
PROGRAMMING TECHNIQUES

A.06.03.b

This manual provides basic techniques for the development
of user interfaces with the ISA Dialog Manager. Mod-
ularization, use of Models, object-oriented programming and
the Datamodel are among the topics covered.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 Conventions for Names 9

1.1 Purpose of the Naming 9
1.2 Abbreviations for Individual Object Classes 9
1.3 Abbreviations for Data Types 11
1.4 Examples for Naming 12

2 Use of Models 13

2.1 Object Types 13
2.1.1 Default Objects 13
2.1.2 Models 15
2.1.3 Instance 19

2.2 Inheritance of Attributes 19
2.3 Specific Features Regarding the Inheritance of Attributes 21
2.4 Exceptions when Inheriting Attributes 21
2.5 Effects on the Rule Processing 22

3 User Data and User-defined Attributes 25

3.1 Realization of Windows 25
3.2 The MPbOkCancel Model 30
3.3 Assigning Detail Windows to a Line 31
3.4 Deleting a Line 33
3.5 Additional Rules 34

4 Object-oriented Programming 36

4.1 Description of the Systems to be Developed 36
4.2 Approach of Realization 37
4.3 Implementation in the Dialog Script 38

4.3.1 Naming 38
4.3.2 Data Structures 38

4.3.2.1 Structure for Orders 38
4.3.2.2 Customer Structure 39

A.06.03.b 5

4.3.2.3 Structure for Saving Elements 39
4.3.2.4 Structure for Depositing Methods 40
4.3.2.5 Object Structure 41
4.3.2.6 Order Object 42
4.3.2.7 Customer Object 42
4.3.2.8 Superordinate Structure 43

4.3.3 Extension of Existing Objects 43
4.3.3.1 Extensions at window Object 43
4.3.3.2 Extensions at the Object edittext 46
4.3.3.3 Extensions at the Object image 49
4.3.3.4 Extensions at the Object pushbutton 50

4.3.4 Definitions for Individual Windows 50
4.3.4.1 Actions on Starting and Ending a Program 50
4.3.4.2 The Starting Window 51
4.3.4.3 The Overview Window 53
4.3.4.4 The Customer Window 58
4.3.4.5 The Order Window 63
4.3.4.6 The Invoice Window 66
4.3.4.7 The Production Order Window 68

5 Modularization 70

5.1 Conversion of Modularization 70
5.2 Language Description 74

5.2.1 Keywords 74
5.2.2 The Module 75

5.2.2.1 Events of the Object module 75
5.2.2.2 Children of the Object module 76
5.2.2.3 Attributes of the Object module 77

5.2.3 Export of Objects 77
5.3 Import with use 78

5.3.1 The Alternative Import Mechanism 78
5.3.1.1 Special Features 79
5.3.1.2 Upper and Lower Case in File Names 80
5.3.1.3 Recommendations 80

5.3.2 Language Specification and Use Path 80
5.3.3 Use Path, File Names and Name Restrictions 81
5.3.4 Search Path for Interface, Module, Dialog, and Binary Files 81

5.4 Comparison Between import and use 83
5.5 Interface and Binary Files when Using import 83

5.5.1 From the Module to the Interface 83
5.5.2 From the Interface to the Module 85
5.5.3 Import Modules in Modules 86
5.5.4 Use of the Object – use 87

6 ISA DialogManager

A.06.03.b 7

5.5.5 Binary Files 88
5.6 Compiling Interface and Binary Files for Imports with use 89
5.7 Dynamic Module Administration 91

5.7.1 When Using import 91
5.7.1.1 Loading Process 91
5.7.1.2 Unloading Process 93

5.7.2 When Using use 93
5.8 Object Application 95

5.8.1 Application assignment of module functions 95
5.9 Application Examples for the Modularization 97

5.9.1 Resource Basis 98
5.9.2 Model Basis 98
5.9.3 Exchangeable Parts of an Application 100
5.9.4 Dividable Applications 100
5.9.5 Prototyping & Testing 101

5.10 Example 103
5.10.1 The Default Module 103
5.10.2 The Module for Pushbutton Models 105
5.10.3 Further Modules 107
5.10.4 Dialog LoadExample 107
5.10.5 Example for USE Operator 109

5.11 Structure of a Development Environment 110

6 Datamodel 114

6.1 Introduction 114
6.2 Linkage Between Model and View 118
6.3 Sequence and Value Aggregation 122
6.4 Synchronization Between Model and View 129
6.5 Conversion and Conversion Methods 133
6.6 Use of XML with the Datamodel 135

6.6.1 Example 136
6.6.2 Index Value dopt_cache_data of the Attribute dataoptions 138

6.7 Actions 138
6.8 Tracing 138
6.9 Constraints 139

7 Multiscreen support under Motif 140

8 Multi-monitor support under Windows 142

9 HighDPI Support 144

9.1 Start options 145
9.2 Layout resources 146
9.3 Enhancement to the tile resource 150
9.4 Enhancement to the font resource 151
9.5 Enhancement to the setup object 152
9.6 Enhancement to the image object 153
9.7 Support of HiDPI image variants 154
9.8 Installation notes 155
9.9 Geometry and coordinates 155
9.10 High resolution support under Motif 155
9.11 High resolution IDM support for Windows 11 157
9.12 High resolution support under Qt 158
9.13 Enhancements/ changes to the IDMED 158
9.14 High-resolution support for USW programming 158

Index 161

8 ISA DialogManager

1Conventions for Names
As is also usual in other programming languages, the use of name conventions on establishing a dia-
log can substantially increase the legibility of a dialog. By giving unambiguous names, the developers
are able to read foreign dialog parts easily without having to search for all used items in the dialog
script. This is why such a naming should be defined before starting a larger project.

The following naming can only be considered as a basic structure or a suggestion. It must be adapted
to the individual projects according to the relevant conditions.

1.1 Purpose of the Naming
With help of the naming it is achieved that the reader receives most information possible with the smal-
lest amount of characters possible. The name should convey the type of the object, in which module
the corresponding object is defined, and what function it has. In addition, the number of the names
should be kept as small as possible and only those objects should be named which are referred to in
the rules and which cannot inherit names from their model. Usually it is not reasonable to overwrite
the name which was inherited by a model. This only increases the number of the names and is by no
means a contribution to the legibility of the dialog.

The class and the type (model or instance) always turn out to be very important in the use of objects.
The first character should thus contain this kind of information. Since the instance usually is the object
type most used, it should not be labeled by a special letter, only the models. After this, the object type
should be attached to the label which indicates whether it is a module or an instance. If modules are
used, the module where the corresponding object is defined should then be indicated - separated by
an underline. Then the actual name of the object should follow - again separated by an underline for
better legibility. This name should convey the task of the corresponding object.

The following scheme is the result for the naming:

Definition

{M}<abbreviation object class>{_<module name>}_name of object

The module name should only be used if you really work with modules. Otherwise this part of the
name is ignored. When giving names, please note that the sign limit for the name is 31.

1.2 Abbreviations for Individual Object Classes
In this chapter the abbreviations for the individual object classes are defined.

object type abbreviation for name convention

image Im

A.06.03.b 9

10 ISA DialogManager

object type abbreviation for name convention

canvas Cn

checkbox, tristatebutton Cb

edittext Et

window Wn

groupbox Gb

listbox Lb

menubox Mb

menuitem Mi

menuseparator Ms

messagebox Mx

notebook Nb

notepage Np

poptext Pt

pushbutton Pb

radiobutton Rb

rectangle Re

scrollbar Sc

statusbar Sb

statictext St

tablefield Tf

application Ap

record Rc

timer Ti

object type abbreviation for name convention

accelerator Ac

cursor Cu

color Cl

format Fm

tile Ti

text Tx

font Fn

function Fc

global variable V

rule Rl

user-defined attribute A

The user-defined attributes and the global variables can be followed by a data type name, so that the
corresponding data type can be read directly from the name.

1.3 Abbreviations for Data Types
The data types can be abbreviated as follows:

data type abbreviation for name convention

anyvalue Av

attribute At

boolean Bo

class Cl

datatype Dt

enum En

event Ev

A.06.03.b 11

12 ISA DialogManager

data type abbreviation for name convention

index Ix

integer In

method Mt

object Ob

pointer Pt

string St

1.4 Examples for Naming
In this chapter some examples are listed to illustrate how object names can be created from the con-
ventions above.

description of object name of object

model of tablefield MTf_Overview

model of OK pushbuttons MPb_OK

global object variable VOb_ActualWindowr

object attribute AOb_InitWindow

tristate pushbutton Cb_Switch

2 Use ofModels
This chapter describes how the inheritance of attributes functions internally. You get suggestions for
the structure of a modular construction from which you can use objects whenever you want.

2.1 Object Types
Attributes which are visible to the user on the screen can be defined on different object definition
levels.

The different object types are:

DM internal default values for the individual attributes

default

model (different layers, any number)

instance

The different object types are explained in more detail in the following chapter.

2.1.1 Default Objects
Each object class used in the dialog should have a defined default object. Using these default objects,
the individual object attributes can once be globally defined. That means that all the following
declared objects of the same object class contain implicitly the attributes which are defined in the
object model, if these are not locally defined otherwise. With help of this you only have to declare addi-
tional attributes or attributes which differ from the default.

The declaration of an object model starts with the key word default, then follows the object class and
finally the object definition in braces.

Definition

{ export | reexport } default <object class> { <Identifier> }
{

<attributes>
}

Within the default definitions all attributes belonging to the object class can be used. Of course you
can also add user-defined attributes to the default object.

Example

default window
{

.sensitive true;

.visible true;

A.06.03.b 13

14 ISA DialogManager

.fgc Medium_Gray;

.bgc White;

.titlebar true;

.closeable true;

.sizeable true;
object MeinZusaetzlichesAttribut := null;

}
default pushbutton
{

.sensitive true;

.visible true;

.fgc Medium_Gray;

.bgc White;

.width 80;

.height 30;

.xauto 1;

.yauto 1;
}

If a pushbutton is declared later on, only the position of the top left corner and the labeling must be
indicated.

In this case:

pushbutton OKAY
{
 .xleft 10;
 .ytop 10;
 .text "OKAY";
}

Unlike all other objects, default objects cannot have children. If the default object is not named, as
usual, it is addressed to via the name of its class in capital letters; e.g. PUSHBUTTON represents the
default object of the pushbuttons, WINDOW is the default object of all windows.

The following table shows all the names of default objects.

Object Class Name of Default Object

canvas CANVAS

checkbox, tristate button CHECKBOX

edittext EDITTEXT

groupbox GROUPBOX

image IMAGE

menubox MENUBOX

Object Class Name of Default Object

menuitem MENUITEM

menuseparator MENUSEP

messagebox MESSAGEBOX

notebook NOTEBOOK

notepage NOTEPAGE

poptext POPTEXT

pushbutton PUSHBUTTON

radiobutton RADIOBUTTON

rectangle RECTANGLE

scrollbar SCROLLBAR

statictext STATICTEXT

statusbar STATUSBAR

tablefield TABLEFIELD

timer TIMER

window WINDOW

2.1.2 Models
Models are other auxiliary means for the object generation. With the models, it is possible to define a
named model object which is used for the definition of a real object.

This is very helpful when a bigger amount of similar objects is to be generated (e.g. several OK but-
tons or several edittexts, into which the user can set one item number each). The object referring to a
model inherits all the attributes which it does not redefine locally.

Definition

{ export | reexport } model <object class> <Identifier>
{

<attributes>
}

Within the model definition all attributes belonging to the object class can be used. Such models can
then serve as children of other objects or models. In addition, it is possible to give children to such a

A.06.03.b 15

16 ISA DialogManager

model which are automatically inherited to all instances derived from it. Complex hierarchical models
which are to be used again and again in the current dialog can thus be constructed.

The definition of such hierarchical models is as follows:

{ export | reexport } model <object class> <Identifier>
{

{ export | reexport } { child } <object class> { <Identifier> }

{
<attributes>

}
}

In order to structure the use of models more efficiently, you should make the effort to create complex
models if certain structures do always reappear in the dialog. Thus, the maintenance and the effort for
changes can be substantially reduced.

If a model is to be used for the definition of an object, the object must be defined as follows:

<model identifier> { <Identifier> }
{

<attributes>
}

Example: Edittext for Item Number

In different windows of an application edittexts are to be defined into which an item number can be
entered. Usually the scheme for an item number is the same for all applications. This is why you
should create a model in order to use it in the corresponding windows. If the scheme for the item num-
ber changes later on, only one position in the dialog, i.e. the model, must be altered.

model edittext MEtitemnumber
{

.posraster true;

.sizeraster true;

.format "AA.NN.NN/NN";

.width 12;
}

This scheme can then be used in different windows and their windows can be changed.

window WnFenster1
{
 child MEtArtikelNummer

{
 .ytop 2;
 .xleft 2;
 }
}

window WnFenster2
{
 child MEtArtikelNummer EtErsterArtikel

{
 .ytop 1;
 .xleft 10;
 }
 child MEtArtikelNummer EtZweiterArtikel

{
 .ytop 2;
 .xleft 10;
 }
}

In the first window WnFenster1 the item number is used without giving it a new name. Thus, the
instance derived from the model can be addressed to via window WnFenster1.MEtArtikelNummer. In
the second window WnFenster2 the model is used even on two positions. Here, the objects should be
renamed so that these can unambiguously be addressed.

Example: Window with Cancel and OK Pushbutton

In a dialog several windows, into which data can be entered, are to be created. Therefore those win-
dows should be equipped with two pushbuttons. The first pushbutton "OK" takes over the alterations
made by the user into the program, the "cancel" pushbutton rejects all actions of the user. In order to
get a comfortable structure of the corresponding systems, a pushbutton model "MPbButton" is cre-
ated first. Only the pushbutton fixing at the lower border of the parent is defined. The actual push-
buttons "MPbOK" and "MPbCancel" are derived also as model. Then a window model is defined
which contains derivations of the pushbuttons "MPbOK" and "MPbCancel". Finally an instance is cre-
ated for this window. The instance is structured as follows:

A.06.03.b 17

18 ISA DialogManager

Figure 1:Window with two pushbuttons

The corresponding dialog script is structured as follows:

model pushbutton MPbButton
{

.yauto -1;
}
model MPbButton MPbAbbrechen
{

.xleft 15;

.text "cancel";
}
model pushbutton MPbOK
{

.yauto -1;

.text "ok";
}
model window MWnEingabeFenster
{

.title "input window";
child MPbAbbrechen
{
}
child MPbOK
{
}

}
MWnEingabeFenster WnAddresse
{
}

In the window "WnAddress" you can redefine as many children as you want of course.

Figure 2: Representation of the model hierarchy

2.1.3 Instance
Instances are those objects which can be made visible on the screen. They can be derived from a
model and can have any number of children apart from the children inherited from the model. At an
instance all attribute values can be overwritten and even the attributes of inherited children can be
changed. Children which are defined in the model must be taken over, they cannot be deleted in the
instance.

2.2 Inheritance of Attributes
Attribute values at objects are always inherited from the underlying model. These attribute values can
then be overwritten by new values. Doing so, the importance of attributes increases gradually from
default values to model values to instance values. For example, when an instance is to have a certain

A.06.03.b 19

20 ISA DialogManager

color, the color is defined at the corresponding instance. Thus the instance gets the corresponding
color, regardless of what has been defined in the underlying models.

inheritance

Above the defaults which are defined in the dialog, there are Dialog Manager default values rep-
resenting the values for individual attributes. The Dialog Manager can internally work with these attrib-
utes. You should never rely on these values when programming the dialog, since the values can
always be re-adapted. In addition, there are also default values in the window system for certain attrib-
utes. Those default values become important when no value for the attribute was set neither at the
instance nor at the model or the default. This is useful especially with layout attributes such as the
background color or the font, as the user can change the corresponding values by system settings.
The following diagram illustrates the hierarchy of these attributes.

