", " + P2 + ", " + P3 + ", " + P4 +

", " + P5 + ", " + P6 + ", " + P7 + ", " + P8 +
") called. Return \"Abracadabra!\"");

return "Abracadabra!";
}

on .I changed
{

Info(".I changed := " + this.I);
this.Gb.Nb.NpProperties.Integer.Value := this.I;

}

on .S changed
{

Info((".S changed := " + this.S));
this.Gb.Nb.NpProperties.String.Value := this.S;

}

A.06.03.b 93

94 ISA DialogManager

on .B changed
{

Info((".B changed := " + this.B));
this.Gb.Nb.NpProperties.Boolean.Value := this.B;

}

child groupbox Gb
{

.xauto 0;

.yauto 0;

.borderwidth 0;

child notebook Nb
{

.xauto 0;

.yauto 1;

.height 10;

child notepage NpProperties
{

.active true;

.title "Properties";

child MInteger Integer { }

child MString String { .ytop 1; }

child MBoolean Boolean
{

.ytop 2;

.Value := true;
}

child pushbutton PbApply
{

.yauto -1;

.height 1;

.text "Apply";

.defbutton true;

on select
{

this.control.I := this.parent.Integer.Value;
this.control.S := this.parent.String.Value;
this.control.B := this.parent.Boolean.Value;

}
}

}

child notepage NpMethods
{

.active false;

.title "Methods";

child listbox LbMethods
{

.xauto 0;

.yauto 0;

.content[1] "void M1()";

.content[2] "integer M2(integer)";

.content[3] "string M3(string)";

.content[4] "boolean M4(boolean)";

.content[5] "void M5(integer, string, boolean)";

.content[6] "string M6(integer, string, boolean, ...\
integer, string, boolean, integer, string)";

.firstchar 1;
}

}

child notepage NpEvents
{

.title "Events";

child listbox LbEvents
{

.xauto 1;

.width 20;

.yauto 0;

.ybottom 1;

.content[1] "Msg1()";

.content[2] "Msg2(integer)";

.content[3] "Msg3(string)";

.content[4] "Msg4(boolean)";

.content[5] "Msg5(integer, string, boolean)";

.content[6] "Msg6(integer, string, boolean, ...\
integer, string, boolean)";

.activeitem 1;

.firstchar 1;

on select
{

this.parent.Integer.sensitive :=
(0 <> stringpos(this.content[this.activeitem],

"integer"));

A.06.03.b 95

96 ISA DialogManager

this.parent.String.sensitive :=
(0 <> stringpos(this.content[this.activeitem],

"string"));
this.parent.Boolean.sensitive :=

(0 <> stringpos(this.content[this.activeitem],
"boolean"));

}
}

child MInteger Integer
{

.sensitive false;

.xleft 22;

.yauto 1;

.Et.active false;
}

child MString String
{

.sensitive false;

.xleft 22;

.yauto 1;

.ytop 1;
}

child MBoolean Boolean
{

.sensitive false;

.xleft 22;

.yauto 1;

.ytop 2;
}

child pushbutton PbSend
{

.yauto -1;

.height 1;

.text "Send";

.defbutton true;
integer I shadows instance NpEvents.Integer.Value;
boolean B shadows instance NpEvents.Boolean.Value;
string S shadows instance NpEvents.String.Value;

on select
{

case this.parent.LbEvents.activeitem
in 1:

sendevent(this.control, Msg1);
Info("sendevent(Msg1);");

in 2:
sendevent(this.control, Msg2, this.I);
Info("sendevent(Msg2, " + this.I + ");");

in 3:
sendevent(this.control, Msg3, this.S);
Info("sendevent(Msg3, " + this.S + ");");

in 4:
sendevent(this.control, Msg4, this.B);
Info("sendevent(Msg4, " + this.B + ");");

in 5:
sendevent(this.control, Msg5, this.I, this.S,

this.B);
Info("sendevent(Msg5, " + this.I + ", " + this.S +

", " + this.B + ");");
in 6:

sendevent(this.control, Msg6, this.I, this.S,
this.B, this.I, this.S, this.B);

Info("sendevent(Msg6, " + this.I + ", " + this.S +
", " + this.B + ", " + this.I +
", " + this.S + ", " + this.B +
");");

otherwise:
Info("Error - unknown event");

endcase
}

}
}

}

child listbox LbInfo
{

.xauto 0;

.yauto 0;

.ytop 10;

.firstchar 1;
}

}

on extevent 1
{

sendevent(this,Msg3,"Bye event");
this:sendevent(Msg4, true);

}
}

A.06.03.b 97

98 ISA DialogManager

rule void Info (string S input)
{

LbInfo.content[(LbInfo.itemcount + 1)] := S;
LbInfo.topitem := LbInfo.itemcount;

}

on IdmTest extevent 1(object C)
{

Info("on IdmTest extevent 1");
sendevent(C, Msg2, 909);

}

7 DialogManager Environment
The program idmole can be used as simulation program for OLE applications. This program has the
same options as the simulation program, plus the OLE-specific options described in this manual.