Figure 3: Inheritance priority

If an instance is now made visible on the screen, an object is created which contains the attributes of
the instance and the underlying model. The hierarchy is always searched through in the minimum
scale necessary. As soon as there is a value defined for an attribute, the search for this attribute is can-
celled and the found value is taken over. In the following table the columns represent the attributes,
and the lines indicate the values of the used defaults, models, and instances The last line represents
the attribute values for the shown object.

attribute 1 attribute 2 attribute 3 attribute 4 attribute

window system FS FS FS

attribute 1 attribute 2 attribute 3 attribute 4 attribute

internal default ID ID ID

model 1 M1

model 2 M2

model 3 M3

instance I

indicated value M1 FS M2 I M3

2.3 Specific Features Regarding the Inheritance of Attributes
Apart from the above mentioned inheritance of attributes from the model to the instance, there is a
special kind of inheritance from parent to children for the attributes .visible and .sensitive. If one of
these attributes has the value false at the parent, the values at the children have automatically the
same value. The reason for this is: e.g. a pushbutton itself can only be visible when the window where
it is defined is also visible. If it is not visible, the pushbutton automatically cannot be seen either. The
same applies to the behavior regarding the selection.

In order to ascertain whether the pushbutton is visible, it would be necessary to ask the pushbutton
and all its parents if they are visible. Only when all of them are visible, the pushbutton as well is really
visible. To make it easier, it is possible to ask the object for the attributes .real_visible and .real_sens-
itive. By making a query, the program then recognizes whether the object is really visible or really can
be selected.

The following table illustrates the behavior of the attribute .visible. The same applies to the attribute
.sensitive.

Table 1: Inheritance of the attributes .visible and .sensitive

Parent.visible Child.visible Parent.real_visible Child.real_visible

true true true true

false true false false

true false true false

false false false false

2.4 Exceptions when Inheriting Attributes
Internally in Dialog Manager almost all attributes which can be set are inherited from the model to the
instance. The exceptions are briefly listed below:

A.06.03.b 21

22 ISA DialogManager

Attribute Cause

.content of a listbox Usually the content of a listbox is dynamically filled by the application
and thus not inherited in the hierarchy.

export at all objects The labeling of an object for exportation must be repeated whenever
an object is to become an instance, if the instance is to be exported
as well.

2.5 Effects on the Rule Processing
If an event occurs, the DM starts to search for appropriate rules for the event. The DM begins to
search for rules with "before" at the corresponding default object. From there, it is searched for these
rules at the model or models belonging to the object. Finally DM checks if a rule with "before" has
been defined. All found rules are executed.

After that, the DM starts to search for "normal" rules at the object and - in case there are no rules - the
DM continues the search at the corresponding model. If there is a rule defined at the object, however,
the DM does not go to the model. At the model it is checked if there is an appropiate rule defined. If
not, the DM continues at the corresponding model of the model or of the default. In case there is a rule
at the model, however, this rule is executed and the search is interrupted.

Finally the DM starts again to search at the object for appropriate rules for the event. This time, rules
are searched which are labelled with the key word "after". From the object the DM goes to the model
to start the search again. Then the DM continues the search at the model or the default of the model
and searches for appropriate rules as well. All found rules, however, are executed.

There is an exception to this scheme for rules depending on keyboard events ("key") and on the help
event ("help"). The scheme mentioned above is also valid for these events. In addition to that, the DM
goes to the parent of the object, too, in case no appropriate rule has been found all the way through.
Applying this, it is quite easy to link e. g. a help system in form of a rule, if the corresponding rule is pre-
served in the dialog.

The following diagram illustrates the search for rules. It is assumed that the object has a cor-
responding model which is directly derived from the default.

Figure 4: Order of rule processing

Example

The following 4 rules are defined for a window object:

(1) on WINDOW close before
(2) on WnFenster1 close
(3) on WINDOW close
(4) on WnFenster1 close after

The result is the following order: 1-2-4.

Rule 3 is never executed due to the existence of rule 1.

The following 5 rules are defined for a pushbutton:

(1) on PUSHBUTTON select
(2) on MPbOK select
(3) on PUSHBUTTON select after
(4) on MPbOK select before
(5) on MPbOK select after

From this the following order results: 4-2-5-3.

Rule 1 is never executed due to the existence of rule 2.

Here, a system for data input can be named as application example. In this system many windows are
defined which process the contents via the OK-button and reject the contents by the cancel-button.
The window is closed with both buttons.

A.06.03.b 23

24 ISA DialogManager

The rules can be defined so that there is a rule which closes the corresponding window and which is
dependent on the model of the cancel-button. The OK-button is more difficult to handle, since there
must be carried out a window-specific processing beforehand. This is why there is a more useful pos-
sibility:

At each instance of the OK-button there is a rule which calls the current function, and at the model of
the OK-button there is an "after" rule which always closes the window. Thus, it is possible to close the
window centrally and need not be programmed in each instance rule.

3 User Data and User-defined
Attributes
In this chapter it is shown how the attribute .userdata and user-defined attributes can be reasonably
used for storing.

In order to illustrate the reasonable use of these attributes, an example representing a simple address
administration is to be structured.

In the starting window, a table containing the name, surname and residence shall be represented.
Using pushbuttons, the user will be able to delete and to change the entries or to add new ones. The
changing and adding is done in another window, where further data such as the street and the post-
code are recorded. This requires that this window can be open exactly once in each line of the table,
so that the user will not get confused by double windows with identical data on the screen.

3.1 Realization of Windows
First of all the two windows which are required in the example are created with the editor. One window
is created as instance as usual, since it can be open only once. The detail window, however, should
be opened once each line. This is why it is defined as instance first and then it is transformed into a
model.

Figure 5: Starting window of the address administration

In addition to that, a menu is assigned to this window, so that the program can be ended regularly by
selecting the menuitem. The attributes of the table are set in the way that it has 3 columns and no
shadows. Additionally all columns are aligned centered.

A.06.03.b 25

26 ISA DialogManager

At the objects, rules for the behavior of the object have been partly deposited in the object already. On
selecting the "new" pushbutton a new instance of the detail window is generated and displayed. The
user can then enter his data into it. By selecting the menuitem "cancel", the whole system is left by call-
ing the function "exit". By selecting the pushbutton "change", a named rule is called, since the same
functionality can be triggered also by a double click on the table element.

The window in the dialog script has the following structure:

window WnUebersicht
{

.width 61;

.height 10;

.title "overview window";
child tablefield TfAdressen
{

.xauto 0;

.xleft 0;

.ytop 0;

.height 6;

.fieldshadow false;

.selection[sel_row] true;

.selection[sel_header] false;

.selection[sel_single] false;

.colcount 3;

.rowheader 1;

.colfirst 1;

.rowfirst 2;

.colwidth[1] 20;

.colalignment[1] 0;

.colwidth[2] 15;

.colalignment[2] 0;

.colwidth[3] 20;

.colalignment[3] 0;

.content[1,1] "name";

.content[1,2] "first name";

.content[1,3] "city";

.content[2,1] "1.name";

.content[2,2] "1. first name ";

.content[2,3] " city 1";

.content[3,1] "2.name";

.content[3,2] "2. first name ";

.content[3,3] " city 2";

.content[4,1] "3.name";

.content[4,2] "3. first name ";

.content[4,3] " city 3";

.content[5,1] "4.name";

.content[5,2] "4. first name ";

.content[5,3] " city 4";
on dbselect
{

!! If something in the table is really selected,
!! display of the change dialog
if (first(this.activeitem) > 0) then

RlChange();
endif

}
}
child pushbutton PbNew
{

.xleft 17;

.ytop 7;

.text "new";
on select
{

!! Generating the new object, first
!! invisible
variable object New window :=

create(MWnDetail, this.dialog, true);

!! Display of new object
New window.visible := true;

}

}
child pushbutton PbDelete
{

.xleft 32;

.ytop 7;

.text "delete";
}
child pushbutton PbChange
{

.xleft 46;

.ytop 7;

.text "change";
on select
{

!! If Change is selected, display of
!! Change dialog
RlChange();

}
}
child menubox MbFile

A.06.03.b 27

28 ISA DialogManager

{
.title "file";
child menuitem MiSave
{

.text "save";
}
child menuitem MiEnd
{

.text "cancel";
on select
{

exit();
}

}
}

}

The detail window is as follows:

Figure 6:Window for address input

This window, as it is needed parallel during the runtime several times, it is saved as a model. Both
pushbuttons are derived from a joint model. The model serves exclusively to simplify the rules.

The window is defined as follows in the dialog script:

model window MWnDetail
{

.xleft 16;

.width 58;

.ytop 303;

.height 8;

.title "detail window";
integer ZugehoerigeZeile := 0;
child MPbOkAbbrechen PbOK
{

.xleft 44;

.ytop 5;

.text "ok";
}
child MPbOkAbbrechen PbAbbrechen
{

.xleft 31;

.ytop 5;

.text "cancel";
}
child statictext
{

.xleft 1;

.ytop 0;

.text "name:";
}
child statictext
{

.xleft 1;

.ytop 1;

.text "first name:";
}
child statictext
{

.xleft 1;

.ytop 2;

.text "street:";
}
child statictext
{

.xleft 1;

.ytop 3;

.text "post code:";
}
child statictext
{

.xleft 14;

.ytop 3;

.text "city:";
}
child edittext EtName
{

.active false;

.xleft 12;

.width 29;

.ytop 0;

A.06.03.b 29

30 ISA DialogManager

.content "";
}
child edittext EtVorname
{

.active false;

.xleft 12;

.width 29;

.ytop 1;

.content "";
}
child edittext EtStrasse
{

.active false;

.xleft 12;

.width 29;

.ytop 2;

.content "";
}
child edittext EtOrt
{

.active false;

.xleft 18;

.width 29;

.ytop 3;

.content "";
}
child edittext EtPlz
{

.xleft 5;

.width 4;

.ytop 3;
}

}

3.2 The MPbOkCancel Model
The model "MPbOkCancel" is defined as follows:

model pushbutton MPbOkAbbrechen
{

!! General rule for the
!! selection of the pushbuttons
!! in the detail window
on select after
{

!! On closing, the window must

!! be destroyed
destroy(this.window, true);

}
}

By introducing this model it is possible to simplify the implementation of rules at the pushbuttons "can-
cel" and "ok". As both pushbuttons are derived from this model and the rules at this model are defined
with the key word "after", this rule will be triggered whenever one of the both pushbuttons is selected.
It is thus not necessary to define another rule for the cancel-pushbutton; but the acceptance of
changes must still be implemented for the OK-pushbutton.

3.3 Assigning Detail Windows to a Line
Assigning detail windows to a line in the table is made by the following mechanism:

In the userdata of the first column of each line, the ID of the corresponding window is deposited. If a
window belonging to a line is now to be opened, first the userdata is checked, whether there has
already been saved a window. In this case, the ID which is stored there is not the ID null. Then the win-
dow is only activated setting it again on visible. If the ID, which is stored in the userdata, is the ID null,
there is no window belonging to this line. Then a new window is generated, filled with the cor-
responding data and displayed. In this case, the use of userdata is very reasonable, since each cell of
the table disposes of userdata and Dialog Manager takes over the management of this input. If a line
is deleted or added, the userdata is corrected respectively. This would not apply to user-defined attrib-
utes and would have to be managed in the application.

When assigning a window to a line it is different. It would be possible to use even here the userdata of
the window in order to memorize the necessary information. But normally this is made by the user-
defined attribute, since one single attribute at the object is sufficient for assigning. The legibility of the
dialog code is so substantially increased.

The detail window in the dialog script has thus the following structure:

model window MWnDetail
{

.xleft 16;

.width 58;

.ytop 303;

.height 8;

.title "detail window";
integer ZugehoerigeZeile := 0;

In the attribute "ZugehoerigeZeile" the number of the line, the window of which has been opened, is
memorized. If the window is reopened by the "new" pushbutton, no new value is deposited, but the
defined value 0 remains. On selecting the "ok" pushbutton it can now be recognized whether the win-
dow has been opened by "new" or "change".

The rule to change a data record has the following structure:

rule void RlChange

A.06.03.b 31

32 ISA DialogManager

{
!! Setting a variable to save
!! the window
variable object New window;

!! Taking over userdata from column 1 of the
!! active line of the tablefields
NeuesFenster := TfAdressen.userdata

[first(TfAdressen.activeitem),1];
!! If there is no window yet,
!! a window must be generated
!! and entered in the userdata
if (NeuesFenster = null) then

NeuesFenster := create(MWnDetail, this.dialog, true);
!! Memorizing the new windowin the userdata
TfAdressen.userdata[first(TfAdressen.activeitem),1]

:= NeuesFenster;
!! Taking over the values from the active line
!! into the new window
NeuesFenster.EtName.content :=
TfAdressen.content[first(TfAdressen.activeitem),1];

NeuesFenster.EtVorname.content :=
TfAdressen.content[first(TfAdressen.activeitem),2];

NeuesFenster.EtOrt.content :=
TfAdressen.content[first(TfAdressen.activeitem),3];

!! Now the window must memorize
!! the line from which it was opened.
!! This is achieved by the attribute RelevantLine.
NeuesFenster.ZugehoerigeZeile :=

first(TfAdressen.activeitem);
endif
!! Finally the window is made visible.
!! If it was already visible, it is just shifted into the
!! foreground
NeuesFenster.visible := true;

}

By selecting the "ok" pushbutton, the data from the detail window is transferred to the overview win-
dow. At the value of the attribute "ZugehoerigeZeile", it is possible to recognize if the window has
been opened by "new" or "change". If it has been opened to change, the data is recorded in the ori-
ginal line. If it has been opened for a new data record, the table is extended by one line and the new
data record is added at the bottom of the table.

!! If OK is selected,
!! the data must be taken over into the
!! overview window.
on PbOK select

{
!! In the attribute RelevantLine of the window
!! the information is stored,
!! where the data must be written again.
!! There is one exception: 0.
!! This value says that the window has been opened
!! via NEU.
if (this.window.ZugehoerigeZeile = 0) then

!! In this case a line must be inserted at the
!! end.
TfAdressen.rowcount := (TfAdressen.rowcount + 1);
this.window.ZugehoerigeZeile := TfAdressen.rowcount;

endif
!! Now the contents can be taken over.
!! Attention: The accesses in the detail window must
!! all be relative, since it is a model.
TfAdressen.content[this.window.ZugehoerigeZeile,1] :=

this.window.EtName.content;
TfAdressen.content[this.window.ZugehoerigeZeile,2] :=

this.window.EtVorname.content;
TfAdressen.content[this.window.ZugehoerigeZeile,3] :=

this.window.EtOrt.content;
}

This realization has an additional advantage: all references to an object are removed in the dialog, if
this object is destroyed. On destroying a detail window, the programmer thus does not need to set the
value to null in the corresponding userdata. This is automatically carried out by Dialog Manager.

3.4 Deleting a Line
When deleting a line, the method ":delete" can be used. This method deletes one or more lines/-
columns from a table. All information about the concerned line of the column is then deleted, also the
corresponding userdata.

If a line is now deleted, all windows which have been opened from a succeeding line must be informed
that their "ZugehoerigeZeile" has changed. To avoid the examination of all table elements, this loop
should start with the line number of the just deleted line and run until the number of lines.

!! Deleting the active line in the table
!! If, additionally, there is a window open,
!! destroy this window first, then delete the line
on PbLoeschen select
{

!! loop variable
variable integer I;
!! Check if there is a corresponding window
if (TfAdressen.userdata[first(TfAdressen.activeitem),1]

A.06.03.b 33

34 ISA DialogManager

<> null) then
destroy(TfAdressen.userdata[first(TfAdressen.activeitem),

1], true);
endif
!! Memorizing of the active line. After deleting,
!! this information can no longer be queried.
I := first(TfAdressen.activeitem);
!! Deleting the line
TfAdressen:delete(first(TfAdressen.activeitem), 1, false);
!! Shifting the line information
!! in all following windows
for I := I to TfAdressen.rowcount do

if (TfAdressen.userdata[I,1] <> null) then
TfAdressen.userdata[I,1].ZugehoerigeZeile := I;

endif
endfor
TfAdressen.activeitem := [1,0];

}

3.5 Additional Rules
The dialog starting rule makes sure that nothing is selected in the table and that all userdata of the
table is initialized with the value null.

on dialog start
{

!! Secure that nothing is saved in the
!! userdata
TfAdressen.userdata[0,0] := null;
!! Deleting all selections
TfAdressen.activeitem := [0,0];

}

In order not to implement the selectivity of both pushbuttons "change" and "delete" several times, a
rule is defined which reacts to the changes in the state of selection in the table. Only if there is a line
selected after such a change, both pushbuttons may be selectable.

!! Whenever the selection is changed in the table
!! it must be checked, if the pushbuttons
!! may still remain sensitive or if they have to become sensitive
on TfAdressen select, .activeitem changed
{

!! If there is no line selected,
!! set both pushbuttons on insensitive;
!! otherwise set both on sensitive
if (first(TfAdressen.activeitem) = 0) then

PbLoeschen.sensitive := false;

PbAendern.sensitive := false;
else

PbLoeschen.sensitive := true;
PbAendern.sensitive := true;

endif
}

A.06.03.b 35

36 ISA DialogManager

4Object-oriented Programming
This example is intended for programmers who are already experienced in the use of the Dialog Man-
ager. Here, methods about object-oriented programming in the dialog description language are
shown. The possibility to define separate attributes which is available in the system is used intens-
ively. In these user-defined attributes all necessary information which is normally found in the class
structure of an object is deposited.

4.1 Description of the Systems to be Developed
Using the Dialog Manager a prototype for the administration for customers and orders is to be
developed. This is to be carried out object-oriented, so that the system can be easily extended and
maintained. The following structure is valid for both of these application objects:

Customer

List of all customers

Information about the customer

Invoices as detail information

Open orders as detail information

Order

List of all orders

Information about the order

Production orders belonging to the order

Machines covered by the order

The following diagram represents the structure of windows in the system

Figure 7: Structure of a customer system

4.2 Approach of Realization
The procedure of the implementation was in the way that the processing parts (rules) do not actually
know with which kind of objects they currently work. The information which is necessary for the rules
are all transmitted in the form of parameters. In order to be able to form them as universal as possible,
first the real objects were examined and the functions which can be applied to these objects were
defined. In doing so, it was recorded in which parts the individual methods at the objects differ and in
what way. These differences were then translated into appropriate DM structures. With this trans-
lation, all parts which are used several times were deposited in the models. Then the corresponding
individual structures were structured from these models. The individual structures thus contain all the
information which is necessary for the processing of the object.

To be able to administrate correctly this information in the window, each open window has a reference
to the basic object structure and a reference to the object which is really represented in the window.
The reference to the basic object is necessary to be able to carry out the usual reaction of the object to
the user events. The reference to the real object is necessary to find out if the object is already rep-
resented in a window. Apart from the windows, all objects which must work directly with the object
structures, contain information about how these objects must be treated. At the edittexts the element
of the internal data structure the contents of which they shall display is deposited. With images the
object type to which they belong and how they are to react to events is deposited. At the pushbuttons,
the method which is to be triggered on selecting them is deposited.

This deposit of information at individual object types is only valid for this example, of course. It only
illustrates how such information is to be deposited and processed in a reasonable way.

A.06.03.b 37

38 ISA DialogManager

4.3 Implementation in the Dialog Script

4.3.1 Naming
In the dialog script a certain naming for the objects was applied in order to be able to recognize the
individual object types by the name. This scheme has the following structure:

[M]<object identification>object name

M

If "M" is the first letter it is a model. Then follow the letters identifying the object type.

object identification

The following abbreviations were used for the object identification:

Pb specifies Pushbutton

Wn specifies Window

Rc specifies Records

Et specifies Edittexts

Lb specifies Listboxes

Im specifies Images

object name

Describing name of the object

4.3.2 Data Structures
The class structure is reflected in a dialog structure. For this several substructures are made in order
to be able to administrate all elements in the simplest way possible later on. This structure contains
the following individual structures: a structure for orders, a structure for customers, a structure to store
objects, a structure for methods.

4.3.2.1 Structure for Orders

In the order structure all information belonging to an order is stored. This includes the number of the
order, the number of the item, the number, the dates for starting, ending and delivery. This structure is
stored as a model, since any number of orders can be entered into the system.

!!data structure for the order
model record MRcAuftrag
{

string AuftragsNr := "";
string Artikel := "";

integer Anzahl := 0;
string FStart := "";
string FEnde := "";
string Liefer := "";

}

4.3.2.2 Customer Structure

The customer structure contains all the information concerning the customer. This includes the cus-
tomer number, the company, the address, and the contact.

!!data structure for the customer
model record MRcKunde
{

string KundenNr := "";
string Firma := "";
string Strasse := "";
integer Plz := 0;
string Ort := "";
string Partner := "";
string Telefon := "";
string Fax := "";

}

4.3.2.3 Structure for Saving Elements

In order to be able to administrate also internally any number of objects (customers or orders), there is
a structure which can be adapted in its size to the necessity during runtime. Any number of objects of
any kind can be stored in the field which is realized accordingly.

!!data structure for saving the values. The structure
!!is extended if necessary.
model record MRcSpeicher
{

object Elemente[5];
.Elemente[1] := null;
.Elemente[2] := null;
.Elemente[3] := null;
.Elemente[4] := null;
.Elemente[5] := null;

}

In order to record values in this structure, the following rule, which can take over any number of ele-
ments into this structure, was defined.

!!Taking up a new element into the memory table
rule object Rl_NeuesElement (object ObjektInfo input)
{

A.06.03.b 39

40 ISA DialogManager

variable integer I;
variable integer FreierPlatz := 0;

!! Looking for free space in the list
for I:= 1 to ObjektInfo.MRcSpeicher.count[.Elemente] do

if ((ObjektInfo.MRcSpeicher.Elemente[I] = null)
and (FreierPlatz = 0)) then

FreierPlatz := I;
endif

endfor
!! No space was found: memory area must
!! be extended
if (FreierPlatz = 0) then

ObjektInfo.MRcSpeicher.count[.Elemente] :=
(ObjektInfo.MRcSpeicher.count[.Elemente] + 10);

!! Initialization of new elements with null
for I:=(ObjektInfo.MRcSpeicher.count[.Elemente] - 9) to
ObjektIno.MRcSpeicher.count[.Elemente] do

ObjektInfo.MRcSpeicher.Elemente[I] := null;
endfor
FreierPlatz:=(ObjektInfo.MRcSpeicher.count[.Elemente] -

9);
endif

!! Creating of the object to be saved newly
ObjektInfo.MRcSpeicher.Elemente[FreierPlatz] :=

create(ObjektInfo.ObjektArt, this.dialog);
!! Return of the newly created object
return ObjektInfo.MRcSpeicher.Elemente[FreierPlatz];

}

4.3.2.4 Structure for Depositing Methods

This object represents the kernel of the example. In the method structure all methods which can be
applied to the different objects in the system are deposited. First, in all objects it is examined, which
methods must be realized. In this example, these are the following methods:

Create

In this item it is deposited which window is to be used for creating and modifying the main inform-
ation about an object.

Init

Here, the initialization function is deposited. That is the function which is to load all necessary data
from the database. Since no functions are implemented in this example, there is only deposited a
dummy example each.

Detail1-3

Here, the windows which can deliver different detail information to the objects are deposited.

List

In this element the window in which the object list is to be shown is deposited.

Rlist

Here the rule which can fill the list in the overview window is deposited.

Tlist

This item contains the text which is to serve as title for the list window

!!This object describes the methods which are
!!available for an object.
!!Create: window to create an object
!! (Acquisition of basic data)
!!Init: rule/function to initialize the data structure
!!Detail[1]: window for 1 subinformation
!!Detail[2]: window for 2 subinformation
!!Detail[3]: not used
!!List: window, in which the listof the objects is
!!to be displayed
!!RList: rule which is responsible for the editingof data
!!for the list
!!TList: text which is to be displayed as title
!!in the list window
model record MRcMethoden
{

object Create := null;
object Init := null;
object Detail[3];
.Detail[1] := null;
.Detail[2] := null;
.Detail[3] := null;
object List := null;
object RList := null;
string TList;

}

4.3.2.5 Object Structure

The actual object structure consists of other structures. This object structure contains an element
where the object type (MRcorder or Mrcustomer) is stored. In addition, this structure contains both
substructures: MRcSpeicher to store the objects and MRcMethoden for the definition of methods
belonging to the object.

!!Structure representing the basic object of an object class

A.06.03.b 41

42 ISA DialogManager

model record MRObjekt
{

object ObjektArt := null;
child MRcSpeicher
{
}
child MRcMethoden
{
}

}

4.3.2.6 Order Object

The order object is an instance of the object structure. Here, the corresponding items are set.

!!Realized object for the orders
MRObjekt RcAuftraege
{

.ObjektArt := MRcAuftrag;

.MRcMethoden.Create := MWnAuftrag;

.MRcMethoden.Init := InitObjekt;

.MRcMethoden.Detail[1] := MWnFertigung;

.MRcMethoden.Detail[2] := Meldung;

.MRcMethoden.List := MWnListe;

.MRcMethoden.RList := RListAuftrag;

.MRcMethoden.TList := "order list";
}

4.3.2.7 Customer Object

The customer object is an instance of the object structure. The corresponding items for the methods
are set here.

!!Realized object for the customers
MRObjekt RcKunden
{

.ObjektArt := MRKunde;

.MRcMethoden.Create := MWnKunden;

.MRcMethoden.Init := InitObjekt;

.MRcMethoden.Detail[1] := MWnRechnung;

.MRcMethoden.Detail[2] := Meldung;

.MRcMethoden.List := MWnListe;

.MRcMethoden.RList := RListKunde;

.MRcMethoden.TList := "customer list";
}

4.3.2.8 Superordinate Structure

To be able to use automatically all data structure on starting and ending the program, a superordinate
structure was created which contains only references to subordinate structures. This enables you to
create a loop over all data structures existing internally on starting the program in order to make them
initialize according to their initialization method.

!!The following data structure only helps to initialize
!!all structures on
!!starting the program. These structures must be read
!!from the database, of course; in this example, however,
!!it has not been implemented. In order to maintain the data,
!!the dialog saves itself again.
!!Thus, even the changed values are preserved.
record RcObjekttypen
{

object Objekte[2];
.Objekte[1] := RcAuftraege;
.Objekte[2] := RcKunden;

}

4.3.3 Extension of Existing Objects
The objects which are contained in DM were partly extended by corresponding attributes in order to
be able to store all the necessary information there.

4.3.3.1 Extensions at window Object

This object was extended by four attributes in order to be able to process all the windows with the
same rule. The attribute "dynamic" indicates if the window in the window can only be opened exactly
once or if the window may be opened at any time by the user with other data. The attributes "Meth-
odenObjekt" and "DargestelltesObjekt" are references which are used to identify the contents rep-
resented in the window. The "Methoden Objekt" is a reference to the basic object of orders or
customers. The "Dargestelltes Objekt" is a reference to the internal data structure belonging to this
window. The attribute "ZuAktivierendesObjekt" recognizes which object is to be activated on opening
the window.

!!Attribute MethodObject, DisplayedObject, DynamicObject
!!and Object to be activated are inserted
!!Meaning of attributes
!!MethodObject contains all information about the object type
!!DisplayedObject is the currently processed object
!!in the window
!!Dynamic is a label indicating how the window is
!!to be treated on making it invisible.
!!Object to be activated contains the object which is to be

A.06.03.b 43

44 ISA DialogManager

!!activated on opening the window.
default window
{

...
object MethodenObjekt := null;
object DargestelltesObjekt := null;
boolean Dynamisch := true;
object ZuAktivierendesObjekt := null;

}

Apart from these attribute extensions a global rule for the default window was defined which can be
used to make the window visible or invisible. On making it invisible it must be checked if the window
was dynamically generated. In this case the window again must be internally destroyed. On making a
new window visible the right object in the window is activated by this rule. The user can thus start the
process of the window at once.

!!General rule for the treatment of windows which have been
!!made visible / invisible.
on Dialog.WINDOW close, .visible changed
{

variable integer I;

if (not this.visible) then
!!Window was generated dynamically, i.e. it must

!! be deleted now
if this.Dynamisch then

!! destroying the window
destroy(this, true);

endif
else

!! Window has been made visible
!! Looking for the object to be activated
!! or focussed
for I := 1 to this.childcount do

if (this.window.child[I].model =
this.window.model.ZuAktivierendesObjekt) then

if (this.window.child[I].class = edittext) then
this.window.child[I].active := true;

else
this.window.child[I].focus := true;

endif
return ;

endif
endfor

endif
}

If a window for a certain data record is to be opened, it is checked first whether this window has been
already opened. In this case, all windows are searched and checked if the currently regarded window
belongs to the basic object type, if it has the type searched for and if it represents the data object. If
such a window is found, it is returned by the rule, otherwise null is returned.

!!This rule searches in all open windows for a window
!!with given data. Once this window is found,
!!it is returned as result,
!!otherwise null is returned
rule object Rl_SucheNachFenster (object ObjektInfo input, object FensterArt
input, object DargObj input)
{

variable integer I;

!! Checking all children of the dialog
for I := 1 to this.dialog.childcount do

!! Looking if the object is a window
if (this.dialog.child[I].class = window) then

!! Looking if the window belongs to the searched for
!! Methodobject
if(this.dialog.child[I].MethodenObjekt=ObjektInfo)
then

!! Looking if the window belongs to the window type
!! searched for
if (this.dialog.child[I].model = FensterArt) then

!! Looking if the same information is
!! displayed
if (this.dialog.child[I].DargestelltesObjekt =
DargObj) then

return this.dialog.child[I];
endif

endif
endif

endif
endfor
!! Window was not found, null is returned.
return null;

}

The next rule creates a window of a defined type for the indicated object. First the window is gen-
erated invisibly in order to be able to fill data into the window even in the invisible state.

!!Creating a window for a defined data record.
!!First it is checked whether the window is already open
!!and can be re-used. If the window is marked as
!!dynamic, then the found
!!window is re-used

A.06.03.b 45

46 ISA DialogManager

rule object FensterNeuAnlegen (object ObjektInfo input, object FensterArt
input, object DargObj input)
{

variable object Obj := null;

!! checking if a window type is given
if (FensterArt <> null) then

!! checking if the window type is a window or a
!! messagebox
if (FensterArt.class = window) then

!! checking if the window already exists
Obj := Rl_SucheNachFenster(ObjektInfo, FensterArt,
DargObj);
!! checking if the window is to be generated
!! dynamically
if ((FensterArt.Dynamisch = true) and (Obj = null))
then

!! invisible generating of the window
Obj := create(FensterArt, this.dialog, true);

else
!! activating the window
if (Obj <> null) then

Obj.visible := true;
else

!! Resetting data into the static window
FensterArt.visible := true;
Obj := FensterArt;

endif
endif
!! Entering values into the found / newly generated
!! window
Obj.MethodenObjekt := ObjektInfo;
Obj.DargestelltesObjekt := DargObj;
return Obj;

else
!! Opening message window
querybox(FensterArt);

endif
endif
return null;

}

4.3.3.2 Extensions at the Object edittext

The edittext was extended by an attribute describing the element of the internal structure out of which
the contents are to be indicated in the object. Therefore an attribute of the type "attribute" was added

to be able to take the attribute of the data structure.

default edittext
{

...
attribute Datenelement := .visible;

}

Due to this extension a general rule can be defined now. This rule copies the data from the display
object to the internal structures and vice versa. All children from a given window are looked at and
checked if they have an equivalent in the internal structure. If this is the case, the values are copied
according to their data types.