If an application with OLE functionality is to be built, the library dmole.lib and dmoleini.obj must be
linked in addition to the usual libraries.

Other modifications are not necessary.

A.06.03.b 99

100 ISA DialogManager

A

active 29-30

AT-connect 17

AT-name 19

AT-picture 19

AT-uuid 20

AT_connect 17

AT_name 18

AT_picture 19

AT_uuid 20

attribute

mode 48

C

connect 17, 29-30

control 11

control objects 48

D

deficon 55

dmole.lib 99

dmoleini.obj 99

E

event

OLE server 87

G

guidgen.exe 20, 49

H

helpdir 55

I

identifier 3

IDispatch 51

IDispatch-Interface 9

idl file 55

idmole 99

IPropertyNotifySink 52

L

localserver 55

M

makefile

OLE server 83

message 52

methods 32

MIDL compiler 56

mode 18

mode_client 18

mode_none 18

mode_server 18, 48

N

name 18, 29

notification

OLE server 89

Index

A.06.03.b 101

NotifySinks 53

O

object

control 11, 48

subcontrol 22

OLE server

event 87

implementation steps 61

makefile 83

notification 89

registration 56

option

deficon 55

helpdir 55

localserver 55

-userregistry 55

proxy 55

typelib 55

P

picture 19, 29, 48

properties 30, 32

proxy 55

proxy DLL 56

R

reg file 55

regedit.exe 56

S

subcontrol 22

T

typelib 55

U

-userregistry 55

uuid 20, 48

V

visible 29

X

xleft 29

Y

ytop 29

102 ISA DialogManager

	Notation Conventions
	Table of Contents
	1 Introduction
	1.1 Requirements
	1.1.1 Developer
	1.1.2 System
	1.1.3 Container / Client
	1.1.4 User

	2 The control Object
	2.1 Attributes
	2.2 Specific Attributes
	2.2.1 connect
	2.2.2 mode
	2.2.3 name
	2.2.4 picture
	2.2.5 uuid

	3 The subcontrol Object
	3.1 Attributes
	3.2 Implicit Creation
	3.3 Dynamic OLE Properties and Subcontrols
	3.4 Garbage Collection
	3.4.1 Example

	4 Dialog Manager as OLE Client
	4.1 Server Integration
	4.2 Activation of Server
	4.3 Using the Server
	4.4 Identifying the Interfaces
	4.4.1 Microsoft C++ Compiler Version 4.x
	4.4.2 Microsoft C++ Compiler Version 5.0

	4.5 Use of Grid Controls
	4.6 Using the Internet Explorer

	5 Dialog Manager as OLE Server
	5.1 Basic Structure of Control as OLE Server
	5.2 Unambiguous Interface
	5.3 Single Usage and Multi-usage of an OLE Server
	5.4 Attributes
	5.5 Methods
	5.6 Notifications
	5.7 Events
	5.7.1 The message Resource

	5.8 Access to Attributes of any Object
	5.9 Generating Interface Information
	5.9.1 Generating the idl and reg Files
	5.9.2 Server Registration
	5.9.3 Further Processing of the idl File

	5.10 Example
	5.11 Exemplary Integration of a Server in Word 7.0
	5.11.1 Server Dialog
	5.11.2 Implementing the Client
	5.11.3 Working with the Server

	5.12 Summary of How to Provide an OLE Server

	6 Server and Client Implementation
	6.1 Client Structure
	6.1.1 Server Activation
	6.1.2 Querying and Setting Values in the Server
	6.1.3 Reaction to Events
	6.1.4 Reaction to Notifications
	6.1.5 Calling Methods in the Server
	6.1.6 The Client Dialog

	6.2 Server Structure
	6.2.1 Providing the Server
	6.2.2 Querying and Setting Attributes
	6.2.3 Calling Methods
	6.2.4 Sending Events
	6.2.5 Sending Notifications
	6.2.6 The Server Dialog

	7 Dialog Manager Environment
	Index