!!rule for the handling of information display and taking
!!over the changed data into the internal structure
rule void Rl_AnzeigeHandhaben (object ObjektInfo input, object Fenster input,
boolean Display input)
{

variable integer I;

!! data to be taken over into the internal
!! structure
if (not Display) then

!! Checking if an internal object already exists
if (Fenster.DargestelltesObjekt = null) then

!! Creating an internal object
Fenster.DargestelltesObjekt :=
NeuesElement(ObjektInfo);

endif
if (Fenster.DargestelltesObjekt <> null) then
!! Passing through the window´s children and taking over
!! the values into the internal strukcture
for I := 1 to Fenster.childcount do
!! Checking if the object is an Edittext
if (Fenster.child[I].class = edittext) then

!! Checking if the object belongs to a meaningful
!! attribute
if (Fenster.child[I].Datenelement <> .visible) then
!! Checking the data type of the internal structure
if (Fenster.DargestelltesObjekt.type

[Fenster.child[I].Datenelement] = integer) then
!! Checking if there has really been input
!! a number
if fail(atoi(Fenster.child[I].content)) then
!! Taking over the value into the internal structure
setvalue(Fenster.DargestelltesObjekt,

Fenster.child[I].Datenelement, 0);
else

A.06.03.b 47

48 ISA DialogManager

!! Taking over the value into the internal structure
setvalue(Fenster.DargestelltesObjekt,

Fenster.child[I].Datenelement,
atoi(Fenster.child[I].content));

endif
else

!! Taking over the value into the internal structure
setvalue(Fenster.DargestelltesObjekt,

Fenster.child[I].Datenelement,
Fenster.child[I].content);

endif
endif

endif
endfor
!! Re-structuring the selection list
ListeFuellen(Fenster.MethodenObjekt,
InstanzVon(Fenster.MethodenObjekt.MRcMethoden.List,

Fenster.MethodenObjekt));
endif
else

!! Passing through the window´s children and taking over
!! the values into the internal structure
for I := 1 to Fenster.childcount do

!! Checking if the object is an Edittext
if (Fenster.child[I].class = edittext) then
!! Checking if the object belongs to a meaningful
!! attribute
if (Fenster.child[I].Datenelement <> .visible) then

if (Fenster.DargestelltesObjekt <> null) then
if (Fenster.DargestelltesObjekt.type

[Fenster.child[I].Datenelement] = integer)
then

!! Taking over the value into the display
Fenster.child[I].content :=

itoa(getvalue(Fenster.DargestelltesObjekt,
Fenster.child[I].Datenelement));

else
!! Taking over the value into the display
Fenster.child[I].content :=

getvalue(Fenster.DargestelltesObjekt,
Fenster.child[I].Datenelement);

endif
else

!! Taking over the value into the display
Fenster.child[I].content := "";

endif

endif
endif

endfor
endif

}

To work efficiently the rule must be able to process the list window which is responsible for this object
type. The following rule is available.

!!Searching for a window which is the instance of
!!a given model
rule object InstanzVon (object Modell input, object Methode input)
{

variable integer I;

!! Looking at all children of the dialog
for I := 1 to this.dialog.childcount do

!! Checking if the object is a window
if (this.dialog.child[I].class = window) then

!! Checking if the window is an instance of the
!! model
if ((this.dialog.child[I].model = Modell)
and (this.dialog.child[I].MethodenObjekt = Methode))
then

return this.dialog.child[I];
endif

endif
endfor
!! no instance was found, return null.
return null;

}

4.3.3.3 Extensions at the Object image

The image was extended by an attribute representing a reference to the method object. With this
attribute the corresponding methods can be called when there are events at images.

!!attribute MethodObject inserted.
!!This object contains all information which has to be
!!memorized concerning an "object"
default image
{

..
object MethodenObjekt := null;

}

A.06.03.b 49

50 ISA DialogManager

4.3.3.4 Extensions at the Object pushbutton

The pushbutton was extended by an attribute which indicates the method to be called.

!!attribute AttributIndex inserted:
!!In this attribute the index of the method which is to be
!!called on selecting the pushbuttons is memorized
default pushbutton
{

...
integer AttributIndex := 0;

}

4.3.4 Definitions for Individual Windows

4.3.4.1 Actions on Starting and Ending a Program

On starting the program, the internal data structures are initialized . Usually these values should be
read out of the database. In this example, however, this is ignored, but in order not to lose the values,
the entire dialog is saved with the input values when ending the program.

!!This rule provides the initialization of all
!!basic object types
rule void InitialisierenObjekte
{

variable integer I;

!! Passing all RcObjecttypes
for I := 1 to RcObjekttypen.count[.Objekte] do

!! Checking if an object is really saved.
if (RcObjekttypen.Objekte[I] <> null) then

!! Calling the initialization method if it is
!! available.
if (RcObjekttypen.Objekte[I].MRcMethoden.Init
<> null) then

RcObjekttypen.Objekte[I].MRcMethoden.Init(
RcObjekttypen.Objekte[I].MRcSpeicher,
RcObjekttypen.Objekte[I].ObjektArt);

endif
endif

endfor
}

!!Saving the current dialog state on ending the dialog
on dialog finish
{

save(this, "kunden.sav");
}

!!Starting rule for the system
on dialog start
{

InitialisierenObjekte();
}

!!This rule is to initialize the objects of one type,
!!i.e to load them out of the database
rule void InitObjekt (object Anker input, object Typus input)
{
print "The loading out of the datatbase should be realized here";
}

4.3.4.2 The Starting Window

The starting window consists of two icons representing the different object types and of a menu to trig-
ger the action and to end the dialog.

!!The following window appears when starting the program.
!!From this window the windows to customers and orders
!!can be opened.
window WnStart
{

.userdata null;

.active false;

.xleft 400;

.width 38;

.ytop 396;

.height 8;

.title "Selection";

.MethodenObjekt := null;

.Dynamisch := false;
child image IKunden
{

.xleft 5;

.ytop 2;

.text "Customers";

.picture TiKunde;

.MethodenObjekt := RcKunden;
}
child image IAuftraege
{

.xleft 15;

A.06.03.b 51

52 ISA DialogManager

.ytop 2;

.text "Orders";

.picture TiAuftrag;

.MethodenObjekt := RcAuftraege;
}
child menubox MbAuswahl
{

.title "Selection";
child menuitem MiListe
{

.text "show list";
}
child menuitem MiBeenden
{

.text "exit";
}

}
}

!!Menuitem for the display of the object list
on MiListe select
{

variable object Obj;
variable object NeuesObjekt;

Obj := this.window.focus;
!! Looking which windows to which object type are
!! to be displayed
if (Obj.MethodenObjekt <> null) then

NeuesObjekt := FensterNeuAnlegen(Obj.MethodenObjekt,
Obj.MethodenObjekt.MRcMethoden.List, null);

ListeFuellen(Obj.MethodenObjekt, NeuesObjekt);
NeuesObjekt.visible := true;

endif
}

!!Ending the system
on MiBeenden select
{

exit();
}

Figure 8: Starting window

4.3.4.3 The Overview Window

The overview window represents the lists of all customers and orders. Actions can be triggered with
the pushbuttons at the bottom of the window. The following functionality has been implemented for
this: A doubleclick on the item in the list or selecting the "information" pushbutton indicates the main
data for the corresponding data record. This is either the address or the data for production. With the
pushbutton "delete" the items in the list and also those in the internal structures can be deleted. By
selecting the pushbutton "new", new data records can be created. This window is deposited as model,
since it can be open several times with different data at the same time.

!!Model for listing all objects
model window MWnListe
{

.userdata null;

.active false;

.xleft 78;

.ytop 9;

.title "list";

.MethodenObjekt := null;

.DargestelltesObjekt := null;

.Dynamisch := true;

.ZuAktivierendesObjekt := PNeu;
child listbox LListe
{

.xauto 0;

.xleft 3;

.xright 3;

.yauto 0;

.ytop 0;

.ybottom 1;

.firstchar 1;
}
child pushbutton PNeu

A.06.03.b 53

54 ISA DialogManager

{
.xleft 2;
.yauto -1;
.text "new";

}
child pushbutton PInfos
{

.sensitive false;

.xleft 16;

.yauto -1;

.text "information";
}
child pushbutton PLoeschen
{

.sensitive false;

.xauto -1;

.xright 13;

.yauto -1;

.text "delete";
}
child MPOK
{
}

}

Figure 9: Order list

Rules which can fill the list belong to this window. Each object structure is searched through and the
wanted text information is extracted from the object available and is displayed. Additionally the cor-
responding method "Rlist" of the objects is called. This method generates the external representation
of the object from the internal data structures.

!!Structure of display string for the order list
rule string RListAuftrag (object Auftrag input)

{
return ((Auftrag.AuftragsNr + " ") +

Auftrag.Artikel);
}

!!Structure of display string for customer list
rule string RListKunde (object Kunde input)
{

return ((((Kunde.KundenNr + " ") + Kunde.Firma) +
" ") + Kunde.Ort);

}

!! rules to fill the list of the objects
rule void ListeFuellen (object ObjektInfo input,
object Target input)
{

variable string String;
variable integer I;

!! setting the window title
Target.title := ObjektInfo.MRcMethoden.TList;
!! deleting all available items
Target.LListe.itemcount := 0;
!! Switching the pushbuttons to insensitive for deleting
!! and detail information
Target.PLoeschen.sensitive := false;
Target.PInfos.sensitive := false;
!! Passing the list of objects and items
!! in the selection list
for I := 1 to ObjektInfo.MRcSpeicher.count[.Elemente] do

!! Checking if there is an object saved
if (ObjektInfo.MRcSpeicher.Elemente[I] <> null) then

!! Having calculated the string
String := ObjektInfo.MRcMethoden.RList

(ObjektInfo.MRcSpeicher.Elemente[I]);
!! Taking over the string
if (String <> "") then

Target.LListe.content[(Target.LListe.itemcount +
1)] := String;

endif
endif

endfor
}

In addition to the listing functionality there are also rules belonging to this window. These rules control
the selectivity of pushbuttons. Pushbuttons shall only be selectable when there is a selected item in
the list.

A.06.03.b 55

56 ISA DialogManager

!!Something is selected in the list, therefore the
!!pushbuttons "delete" and "information" are activated
on LListe select
{

this.window.PLoeschen.sensitive := true;
this.window.PInfos.sensitive := true;

}

If objects are newly created, the corresponding window is displayed on the screen without its con-
tents. This action is triggered by selecting the pushbutton "new".

!!Rules for re-creating any kind of object
rule void ObjektNeuAnlegen (object ObjektInfo input, object Info input)
{

variable object Obj;

!! Generating the window / looking for an available
!! window
Obj := FensterNeuAnlegen(ObjektInfo,

ObjektInfo.MRcMethoden.Create, Info);
!! Setting data in the window
Rl_AnzeigeHandhaben(Obj.MethodenObjekt, Obj, true);
!! Making the object visible
Obj.visible := true;

}

!!Rules for re-creating any kind of object
on PNeu select
{

ObjektNeuAnlegen(this.window.MethodenObjekt, null);
}

To be able to change existing values you can react to the selection in the listbox by a doubleclick or by
simply selecting the information pushbutton indicating the corresponding data.

!!Information is to be displayed.
on LListe dbselect
{

InfosZeigen(this.window);
}

!! Information is to be displayed.
on PInfos select
{

InfosZeigen(this.window);
}

!!Rule for the display of information about an object

rule void InfosZeigen (object Fenster input)
{

variable object Obj;

!! Checking if an item in the list is selected.
if (Fenster.LListe.activeitem <> 0) then

!! Creating and displaying a window
Obj := FensterNeuAnlegen(Fenster.MethodenObjekt,
Fenster.MethodenObjekt.MRcMethoden.Create,

Fenster.MethodenObjekt.MRcSpeicher.Elemente
[Fenster.LListe.activeitem]);

Rl_AnzeigeHandhaben(Obj.MethodenObjekt, Obj, true);
Obj.visible := true;
endif

}

On deleting with the pushbutton "delete", the internal structures are also changed accordingly.

!!An object from the list is to be deleted
on PLoeschen select
{

variable integer I;

!! Examining all windows if the object to be deleted
!! is still displayed somewhere.
for I := 1 to this.dialog.childcount do

!! Checking if the child is a window
if this.dialog.child[I].class = window then

!! Comparing the MethodObject and the
!! DisplayedObject
if this.dialog.child[I].MethodenObjekt =

this.window.MethodenObjekt then
if this.dialog.child[I].DargestelltesObjekt =
this.window.MethodenObjekt.MRcSpeicher.Elemente

[this.window.LListe.activeitem] then
!! Fading out the window
this.dialog.child[I].visible := false;

endif
endif

endif
endfor
if (this.window.LListe.activeitem > 0) then
!! Destroying the internal structure of the window
destroy(this.window.MethodenObjekt.MRcSpeicher.Elemente

[this.window.LListe.activeitem], true);
!! Closing the relevant window
this.window.MethodenObjekt.MRcSpeicher.Elemente

A.06.03.b 57

58 ISA DialogManager

[this.window.LListe.activeitem] := null;
!! Neuaufbau der Liste
ListeFuellen(this.window.MethodenObjekt, this.window);
endif

}

4.3.4.4 The Customer Window

The customer window illustrates the information which directly concerns the customer such as com-
pany, address, contact, and telephone. It is possible to input new data into the window or to change
existing data. Before you define this window, it is necessary to define models for the pushbuttons
"detail information", "ok" and "cancel" which also occur with the orders.

!!Model for the pushbutton asking for detail information
model pushbutton MPDetail
{

.yauto -1;
}

!!Model for OK button
model pushbutton MPOK
{

.xauto -1;

.yauto -1;

.text "ok";
}

!!Model for Cancel pushbutton
model pushbutton MPAbbruch
{

.xauto -1;

.xright 13;

.yauto -1;

.text "cancel";
}

!!Message window for parts in the dialog which have not been
!! realized yet.
messagebox Meldung
{

.text "Not implemented yet!";

.title "message window";

.button[2] nobutton;
}

!!Model for the customer information window

model window MWnKunden
{

.userdata null;

.active false;

.xleft 467;

.ytop 113;

.height 13;

.title "customer information";

.MethodenObjekt := null;

.DargestelltesObjekt := null;

.Dynamisch := true;

.ZuAktivierendesObjekt := EtKundenNr;
child statictext
{

.xleft 2;

.ytop 0;

.text "customer number:";
}
child statictext
{

.xleft 2;

.ytop 1;

.text "company:";
}
child statictext
{

.xleft 2;

.ytop 2;

.text "street:";
}
child statictext
{

.xleft 2;

.ytop 3;

.text "post code:";
}
child statictext
{

.xleft 24;

.width 0;

.ytop 3;

.height 0;

.text "city:";
}
child statictext
{

A.06.03.b 59

60 ISA DialogManager

.xleft 2;

.ytop 5;

.text "contact:";
}
child statictext
{

.xleft 2;

.ytop 6;

.text "telephone:";
}
child statictext
{

.xleft 2;

.ytop 7;

.text "fax number:";
}
child MPDetail PAuftraege
{

.xleft 2;

.yauto -1;

.text "orders";

.AttributIndex := 2;
}
child MPDetail
{

.xleft 20;

.text "invoices";

.AttributIndex := 1;
}
child MPOK
{
}
child edittext EtKundenNr
{

.xleft 15;

.width 41;

.ytop 0;

.height 0;

.Datenelement := .KundenNr;
}
child edittext EtFirma
{

.xleft 15;

.width 41;

.ytop 1;

.height 0;

.Datenelement := .Firma;
}
child edittext EtStrasse
{

.xleft 15;

.width 41;

.ytop 2;

.height 0;

.Datenelement := .Strasse;
}
child edittext EtPlz
{

.xleft 15;

.width 7;

.ytop 3;

.height 0;

.Datenelement := .Plz;
}
child edittext EtOrt
{

.xleft 28;

.width 27;

.ytop 3;

.Datenelement := .Ort;
}
child edittext EPartner
{

.xleft 18;

.width 38;

.ytop 5;

.Datenelement := .Partner;
}
child edittext EtTelefon
{

.xleft 18;

.width 24;

.ytop 6;

.Datenelement := .Telefon;
}
child edittext EtFax
{

.active false;

.xleft 18;

.width 24;

.ytop 7;

.content "";

A.06.03.b 61

62 ISA DialogManager

.Datenelement := .Fax;
}
child MPAbbruch
{
}

}

Figure 10: Customer information

By selecting the pushbutton "invoices" the invoices concerning the customer are displayed in a win-
dow. The interconnection to the orders is not realized in this prototype. This is why there appears a
message on selecting the pushbutton "orders".

!!Rule for handling detail information 1
rule void Detail1Handhaben (object ObjektInfo input, object Fenster input,
boolean Display input)
{

variable integer I;
variable object TFObj;

!! Searching for the tablefield
for I := 1 to Fenster.childcount do
if (Fenster.child[I].class = tablefield) then

TFObj := Fenster.child[I];
endif
endfor
!! Now the tablefield is to be filled out of the
!! database.
if (TFObj <> null) then

if (not Display) then

endif
endif

}

!!Displaying the detail information about the objects
on MPDetail select
{

variable object Obj;
!! Creating and displaying the window
Obj := FensterNeuAnlegen(this.window.MethodenObjekt,

this.window.MethodenObjekt.MRcMethoden.Detail
[this.AttributIndex],

this.window.DargestelltesObjekt);
Detail1Handhaben(Obj.MethodenObjekt, Obj, true);
Obj.visible := true;

}

If the pushbutton "ok" is selected, the data displayed in the window are taken over into the internal
structures.

!!By selecting the OK buttons the values are to be taken over
on MPOK select
{

Rl_AnzeigeHandhaben(this.window.MethodenObjekt,
this.window, false);

this.window.visible := false;
}

Selecting the pushbutton "cancel" the changed data is rejected and the window is closed.

!!By selecting Cancel the relevant window is made
!! invisible.
on MPAbbruch select
{

this.window.visible := false;
}

4.3.4.5 The Order Window

The order window illustrates the information which directly concerns the customer such as company,
address, contact, and telephone. Here it is possible to input data or to change existing data. This win-
dow does not dispose of rules, for the necessary rules already exist in connection with the customer
window.

!!Model for the order window
model window MWnAuftrag
{

.userdata null;

.active false;

A.06.03.b 63

64 ISA DialogManager

.xleft 305;

.ytop 44;

.title "order information";

.MethodenObjekt := null;

.DargestelltesObjekt := null;

.Dynamisch := true;

.ZuAktivierendesObjekt := EtAuftragsNr;
child statictext
{

.xleft 2;

.ytop 0;

.text "order number:";
}
child statictext
{

.xleft 2;

.ytop 1;

.text "item:";
}
child statictext
{

.xleft 2;

.ytop 2;

.text "number:";
}
child statictext
{

.xleft 2;

.ytop 3;

.text "production start date:";
}
child statictext
{

.xleft 2;

.ytop 4;

.text "production finish date:";
}
child statictext
{

.xleft 2;

.ytop 5;

.text "delivery date:";
}
child edittext EtAuftragsNr
{

.xleft 16;

.width 39;

.ytop 0;

.height 0;

.Datenelement := .AuftragsNr;
}
child edittext EtArtikel
{

.xleft 16;

.width 38;

.ytop 1;

.height 0;

.Datenelement := .Artikel;
}
child edittext EtAnzahl
{

.xleft 16;

.width 9;

.ytop 2;

.height 0;

.Datenelement := .Anzahl;
}
child edittext EtFStart
{

.xleft 21;

.width 17;

.ytop 3;

.Datenelement := .FStart;
}
child edittext EtFEnde
{

.xleft 21;

.width 17;

.ytop 4;

.Datenelement := .FEnde;
}
child edittext EtLiefer
{

.xleft 21;

.width 17;

.ytop 5;

.Datenelement := .Liefer;
}
child MPAbbruch
{
}
child MPOK

A.06.03.b 65

66 ISA DialogManager

{
}
child MPDetail PMaschinen
{

.xleft 2;

.yauto -1;

.text "machines";

.AttributIndex := 2;
}
child MPDetail
{

.xleft 17;

.text "prod. orders";

.AttributIndex := 1;
}

}

Figure 11: Order information

4.3.4.6 The Invoice Window

The invoices concerning a customer should be illustrated in a tablefield. This was not implemented in
this prototype. Due to the use of models, this window does not have its own rules.

!!Model for the invoice window
model window MWnRechnung
{

.userdata null;

.active false;

.xleft 414;

.ytop 156;

.title "invoices";

.MethodenObjekt := null;

.DargestelltesObjekt := null;

.Dynamisch := true;

.ZuAktivierendesObjekt := MPOK;
child tablefield TfRechnungen
{

.xauto 0;

.xleft 3;

.xright 3;

.yauto 0;

.ytop 0;

.ybottom 2;

.fieldshadow false;

.borderwidth 2;

.colcount 4;

.rowcount 5;

.rowheadshadow false;

.rowheader 1;

.colheadshadow false;

.colheader 0;

.colfirst 1;

.colwidth[2] 8;

.colalignment[2] 0;

.colalignment[3] 1;

.colwidth[4] 5;

.colalignment[4] 0;

.content[1,1] "invoice number ";

.content[1,2] "date";

.content[1,3] "price";

.content[1,4] "state";
}
child MPOK
{
}
child MPAbbruch
{
}

}

A.06.03.b 67

68 ISA DialogManager

Figure 12: Invoice window

4.3.4.7 The Production Order Window

The window for production order should illustrate the production orders belonging to an order in a
tablefield. This was not implemented in this prototype. This window has no rules of its own due to the
use of models.

!!Model for production order window
model window MWnFertigung
{

.userdata null;

.active false;

.xleft 220;

.ytop 55;

.title "production order";

.MethodenObjekt := null;

.DargestelltesObjekt := null;

.Dynamisch := true;

.ZuAktivierendesObjekt := MPOK;
child MPAbbruch
{
}
child MPOK
{
}
child tablefield TfFertigung
{

.xauto 0;

.xleft 3;

.xright 3;

.yauto 0;

.ytop 0;

.ybottom 2;

.fieldshadow false;

.borderwidth 2;

.colcount 5;

.rowcount 5;

.rowheader 1;

.colfirst 1;

.colwidth[2] 10;

.colwidth[3] 10;

.colwidth[5] 15;

.content[1,1] "production order";

.content[1,2] "start date";

.content[1,3] "finish date";

.content[1,4] "machine";

.content[1,5] "material";
}

}

Figure 13: Production window

A.06.03.b 69

70 ISA DialogManager

5Modularization
The modularization makes it easy to develop one dialog in teams, provided that the dialog has been
split up into useful dialog parts (so-called “modules”). Moreover, resources (e.g. colors and fonts) can
be provided by a central position and used by all application developers. Such dialog parts may also
contain models which are available to all users. Thus it is no longer necessary to create one's own
basic models, but one can use the models generated by the central position. This simplifies con-
siderably e.g. the realization of a company's style-guide. In these dialog parts you may of course also
store functionality which usually re-occur in the dialogs. Such partial functionality can so be re-used
and maintained centrally.

You will find a detailed description of further application possibilities in the last section.

Apart from the aspects related to the dialog development, the modularization also has an impact on
the runtime behavior of dialogs. Single dialog parts can be loaded and unloaded when required. This
property makes the loading time seem shorter, since this loading time can be better spread over the
entire working time of the dialog. Functions that are only rarely used can be loaded only when
required and be unloaded after using to reduce the memory allocation of the dialog process.

If large dialogs are realized by partial dialogs, the maintenance increases since the dialog units are
much smaller than usual. But as these dialogs are smaller you can maintain them more easily.

The modularization also bears an advantage for the use of the “Distributed Dialog Manager” (DDM):
partial dialogs reduce the number of network links between client and server. Before the availability of
the modularization every independent dialog had its own network connection. Now, by using partial
dialogs one single connection is sufficient, which is one single server process.

5.1 Conversion of Modularization
Without modularization a dialog can be divided up into several parts. It roughly has the following struc-
ture:

Figure 14: Dialog structure

Meaning

A: application-specific dialog parts

B: repeatedly occurring model parts

PB: project-specific dialog parts occurring in several dialogs

R: resources used always on the platform

The parts marked with B, PB, and R can be considered as those parts which will normally be re-used
again and which should be made globally available.

This is exactly what is supplied by the modularization: these marked parts are turned into independent
partial dialogs (modules) which can be used by several developers.

The dialog has the following internal structure now:

A.06.03.b 71

72 ISA DialogManager

Figure 15: Structure of a dialog with modules

Each of these modules is saved in a file (binary or as script). This reduces the single file sizes, and
thus can be easier maintained by the developers.

Developing without modules results in an object hierarchy which starts with the dialog as root and
which ends with the objects in the individual windows. This structure is then directly saved in a file.

Figure 16: Hierarchy of a dialog without modules

Since this dialog is split up into different modules, the levels of hierarchy are extended, for there is
also the hierarchy level of the modules. The modules, however, are stored in separate files in order to
make the entire structure clearer.

A.06.03.b 73

74 ISA DialogManager

Figure 17: Hierarchy of a dialog with modules

5.2 Language Description

5.2.1 Keywords
The existing dialog description language has been expanded by new elements to make the mod-
ularization available. These elements are briefly listed below.

The following new objects and attributes have been integrated into the Rule Language:

Objects

module

import

use (since IDM version A.06.02.g)

Attributes

export

use

These keywords show the module which objects are transparent outwardly and which of them are
defined for module-internal use only. A detailed description of these attributes follows in the following
chapters.

5.2.2 The Module
The module is an independent entity and can be compared to the DM-object dialog. It constitutes the
brackets for all objects contained in it; these objects can be saved in one file. The file containing a
module definition is started with the keyword module - in the same way a dialog file is started with dia-
log. The syntax is the same as the dialog’s definition.

The keyword module is followed by the unambiguous name of the module.

Any resources, defaults, models or instances which build the module’s functionality can be defined in
a module. These are defined the same way as it is done with the object dialog.

In the following example attributes which do not concern the actual understanding of the example
have not been used. Missing attributes are indicated by 3 points (...).

Example

module TestExample

model window MyModel
{
 child pushbutton MyPushbutton

{
 ...
 }
}

This example defines a module that defines a model only available in the module.

5.2.2.1 Events of the Object module

As with a dialog, a start rule and an end rule can be defined for the module. They are introduced with
the keywords start and finish.

In contrast to the dialog, rules for the help-event (help) and the key-event (key)are not available for
this object.

Example

module SimpleModule

A.06.03.b 75

76 ISA DialogManager

on SimpleModule start
{
 print "start";
}

on SimpleModule finish
{
 print "finish";
}

This example shows that events can be defined for modules.

The same events as for the dialog are valid for the module - except for the above-mentioned events
help and key.

The keyword module can also be used instead of the logical name in rules.

Example

module SimpleModule

on module start
{
 print "start";
}
on module finish
{
 print "finish";
}

Both examples have identical actions as results.

5.2.2.2 Children of the Object module

In contrast to the dialog, a module can have any objects as children. Whether the syntax is correct will
become clear by the use of the children in the calling module. It is thus also possible to define non-top-
level-windows as children of the module, if these are correctly integrated in the object tree.

Example

module Objectcollection

pushbutton MyPush1 {}

window MyWindow1 {}

listbox Myist1 {}

5.2.2.3 Attributes of the Object module

The object module does not have any attributes which can be requested in the Rule Language.

5.2.3 Export of Objects
Objects have to be marked with a special keyword if they are to be addressed outside the module in
which they were defined. Only objects marked with the keyword export are outwardly transparent and
form the interface to this module. Using this keyword, all objects in the sense of Dialog Manager, like
resources, models, instances, and named rules, can be made visually available. Thus, it is possible to
export out of the module all objects having a name, making them available for the user of the module.
export cannot be applied to single attributes, but always to complete objects. The keyword export
must not occur in a dialog itself, since dialogs cannot be used in other modules. Exported objects
have to have unambiguous names except for defaults, which can also be exported without names.

Example

!! Color definition
module Color
export color Red rgb(255, 0, 0);
export color Green rgb(0, 255, 0);
export color Blue rgb(0, 0, 255);
export color Yellow rgb(0, 255, 255);
color TestRed rgb(240, 40, 50);

In this example, the programmer of the module Color wants only four colors to be visible for the mod-
ule user. There is also a fifth color in the module itself and it would be usable there, but outwardly only
the resources and objects marked with export are known.

Example 2

module WindowWithButton

export window Window
{
 child pushbutton PushMe { }
 child pushbutton Button { }
}

Only the window itself is known to the user in this example. The children (here: PushMe, Button) are
unknown. Thus, the children cannot be used outside this modules. If a child is also be used outside
this module export has to be typed in front of the child:

module WindowWithButton

export window Window
{

child pushbutton PushMe { }
export child pushbutton Button { }

A.06.03.b 77

78 ISA DialogManager

}

In the modified version of the module WindowWithButton (the name makes sense now: it is a window
with a pushbutton) the objects window and button are visible to the user, meaning that he can use
them in his own dialog (or module). But he still does not have access to the pushbutton PushMe.

To export a child, you also have to export its parent. If this is not the case, the child will not be expor-
ted either and the keyword export will be ignored.

export is ignored in the following example:

!! export is ignored
module WindowWithButton

window Window
{
 child pushbutton PushMe { }
 export child pushbutton Button { }
}

Rules which are directly linked to an object, i.e. beginning with the keyword on cannot be exported.

5.3 Import with use

Availability

Since IDM version A.06.02.g

5.3.1 The Alternative Import Mechanism
In addition to the way of accessing a module through an import object, the keyword use can be util-
ized to facilitate the handling of imports, modules, interface and binary files.

In contrast to an import, the module is not selected by means of a file path to the interface file, but
rather by an identifier path – more precisely the Use Path.

The last identifier in a Use Path is, similar to the identifier of an import, the parent identifier that is used
to make the exported objects known in the importing module. The preceding identifiers in the Use
Path define a “package hierarchy” and can therefore be used to organize the modules. These parts
will be ignored when object paths are evaluated.

Example

!! file: Main.dlg

dialog MainDlg

use Models;
use Base.Fonts;

MWiMain WiMain {
.font Fonts.FnBig;

}

!! file: Models.mod

module ModModels

export window MWiMain {
on close {

exit();
}

}

!! file: Base/Fonts.mod

module ModFonts

export font FnBig "24.Arial";

The directories in which the actual module and interface file is searched can be set as a command line
option or a specific environment variable, with a call of DM_ControlEx() or in the Rule Language.

The existence of an interface file is actually not mandatory, but useful to facilitate loading of modules
without direct usage and to support loading of the implementation as needed.

5.3.1.1 Special Features

Modules that are accessed via use are only loaded once in the dialog. This facilitates the use of base
modules, since a module is not accidentally loaded several times due to a faulty import chain.

The decoupling from an interface or module file name has several advantages:

1. Using dedicated environment variables for the locations of interface and binary modules is no
longer necessary.

2. The generation of interface and binary files is simplified.

3. It is now possible to load modules without an interface file, since a universal search path for inter-
faces, modules and binary modules is available.

Another special feature is the presetting of file extensions (file suffixes) for source code files (.dlg and
.mod), interface files (.if) and binary files (.bin).

The conversion from a Use Path to a file path is done like this: The preceding package identifiers cor-
respond to a directory path, the last identifier to the base name of the module.

In the example above, this means that for the Use Path Base.Fonts, the base file name “Base\Fonts”
results. The source module has the name Base\Fonts.mod, the associated interface file is Base\Font-
s.if and the binary module is Base\Fonts.bin.

If a module is now accessed by use Base.Fonts, it will be searched for these three file names in the
search path to load the interface or implementation. In the development version of the IDM, the
sequence is interface file → source code file → binary module. The runtime version of the IDM can
only load binary files.

Some more differences to the import object exist: There are no control options through the attributes
.application, .static and .load. It is always attempted to use the interface first and then the

A.06.03.b 79

80 ISA DialogManager

implementation (source code, binary). The implementation is only loaded when needed. Direct control
of the loading is therefore not available.

For dynamic loading and unloading the new methods :use() and :unuse() are provided.

Basically, binary modules and interface files generated for usage with an import object also work
unchanged with use. Conversely, this is not necessarily the case since here the reference to the mod-
ule path is usually missing in the interface.

5.3.1.2 Upper and Lower Case in File Names

It is important for identifiers in the IDM and therefore also for the Use Path as well as for the file
names!

5.3.1.3 Recommendations

Although a mixture of import and use is possible, it is not recommended, since the import object pro-
vokes multiple loading of modules. It is therefore recommended to switch completely from import to
use.

It is also recommended to use the same spelling for file and directory names as in the Use Path. At
best modules should have a unique name which does not appear in some varied form with differing
upper and lower case.

Instead of loading a module with import, one should use Models that can be instantiated more than
once without problems.

5.3.2 Language Specification and Use Path
The following language specification applies to the use keyword:

{ export | reexport } use { <Use Path> }

<Use Path> ::= [<package path>] <Identifier>
<package path> ::= [<package path>] <Identifier> .

An identifier should begin with an uppercase letter ('A' – 'Z') and may then also contain lowercase let-
ters, digits and underscores ('_'). An identifier may have up to 31 characters at most.

Examples for Valid Usages of use

use Defaults;
use DEFAULTS;
use Max_Wi09_;
use Modul78.Aa.MasterA__1z;
use BaseMod.M_ods.Wins.MWiEnter1_9;

The Use Path consists of an identifier at the end and represents the base name of the module as well
as the parent identifier for further access to the exported objects (if these cannot be resolved
uniquely). This identifier does not necessarily have to be the same as the module identifier.

The package path, in turn, is used to logically structure several modules and is prepended as a dir-
ectory chain when searching for the module.

5.3.3 Use Path, File Names and Name Restrictions
The IDM internally converts a Use Path into a file path to be used for searching the interface file,
source code file or binary module.

Thus the Use Path Modul78.Aa.MasterA__1z becomes the file path Modul78\Aa\MasterA__1z.

In addition, there is a predefined set of file extensions that are relevant for search and access and are
internally appended to the base file path:

File Extension Meaning

.dlg source code of a dialog

.mod source code of a module

.if interface file

.bin binary file of a dialog or module

Since the Use Path is built from IDM identifiers, this of course means file and directory names may
begin with uppercase letters as well as upper and lower case has a meaning and is important! This
has to be observed in case of working on file systems that do not distinguish these.

In the IDM this means: use Default; is something else than use DEFAULT;. On Windows, however,
the module may be found if a module file “DEFault.Mod” exists.

In principle, the dialog can also be accessed (loaded) via a Use Path.

If there are unresolvable problems with the conversion between Use Path and file path, the internal
conversion behavior can be controlled with the -IDMusepathmodifier option.

5.3.4 Search Path for Interface, Module, Dialog, and Binary Files
The IDM possesses a universal search path for finding IDM files. This search path may contain one or
more absolute or relative directory specifications separated by semicolons (“;”).

By default, the search path is set to “~;”, thus to the special path “~” and the empty path "". These have
the following meaning:

~ or ~: Search beneath the directory in which the application is located.

"" (empty path) Search in the current working directory (same behavior as in previous versions).

A.06.03.b 81

82 ISA DialogManager

<ENVNAME>: Search in the paths that are defined in the environment variable <ENVNAME>.

When searching for an IDM file, e.g. via DM_LoadDialog() or the built-in function load(), proceeding
is like this:

1. If the given path is absolute, the file will be searched for at the exactly given path without append-
ing an extension (compatible behavior as before).

2. In case of a relative path with file extension, this will be searched for in the search path with exactly
that extension. The default entry ""(empty path) shows the compatible behavior as before.

3. If the file name does not have an extension, the possible extensions are tried for all search paths,
depending on the action. For example, DM_LoadDialog() tries the extensions .dlg, .mod, .bin. For
a “use” it is attempted with priority to get the interface, so the sequence .if, .bin, .mod is tried.

These are the available possibilities for setting the search path:

With the option -IDMsearchpath <search path> when starting an IDM application.

Through the environment variable IDM_SEARCHPATH.

By calling DM_ControlEx() with DMF_SetSearchPath and the search path as data argument.

Via the .searchpath attribute on the setup object.

For a self-built IDM application it is recommended to use DM_ControlEx() in the AppMain() routine
with an application-relative path using “~” and without other relative specifications like the empty path
or ".". So the invocation of DM_ControlEx((DM_ID)0, DMF_SetSearchPath, "~:dlg") would ensure
that the dialog files are only searched in the subdirectory dlg parallel to the application. Once the
search path is set, initial loading of the main dialog may also take place via DM_LoadDialog() using a
relative file path without file extension.

Examples of Correct and Permitted Search Paths

""
"."

Searches in the current working directory.

"~" Searches in the directory where the application is located.

"if;bin;mods;customer/modules"

"~:dlg;~:../mods;."

".;MODPATH:if;MODPATH:bin" Searches in the working directory as well as in the bin and if dir-
ectories within the directories defined in the environment vari-
able MODPATH.

When opening and loading IDM files, the IDM attempts to determine the file type to recognize whether
the file is an interface file, dialog, module, or binary file. For this purpose, the first 1,024 bytes of the
file are examined , whether they contain the signature of an IDM binary file or the appropriate
keywords identifying an interface, dialog, or module. Otherwise, the file extension is used for determ-
ination.

5.4 Comparison Between import and use

Function,
Concept

use import

Multiple loading of
modules.

Not possible. Module is
only loaded once in a dialog
(applies only to access with
“use”).

Multiple loading of the same module possible
through a different import identifier or through
gaps in the import hierarchy of the importing
modules up to the dialog.

Linkage of func-
tions to an applic-
ation object.

Possible with the .mas-
terapplication[enum] attrib-
ute.

Possible with the .application attribute.

Creation of inter-
face and binary
files in one step.

Possible with -compile or -
recompile. The dialog
should access all modules
by “use” however.

Not possible.

Source code, inter-
face and binary
module in the
same directory.

Yes, possible due to the dif-
ferent file extensions.

Not possible.

Distribution of the
modules into sub-
directories.

Yes, via package path (part
of the Use Path) or via the
search path.

Yes, through search symbol, path lists in search
variables and as listing in interface and module
file.

5.5 Interface and Binary Files when Using import

5.5.1 From the Module to the Interface
If a programmer wants to use the functionality of a module in his dialog (or module), he has to know
the names of the exported objects included in it.

To simplify this, the Dialog Manager simulator is able to generate a so-called "interface file" from a
module´s description. Thus, the names of the objects exported in the module are given to the user of
the module. The user has access to these objects by using the names. The actual realization of these
objects is not revealed to the user. Therefore the module designer is able to arbitrarily change the real
implementation of his objects, as long as the interface file - the interface outwardly known!- is not
changed.

The actual objects are not linked with Dialog Manager until runtime or generating the binary file(s), so
that the shaping of the objects is known only from this time on.

With the starting option

A.06.03.b 83

84 ISA DialogManager

+writeexport

the developer can automatically generate the interface file from his module. Comments with "!!" in
front of the actual objects are also transferred into the interface file. Thus, comments of the dialog
sources can also be made available for the user of a module.

The syntax of this call is as follows:

idm +writeexport <export file name> <module name>

Example (file "color.mod"):

module Color
!! Provision of the color red
export color Red rgb(255, 0, 0);
export color Green rgb(0, 255, 0);
export color Blue rgb(0, 0, 255);
!! Provision of the color yellow
export color Yellow rgb(0, 255, 255);
color TestRed rgb(240, 40, 50);

In order to generate the interface file, the simulator is called by the +writeexport:

$idm +writeexport color.if color.mod

After having executed the command +writeexport, the generated file has the following structure:

interface of module Color "color.mod"
!! Provision of the color red
color Red;
color Green;
color Blue;
!! Provision of the color yellow
color Yellow;

The user can get the necessary information of the module "color.mod" from the file "color.if" without
knowing how the colors were being defined. This method e.g. allows company-wide standardized
color libraries.

The children hierarchy is also maintained, as can be seen in the following module extract.

Extract of a module with a window model:

...
export model window W
{
 export child pushbutton P { }
}
...

Extract of its interface file:

...
model window W

{
 child pushbutton P;
}
...

5.5.2 From the Interface to the Module
The file names of the interface files have to be unambiguous, otherwise subsequently generated files
will overwrite previous interface files.

The files are searched for in the actual directory. If they are not found, Dialog Manager interrupts with
an error message. To manage the modules themselves independently of the actual directory, there
are search symbols that can be given when generating interface files. Maybe you are familiar with
these search symbols from the functions for loading dialogs or profiles and from the localization of
images. The symbols are - separated by a colon - put in front of the the actual file name. Dialog Man-
ager interprets these symbols as environment variables and their contents as search paths for the
given file. The environment variables have to consist of at least two characters when using operating
systems which distinguish single drives with characters followed by a colon (e.g. MICROSOFT

WINDOWS).

Then the module is searched in the path that is defined by such environment variables. If the relevant
file is found in a directory, it will be loaded and the search will be stopped.

Example

$set IDMLIB=/usr/idm/lib:/usr/idm/ISAstandard:
/usr/idm/lib/dia:/home/project/lib

To make sure that the environment variable is considered on loading, indicate the following option
when generating the interface file:

+searchsymbol IDMLIB

In doing so, all file names are marked with the symbol IDMLIB.

The general syntax is as follows:

idm +writeexport <export file name> +searchsymbol
 <environment variable> <module name>

Example

idm +writeexport color.if +searchsymbol IDMLIB color.mod

The result (interface file "color.if") for the above module example Color is as follows:

interface of module Color "IDMLIB:color.mod"
color Red;
color Green;
color Blue;
color Yellow;

A.06.03.b 85

86 ISA DialogManager

The Dialog Manager will look in the directories indicated in the search path of the environment vari-
able after the module "color.mod".

5.5.3 Import Modules in Modules
The keyword

import

signals the use of a module in another module or in a dialog. The keyword is followed by the module´s
logical name under which it is to be known. In general, the logical name is not the name of the module
itself. You may also use one and the same module under different logical names, although this can be
better described by models. The imported module´s logical name is followed by a string with the name
of the interface file.

Example From a Module

module Models

import StandardColor "color.if";
import Colors "mycolor.if";

export model pushbutton MPB1
{

.fgc Green; // color from StandardColors

.bgc MyGreen; // color from Colors
}
export model pushbutton MPB2
{

// Double names can be distinguished by putting the
// module name in front of it
.bgc StandardColors.Red;
.fgc Colors.Red;

}

Modules importing modules can be re-imported from other modules, too. Thus, you will get a kind of
tree with the dialog itself as its root.

The imports of a module can be exported. Thus, modules importing this module with the exported
imports do also have these imports.

!! Interfacefile: module.if
module Module
export import StandardColor "color.if";
...
module Main
/*

import StandardColor "color.if";
This module does not have to be imported here, since it

is indirectly loaded via the use of the color module
*/
import ImportModule "module.if";
...

If the interface files are not to be in the same directory like the module, the file names can be marked
with a search symbol on the import. This search symbol represents an environment variable con-
taining a search path (see also section above).

Example of a module which is to search its interface files in a different directory. The environment vari-
ables are set on the following values.

$set IDMLIB=/usr/idm/lib:/usr/idm/ISAstandard:/usr/idm/lib/dia

and

$set PRIVLIB=/home/project/lib

module Models

import StandardColor "IDMLIB:resrc/color.if";
// The file color.if is searched for in the following directories:
// /usr/idm/lib/resrc
// /usr/idm/ISAstandard/resrc
// /usr/idm/lib/dia/resrc

import Colors "PRIVLIB:mycolor.if";
// The file mycolor.if is only searched for in the directory
// /home/project/lib

export model pushbutton MPB1
{

.fgc Green; // color from StandardColors

.bgc MyGreen;// color from Colors
}
export model pushbutton MPB2
{
.bgc StandardColors.Red;

.fgc Colors.Red;
}

5.5.4 Use of the Object – use
Objects in modules cannot only be accessed or assigned to attributes, but can also be used as chil-
dren of objects from other modules. This is signaled by the keyword

use

The attributes of this child cannot be directly changed any more when using the object. But the
change of attributes is still possible in the rules.

A.06.03.b 87

88 ISA DialogManager

Example

module Childlibrary

export pushbutton Exit
{

.text "End";
}
on Exit select { exit(); }

dialog Main
import ChildLib "childlib.if" { .load false; }

window Window
{

child pushbutton Action { .text "Action ..."; }
use child Exit; // change of attributes impossible

}
on Action select
{

Exit.text := "Exit"; // change of attributes at runtime
}
...

A child can be used only once. This means that objects can be inserted by the keyword use in the
existing object tree at one position at the most. If objects are to be used several times, models have to
be used as it was usually done before the modularization was available.

Note

Models are generally the better choice, but there are exceptions where objects that are defined with
use are an advantage: e.g. window as such and a tablefield object.

5.5.5 Binary Files
The developer has dialogs and modules available as ASCII files. The end-user receives only the bin-
ary-coded form of modules. The runtime version can only read these binary-coded modules, i.e. the
binary files.

The modules are individually translated into binary files. The translation is made with the Dialog Man-
ager option +writebin:

idm +writebin<binary file name> <dialog file name>

The binary file is an identical translation of the module into a machine-readable form. Therefore, the
dialog loading process is considerably accelerated.

Binary files and modules in ASCII format may absolutely be mixed. If an interface file, however,
changes, the dependent modules have to be re-translated into the binary form. If the models or
defaults in modules change, the dependent modules also have to be re-translated into the binary

form. Therefore such module files can be compared with C-header-files: if a C-header-file changes,
all files dependent on it have to be re-translated to get a uniform version again. The same applies to
the binary files of the modules.

Recommendation

The above mentioned requirements can best be described and automatically included by so-called
"makefiles" or similar instruments of software development.

5.6 Compiling Interface and Binary Files for Imports with use
During the development of an IDM application and the usage with source code files, the interface files
serve as a representation of the externally available (exported) objects of a module, i.e. the external
interface. By separating interface definition and implementation, the IDM is able to load the imple-
mentation (that is, the module) only when needed.

With “use”, this interface definition can also originate directly from the module, i.e. the implementation.
For the reason mentioned above it still makes sense to work with interface files though.

For the distribution of an IDM application to the end customer, a binary version of the dialogs and mod-
ules is required.

Basically, interface and binary files can be generated the usual way via the commands -writeexport
and -writebin. As long as these files with the correct file extension are in the right place within the
search path, there is no problem with the “use” statement.

However, for modularized dialogs that employ “use”, there are much simpler commands to create all
interface and binary files in one step.

-compile Updates all interface and binary files for modified modules and dialogs.

-recompile Recreates all interface and binary files.

-cleancompile Deletes all interface and binary files.

For this the dialog needs to be loaded without errors. Interface and binary files are only created for the
specified dialog and all modules loaded per “use”. No interface and binary files are generated for mod-
ules that are accessed via “import”!

The module and dialog files to be loaded must be available as source code. In case of a loading error,
no files will be created.

A.06.03.b 89

90 ISA DialogManager

Example

!! file: Main.dlg

dialog MainDlg

use Models;
use Base.Fonts;

MWiMain WiMain {
.font Fonts.FnBig;

}

!! file: Models.mod

module ModModels

export window MWiMain {
on close {

exit();
}

}

!! file: Base/Fonts.mod

module ModFonts

export font FnBig "24.Arial";

With the following command all interface and binary files can be created in one step:

pidm -compile Main

Now the following files should lie parallel to the source files:

Main.bin
Models.bin
Models.if
Base/Fonts.bin
Base/Fonts.if

Now if the line export font FnSmall… is added to the file Base/Fonts.mod, simply the following com-
mand is used to update:

pidm -compile Main

This causes the following files to be refreshed:

Base/Fonts.bin
Base/Fonts.if

The other interface and binary files are not rewritten because the file date of these files is newer than
that of the corresponding source file.

If all interface and binary files should be recreated in any case, this can be achieved with:

pidm -recompile Main

If all interface and binary files should be deleted, this can be done with:

pidm -cleancompile Main

To create the interface and binary files in a different directory, the options -ifdir <directory path> and
-bindir <directory path> may be used.

5.7 Dynamic Module Administration

5.7.1 When Using import

5.7.1.1 Loading Process

A module can be loaded into another module in different ways. Loading means that not only the
objects´ names are known to the module, but also their definitions. Thus, they are displayable and
changeable. There are three kinds of loading which partly depend on the objects defined and expor-
ted in the module.

load on use
The module is automatically loaded. The programmer cannot determine the time the module is
loaded, since some objects of the module are immediately needed (modules and defaults) when
reading the superordinate module. This is the case when the module includes exported necessary
modules or resources.

implicit load
The module is loaded only when an exported object of the module is really needed, e.g. if the
object is accessed in a rule by assignment or request.

explicit load
Here, the dialog designer himself decides that he now wants to have the module loaded. He sets
the attribute .load on true at the logical module name (import name). Then the Dialog Manager
loads the module and makes it available.

Example

module Modul
import Colors "color.if";

window W
{
 .bgc Green; // load on use
}
on W focus
{
 this.bgc := Red; // implicit load
}
on W select
{
 Colors.load := true; // explicit load
}

Load on use has priority to the two other kinds of loading. implicit load has priority to explicit load.
In the example above, load on use is carried out, the other two loads do not have any effect since the
module is already in the memory and the rules can be executed directly.

A.06.03.b 91

92 ISA DialogManager

Explicit load can be given as an attribute already at the import.

module Modul
import Colors "color.if"
{
 .load true; // explicit load
}

To avoid that the module has to be re-loaded in the memory on every single import, a module should
be usually shared with other imports. In exceptional cases, which should be rare and well justified, the
design can be revised. As already mentioned above, the import has a logical name. If a subordinate
module (that means a module nearer to the dialog in the import hierarchy) has an import with the
same logical name as a subordinate module, the module is loaded only once.

module M1
import Colors "color.if";
...
module M2
import Colors "color.if";

// "M1.if" is the interface-file of module M1
import Modul1 "M1.if";
...

In the example above the module “color” is loaded only once with its logical name “Colors”. In the
example below, however, is unnecessarily loaded twice: by its logical name “Colors” and by “Colros”.
Note the undesirable effects of this (intentional) typing error!

module M1
import Colors "color.if";
...

module M2
import Colros "color.if";
import Modul1 "M1.if";

// "M1.if" is the interface-file of module M1
...

It may also happen that the module is unintentionally loaded twice due to the sequence of the import
processes. If - like in the following example - the module M1 is loaded immediately (load on use), the
import of the colors of M1 may be read before (!) the colors of M2. Since M2 is also loading M1, the
color import at that time is known only to M1, and thus the module Color is loaded twice.

module M1
import Colors "color.if";
...

module M2
// "M1.if" is the interface-file of module M1

import Modul1 "M1.if;
import Colors "color.if";

...

Note

Do not use start() on modules and their logical names!

5.7.1.2 Unloading Process

A module not used any more can be removed again from the memory by its import (logical name) only
by using the function .load in the import. The attribute value is set on false.

Note that not every module can be unloaded again. Generally this is possible only when the loaded
module contains only exported objects, but no exported resources, models or defaults. The module is
not physically removed from the memory until each import with the relevant name of this module is
unloaded.

A module cannot be unloaded any more, if the attribute

.static true;

is set at the object import. This attribute also has effects on the generation of binary files. The file
drawn by .static true is copied into the calling file during binary writing.

The unloading process takes a lot of computing time and should therefore only be used when really
needed, e.g. in case of memory problems.

Note

The function stop() cannot be used on a module.

5.7.2 When Using use
There are two methods for the dynamic use of modules:

:use()
To make a module accessible and load it if necessary. This is equivalent to the use statement in a
dialog or module.

:unuse()
Serves to remove the use relation, that is to “unload” the module, with the module not being
removed completely until there are no further use relations (e.g. from other importing modules).

Example

!! file DynLoad.dlg
dialog Dlg

window Wi
{

pushbutton PbUnload
{

A.06.03.b 93

94 ISA DialogManager

.yauto -1;

.text "Unload";

.sensitive false;

on select
{

this.dialog:unuse("DynMod"); // Unload module DynMod
this.sensitive := false;

}
}

on close { exit(); }
}

on dialog start
{

variable object Module, Model, Child;

Module := this:use("DynMod"); // Load module DynMod
if Module<>null then

PbUnload.sensitive := true;
Model := parsepath("MPbBeep");
if Model<>null then

Child := create(Model, Wi);
endif

else
print "Cannot load DynMod module!";
exit();

endif
}

!! file DynMod.mod
module ModDyn

export model pushbutton MPbBeep
{

.text "Beep";

on select
{

beep();
}

}

5.8 Object Application
The object application is used for binding clients to a server. This can be done with modules, too.
The problem, however, is that one module can be used in different dialogs. It may happen that these
dialogs are assigned to different server processes. Therefore, when using a module, you can define
where its function is to be searched. The object import passes this information on to the module.
There you can define which application object is responsible for the functions in the module.

Example

dialog Main
application MyServer
{
 ...
}
import Modul_X "modulX.if"
{
 .application MyServer;
}
...

Each function of the module Modul_X is now called on the server. In doing so, the module which is
described in the interface file "modulX.if" can be programmed regardless of the corresponding server.

Furthermore, functions can be exported out of modules without having to export the attached applic-
ation. This is the only case that an object’s parent does not have to be exported with. The advantage
is that the designer of the module always knows on which computer his functions are running. On the
other hand, however, it is not possible any more to make changes from outside.

Example

module Modul

application MyServer
{
 ...

export function void Calculation();
}
...

The function "Calculation" can be called from the importing module without the module knowing of the
application "MyServer". These two mechanisms enable the programmer to implement independently
usable modules.

5.8.1 Application assignment of module functions
A special case for the usage of functions in modularized dialogs is the use of the .application attribute
at the import object to couple all functions of a module from "outside" to a special application. This

A.06.03.b 95

96 ISA DialogManager

procedure is described in the chapter “Programming Techniques” / “Modularization” / „Object Applic-
ation“.

However, this procedure is not available when importing modules via use. As an alternative or sup-
plement, however, the linking of functions via the .masterapplication attribute to the module or dialog
can be used. This means that functions defined directly under a module/ dialog can be assigned to an
application. If there is no assignment on the module, the assignment from the dialog is used. The
attribute can also be indexed with an enum value. This index value should be from the range lang_
default...lang_java or func_normal..func_data. This allows functions to be assigned to different applic-
ations according to their language or function type. An explicit assignment (even a null setting) at the
module always overwrites/overlaps the assignment of the dialog.

Example

Modularized dialog with the functions in the module “Functions.mod”, where COBOL functions are
attached to the server application “ApplServer” and all other functions to the “dynlib” application
“ApplLocal”.

// Dialog.dlg
dialog Dlg
{

.masterapplication ApplLocal;
}

application ApplLocal {
.transport "dynlib";
.exec "libusercheck.so";
.active true;

}

use Functions;

on dialog start
{

variable string Username := setup.env["USER"];
if ValidateUser(Username) then

print "Age = "+GetAge(Username);
endif
exit();

}

// Functions.mod
module Functions
{

.masterapplication[lang_cobol] ApplServer;
}

use Server;

pt/objekt_application.htm
pt/objekt_application.htm

record RecUser
{

string[50] FirstName;
string[50] LastName;
integer Age;

}

export function boolean ValidateUser(string Username);
function cobol integer GetUserProfile(string[50] Username,

record RecUser output);

export rule integer GetAge(string Username)
{

if GetUserProfile(Username, RecUser)>0 then
return RecUser.Age;

endif
return 0;

}

// Server.mod
module Server

export application ApplServer {
.connect "server:4712";
.active true;

}

See also

Attribute .masterapplication[enum]

5.9 Application Examples for the Modularization
As described in the introduction, there is the possibility to develop uniform standards and to store
those in central modules (see following chapters on Resource and model basis). Moreover there is
the possibility to construct fundamental dialogs and to extend or modify them via modules (see
chapter on Differenciated dialogs). Applications which can be subdivided into several parts can be dis-
tributed by modules and may be loaded dynamically only on runtime (see chapter on Dividable dia-
logs). By using modularized dialogs prototypes can be easily built and be introduced to the customer.
Testing procedures can also be realized more easily by modules (see chapter on Prototyping & Test-
ing).

A.06.03.b 97

98 ISA DialogManager

5.9.1 Resource Basis
Uniform standards support the usability, userfriendliness but also the recognizability of software
products. Uniform colors, characters, texts, formats and other resources can be combined to one or
several modules and can be made centrally available for the individual development departments.
Standardized resources facilitate the administration in so far as changes or extensions can be real-
ized more easily.

Example for a module containing text resources:

module TextModul

!! Name of company in shortened form
export text FirmaKurz "ISA GmbH";
!! Name of company
export text FirmaLang "ISA Informationssysteme GmbH";
!! Text for pushbuttons
export text EndeText "Exit"
{

1: "Exit";
// other languages

}

Other applications for standard functions are possible.

Example

module GlobalFunctions
export function string GetDateString(string Format input);
export function string GetTimeString(string Format input);
export Function boolean GetDate(integer Day output,

integer Month output, integer Year output);
export Function boolean GetTime(integer Seconds output,

integer Minutes output, integer Seconds output);

Other, even more detailed examples are possible here.

5.9.2 Model Basis
Similar to the resource basis, defaults and models can be defined, administered and stored centrally
in modules. With these modules complete libraries can be built which guarantee a uniform design of
the entire product range. In model libraries, the design and the accompanying rules or whole object
groups (e.g. windows with certain menues) can be standardized and reused for various projects.
Especially for the graphical user interface the model basis provides an excellent possibility to reuse
object groups.

Example for a default basis ("default.mod"):

!! Central defaults for all models and instances
module Defaults

export default window // No name is necessary for defaults
{

.visible false

... // other attributes
object CloseRule := null;// The user-defined attribute

// should contain a rule which is
// called on closing

}
on WINDOW close
{

if (CloseRule <> null)
then

this.CloseRule(this);
endif

}
...

An application ("model.mod") of the default basis could look like that:

module Models

import DefaultBase "MODLIB:default.if";
export model window MMainWin
{

.CloseRule := MainWinClose;
child menubox System
{

.title "System";

...
}

}
!! This rule need not be exported!
rule void MainWinClose(object ThisObj input)
{

exit;
}
...

With the example above, we have established the initial stage of an expandable model basis. The
application programmer now can be provided with a wide range of extended standard objects along
with their corresponding functionality. The functionality, however, have to be completed by further
product-specific functionality.

Example

dialog Main

import DefaultBase "MODLIB:default.if";
import ModelBase "MODLIB:model.if";

A.06.03.b 99

100 ISA DialogManager

MMainWin MainWindow
{

.System.title "File";
// Changing the presetting of the model

child groupbox
{

// product-specific objects ...
}

}
on dialog start
{

// product-specific rules
}

5.9.3 Exchangeable Parts of an Application
In order to adapt an existing specific branch application for a different, but similar branch, often only
parts of a dialog have to be exchanged. If these exchangeable parts are known from the start (see
also chapter on Prototyping), the dialog can be designed by means of the modularization in such a
way that only single modules have to be exchanged to receive a "new" application. Customer-specific
desires can be considered with regard to design and functionality in the same way.

Example of an Administration Program for a Gas Station

Even for different companies, the administration of gas stations will almost be similar. Stock admin-
istration, cashbook and buying will all be identical. As for matters of invoice and orders, however,
there certainly are differences which would make a global solution hard to handle and which would
require many awkward adjustments. The developer can write a standard program covering the gen-
eral tasks of an owner of a gas station, whereas for company-specific differences he should develop
exchangeable modules (meaning the same interface). These exchangeable modules, in turn, are nor-
mally based on a standardized model basis.

If exchangeable modules are used, the time needed for the module administration should be in a reas-
onable relation to the saving of time which is needed for the development of these modules.

5.9.4 Dividable Applications
Many applications can be subdivided into various part applications. Some of these applications are
always used, others are rarely or never used by certain users. Those rarely or never used parts of an
application do not have to occupy the resources of a computer. The modularization makes it possible
to describe these part applications in modules by not holding them permanently in the memory. In
doing so, resources can be saved because parts which are not used will not be stored in the memory.
Moreover the period needed for the entire dialog to be loaded into the memory will be reduced since
only the main part or the permanently used parts of the dialog are loaded. The parts used only rarely

can be loaded during runtime of the dialog. Thus, the complete loading time can be divided up into sev-
eral time periods and the user can save unnecessary waiting time at the beginning of the program.

Some dialog parts are needed only for a short time and afterward are not needed any more for a long
time. Thus, it is recommended to define these dialog parts in modules. These modules can be loaded
into the memory when required, can be carried out, and - if wanted - can be unloaded from the
memory again.

(Note: The released memory stays with the program in today´s operating systems, and can be used
only by this program, but also by other re-loaded modules.)

Examples for this can be found in almost every application.

5.9.5 Prototyping & Testing
At the beginning of many software projects, there is the task to present the customer a prototype. This
prototype does not include the complete functionality of the later product; however, it contains enough
for customers and manufacturers to be able to remove misunderstandings and uncertainties before
the actual development work. Very often, a prototype allows at the beginning to evaluate the pos-
sibilities and usability of a program without losing precious time and work which will again be missing
at the project’s end.

Since, for a prototype developed with the Dialog Manager, the user interface and its functionality is
central, the topic of prototyping will be especially focussed in the following. From the Dialog Man-
ager´s point of view, the developing program can be divided up roughly in two parts: the user interface
with its functionality and the actual application. With the Dialog Manager and its feature mod-
ularization, a re-usable prototype can be generated which does work without the actual application.
Thus, a prototype can be rapidly presented to the customer.

The interface between Dialog Manager and application is established via functions. These functions
can often be substituted by named rules. The developer can substitute these functions by rules, how-
ever, he has to make modifications in the actual dialog each time. Having different modules which
include the actual functions' definitions and the identically named rules, a simulation of the prototype
can be easily generated. However, here a modification of the relevant dialog is not necessary.

The following example goes into the objects and attributes which shall help your understanding.

Examples

dialog Main

import Functions "PROTOLIB:func.if";
variable boolean OnLine := false;
on dialog start
{

OnLine := CheckOnline();
if (not OnLine)
then

// a message that the program only runs online

A.06.03.b 101

102 ISA DialogManager

exit;
endif
// Program may run

}
...

The module func.mod is defined as follows:

module FunctionModule

export function boolean CheckOnline();
...

The dialog in this example would have to be modified in the way that the dialog's start rule is changed
and the program does not abort immediately. This change is not necessary any more if this module is
substituted by a module with identically named rules.

The module "rulefunc.mod" then is defined as follows:

module FunctionRuleModule

export rule boolean CheckOnline()
{

return(true);
}
...

In order not to change anything at all at the dialog, an interface file has to be generated out of the mod-
ule "rulefunc.mod" which has the same name as the one of the module "func.mod" ("func.if"). There is
an environment variable (here: PROTPLIB) in order not to newly generate the interface files each time
when switching between prototype and progressing developing work. You can file the interface files in
different directories with this environment variable.

This scheme can be extended even more using Dialog Manager, in the way that the user can give
information about the reactions of the actual application during runtime.

Extension of the module "rulefunc.mod" (request):

module FuntionRuleModule

messagebox MBCheckOnline
{

.title "Online";

.text "Is your program online?";

.button[1] button_yes;

.button[2] button_no;

.icon icon_query;
}
export rule boolean CheckOnline()
{

variable boolean Result;

if (querybox(MBCheckOnline) = button_yes)
then

Result := true;
else

Result := false;
endif
return(Result);

}
...

This messagebox is not included in the later module (here: "func.mod"). It does only serve the direct
navigation of the dialog run, since this is navigated by the actual application which - in this case - is not
yet available.

A further advantage of this method is that you can also test dialogs specifically: the developer or qual-
ity assurance can also simulate unlikely test cases without having to manipulate the application.
When testing, the above example could provide problems when the application is really switched off-
line. Thus, the part of the dialog which deals with the offline operation, could be tested only awk-
wardly.

Note: There are also optional interfaces for Dialog Manager (to different databases, transaction mon-
itors and the Shell Interface for Unix).

5.10 Example
You will find the following example in the installation directory under "modular". There you can call
"make" or "nmake" according to the environment. In doing so, you will get an executable program.

In this example the modules are intentionally kept small in order to illustrate the use of the mod-
ularization.

5.10.1 The Default Module
All default objects are defined in this module. It is then imported into all other modules in order to have
access to the same default values. In this module, all objects are exported.

!! EXAMPLE FOR ISA DIALOG MANAGER
!!
!! This module defines all defaults and should be
!! imported in every
!! module that defines objects (instances or models)

module Default
{
}

!! We export this font, because it used also outside
!! this module

A.06.03.b 103

104 ISA DialogManager

export font FontNormal
{

0: "*helvetica-medium-r-normal--18-*-iso8859-1";
1: "SYSTEM";
2: "12.System Proportional";

}

!! THE DEFAULTS
!!
!! This default might be used *outside* this module hence we
!! have to export it.
export default menubox
{
}

export default menuitem
{
}

export default menusep
{
}

export default scrollbar
{
}

export default window
{
}

export default listbox
{
}

export default edittext
{
}

export default statictext
{
}

export default pushbutton
{
}

export default checkbox
{
}

export default radiobutton
{
}

export default poptext
{
}

export default groupbox
{
}

export default image
{
}

export default canvas
{
}

export default rectangle
{
}

export default messagebox
{
}

export default tablefield
{
}

5.10.2 The Module for Pushbutton Models
In this module, a model for a pushbutton is defined. Then a rule is deposited for this model. The mod-
ule itself needs the default module.

!! EXAMPLE FOR ISA DIALOG MANAGER
!!
!! define a model for the pushbuttons that are loading
!! the corresponding module (if selected)
!! we define a userdefined attribute to store the

A.06.03.b 105

106 ISA DialogManager

!! corresponding import/module that contains our window
!!
!! rule for every instance of the model
!! the 'if'-statement isn't necessary, the builtin-function
!! 'load' checks if the module is already loaded
module PushbuttonLibrary

export import Defaults "MODLIB:default.if";

!! only an internal model
!! you can't use it outside this module
model pushbutton MPImport
{

object Import := null;
}

!! A pushbutton with "load" label. You have to initialize
!! the instance with the attribute. Import with an import
!! object. If the pushbutton is selected then the
!! corresponding module (to .Import) is loaded.
export model MPImport MPLoad
{

.text "load";
}
on MPLoad select
{

if (not this.Import.load)
then

this.Import.load := true;
else

print "Cannot load again";
endif

}
!! see model above, the label is "unload" and the instance
!! has to be initialized again (.Import).
!! On selection the pushbutton unload the corresponding
!! module.
export model MPImport MPUnload
{

.text "unload";

.xleft 16;
}

on MPUnload select
{

if (this.Import.load)

then
this.Import.load := false;

else
print "Module not loaded";

endif
}

5.10.3 Further Modules
Further modules were defined for this example. Please have a look at the example directory.

5.10.4 Dialog LoadExample
!! EXAMPLE FOR ISA DIALOG MANAGER
!!
!! This dialog demonstrates the use of the dynamic load of
!! modules
dialog LoadExample
{

.reffont FontNormal;
}

!! dialog wide defaults
import Defaults "MODLIB:default.if";
import ModelLib "MODLIB:modellib.if";
import PushbuttonLib "MODLIB:pushblib.if";

!! module window 1, but do not load it right now
!! see the attribute '.load',
!! '.load' is set to false ==> not loaded yet
import Window1 "MODLIB:window1.if"
{

.load false;
}
!! see comment above
import Window2 "MODLIB:window2.if"
{

.load false;
}
!! see comment above
import Window3 "MODLIB:window3.if"
{

.load false;
}

!! this window controls the 'load' of the three modules

A.06.03.b 107

108 ISA DialogManager

MWinMain ControlWindow
{

.title "Control";

.width 20;

.height 7;

child MPLoad
{
.ytop 0;
.text "Load Module 1";
.Import := Window1;
}
child MPLoad
{
.ytop 1;
.text "Load Module 2";
.Import := Window2;
}
child MPLoad
{
.ytop 2;
.text "Load Module 3";
.Import := Window3;
}

}

The starting window of this application has the following structure:

Figure 18: Starting window of a modularized application

By selecting the pushbuttons the individual modules are loaded. You will get the following structure:

Figure 19: Application with loaded modules

5.10.5 Example for USE Operator
The example "use.dlg" can be used for the USE operator. Here, a tablefield is passed on to a window
using the USE operators.

!! EXAMPLE FOR ISA DIALOG MANAGER
!!
!! This example shows a dialog with a window and a
!! tablefield inside this
!! window. The tablefield is defined outside this module,
!! just take a
!! look in the table.mod module.
dialog UseExample
{

.reffont FontNormal;
}

import Defaults "MODLIB:default.if";
import ModelLib "MODLIB:modellib.if";

!! import an object and *use* it as a child in another
!! object
import Tablefield "MODLIB:table.if";

A.06.03.b 109

110 ISA DialogManager

MWinMain Win
{

.title "Use Example";

.width 50;

.height 11;

!! use the tablefield, we cannot change attributes here
use child Table;

}

After having started the application the window has the following structure:

Figure 20: Use of USE operator

5.11 Structure of a Development Environment
If you want to establish an development environment using the modularization, the following aspects
must be considered:

The interface files always have to be updated in accordance with the module files, otherwise the
system will be stopped on loading the relevant module.

The binary files of the modules usually have the same ending as the corresponding ASCII files of
the modules. This is the case, since the names of the implementation files are deposited in the
interface files, and it is not differentiated if the file will contain data in ASCII or in binary form.

Each developer should first be able to carry out and test the modifications in his private envir-
onment, before he makes his module available for his colleagues. Also far-reaching modifications
can thus be at first tested locally and are then made available to the whole project team.

When establishing a module, note that modules must not import themselves recursively (neither
directly over several steps!). The recursivity can be recognized very easily by deleting all interface
files and having them made again. If a recursivity has been installed by mistake, the interface files
cannot be generated. In this case, the modules have to be re-structured.

Considering these aspects, an development environment can have the following structure making
use of the modularization:

First of all a project directory is created where all released modules and dialogs with their cor-
responding interface files are deposited.

In addition a parallel directory is opened into which the binary versions of modules are stored. The bin-
ary files are then automatically created whenever there is a change in the underlying module or in the
interface files of the used modules.

Each member of the project gets the same environment for himself as defined in the project directory.
No data is deposited there at first. If there are changes at the module to be carried out, the file is
copied from the project directory into the private directory and is modified there until it is usable. The
corresponding interface file is also deposited in the private directory, of course. When the modi-
fications are tested, the file is returned to the project directory and deleted in the private directory.
Thus, all members of the project have access to the modified form of this module.

If, due to performance reasons, binary files are created privately, this must be carried out by the same
structure as in the project directory.

The selection of the current source on the program run is controlled by the environment variable
which was indicated on generating the interface files. Without the variable the behavior cannot be con-
trolled in a reasonable way. A reasonable behavior is achieved when the environment variable for the
ASCII version is set on

Private directory;project directory.

In doing so, each module file is searched in the private directory first. Only if no module file is found
there, it is removed from the project directory. The same applies to the binary version. Mixing ASCII
form and binary form can have fatal consequences, if the dependence between modules in the devel-
opment environment has been recorded and rendered in the wrong way. Therefore, you should either
work on binary files or on ASCII files.

The following figure illustrates a possible module structure. In this example, resources are directly
used in the module "application part 1", whereas in the module "application part 2" the resources are
not directly used. This is why the module "resources" is imported into the module "application part 1",
but not into the module "application part 2".

A.06.03.b 111

112 ISA DialogManager

Figure 21: Possible module structure

By using these conditions as basis, a reasonable project structure can be as follows:

Figure 22: Usable project structure

For this structure, it is necessary that each user has access to the project directories. On MICROSOFT

WINDOWS computers, these directories can be on different logical disks, of course. This disk, how-
ever, must be available to all users.

In addition, we recommend to use source-code control systems, since they avoid the parallel chan-
ging at one and the same source file or reunite the parallel procedures.

A.06.03.b 113

114 ISA DialogManager

6 Datamodel
The motivation for the “Datamodel” in the IDM is to achieve an improved separation between user
interface objects and the application layer, which provides the data for the representation.

The main characteristics of its design are:

Separation of the user interface from the application according to the Model-View-Presenter
(MVP) design pattern.

The dialog developer merely defines the linking between user interface objects (View) and the
data storage in the application layer (Model).

As little as possible or even no rule code due to the controllable application of automatic syn-
chronization and automatic type conversions.

Retention of the familiar data schema and access concept for indexed attributes so that data may
be used in scalar or vector form.

Use of the existing IDM features for data storage and implementation of the Model layer: IDM
objects (record objects) and application functions, which as well may be fully transparently loc-
ated on the DDM server side.

6.1 Introduction
With the Datamodel, the IDM allows a separation into the three components Model1, View and
Presenter according to the MVP design pattern with adaptation to the peculiarities and requirements
of the Rule Language.

Model

Manages the data and its underlying logic. Is typically close to or in the application layer. A model
can manage several data, which are considered as indexed attributes by the IDM and thus may
contain scalars, vectors and matrices.

For instance, a record object with user-defined attributes and methods.

View

Visual representation of the data for display, input or modification. The data schema is the same
as for the model: indexed attributes thus containing scalars, vectors or matrices.

For instance, an edittext object using a format for input and output.

Presenter

The logic to control the connection between Model and View or to link multiple Views.

1Not to be confused with the IDM models in the sense of classes for object instances.

For instance in the form of event rules to assign the new data value at the View to the Model when
editing is finished.

Brief notice on terms: In this documentation “Datamodel” (in one word) is used for the concept derived
from MVP whereas “Data Model” (in two words) stands for an actual Model.

In contrast to existing MVP concepts in JAVA or QT, the IDM approach allows for transparent handling
without restricting the linking and without the need to differentiate between content or selection.
Whether a Model controls the content of an edittext, the color of a certain table cell, or the active item
in a list is solely left up to the application or dialog programmer.

Figure 23: Architectural pattern Model-View-Presenter

In the IDM, the linking between Model and View as well as the most important control functions of the
Presenter are defined by a few attributes:

Table 2: Datamodel attributes

Attribute Meaning

.datamodel Reference to the Model at the View

.dataget Defines the linking of a View attribute with a Model attribute for display

.dataset Defines the linking of a View attribute with a Model attribute for assignment

.dataindex Provides control over the aggregation of View and Model attributes

A.06.03.b 115

116 ISA DialogManager

Attribute Meaning

.datamap Enables the mapping of attributes to resolve “ambiguities”

.dataoptions Control options for the Presenter logic

An example for linking a dialog interface (View) with a Data Model for the display of personal inform-
ation with name, gender and child names might look like this:

dialog D
record RecPerson {

string Name := "Jane Q. Public";
boolean Female := true;
string Children[integer];
.Children[1] := "Amy";
.Children[2] := "Peter";

}
window Wi {

.title "Datamodel Example RecPerson";

.width 200;

.height 200;
/* Linking of all View objects to the Model RecPerson */
.datamodel RecPerson;

edittext EtName
{

.xauto 0;
/* .content is linked to RecPerson.name */
.dataget .Name;

}

checkbox CbGender
{

.ytop 30;

.text "Female";
/* .active is filled from RecPerson.Female */
.dataget .Female;

}

listbox LbChildren
{

.ytop 60;

.xauto 0; .yauto 0;
/* .content[] is filled from RecPerson.Children[] */
.dataget .Children;

}

on close { exit(); }

}

The Datamodel approach in IDM takes some of the Presenter logic off the shoulders of the application
programmer, hence the above example works without any further rules. The filling of the interface
objects “EtName”, “CbGender” and “LbChildren” is done by the IDM through the linking set by the
attribute definitions of .datamodel and .dataget. Furthermore, the above example takes advantage of
the additional value passing feature from parent to child, which applies to the attributes .datamodel
and .dataoptions.

The following diagram is intended to illustrate these automatisms and to show what controlling and
influencing options the dialog programmer has for the components View and Presenter as well as the
application programmer for the Model component.

Figure 24: Linking between Model, View and Presenter

Table 3: Propagation of changes between Model, View and Presenter

Method, Function Component

:represent() View The View object is populated with the data from
the Model and, if necessary, data values are pre-
pared for display

:apply() View The View object returns the data to the Model; if
necessary, data values are prepared for assign-
ment

A.06.03.b 117

118 ISA DialogManager

Method, Function Component

Dialog event View, Presenter Changes of the View are signaled

:propagate() Model The data from the Model component is relayed
to the linked View objects for display

:collect() Model The Model component retrieves all values from
the linked View objects

DM_DataChanged()
or attribute assignment

Model The Model component signals a modification of
the data

.dataoptions[] Presenter, Model Control options for the automatic syn-
chronization between Model and View

The Presenter logic in the IDM currently comprises four automatisms:

1. If a View object with a linkage to a Model becomes visible (“map”), it fetches the data shortly
before it gets visible (enabled by default).

2. If a View object with a linkage to a Model becomes invisible (“unmap”), it assigns the data to the
linked model (disabled by default).

3. A dialog event on a View object with a link to a Model, which indicates a modification of a coupled
attribute, assigns the data to the linked Model (disabled by default).

4. Modifications of the data on a Model, e.g. signaled by a datachanged event, lead to a propagation
of the changes to the linked View objects if these are visible (enabled by default).

6.2 Linkage Between Model and View
In principle, the Datamodel is designed in a way that the Model is not aware which View objects are
using it. The data schema for Model and View is the same: indexed attributes to enable scalars, vec-
tors and matrices.

The .datamodel attribute is used to link a view with a model:

object .datamodel[<View attribute>] <Model ID>

For data transfer from the Model to the View, it also has to be defined which attribute of the Model
should be retrieved.

attribute .dataget[<View attribute>] <Model attribute>

To define the data transfer back from the View to the Model, the following attribute is used:

attribute .dataset[<View attribute>] <Model attribute>

This way, it can be exactly determined what in the View object is populated through a Model and what
is reassigned to the Model. By indexing the .datamodel attribute, it is also possible to use multiple
Data Models for different attributes.

View attributes are typically, but not necessarily, actual attributes of the View object, e.g. .content for
an edittext used as a View object. In order to achieve a better distinction between View and Model
attributes, it is recommended to use user-defined attributes as Model attributes.

To “activate” the linkage respectively make it effective, the .datamodel attribute must always be set
without index, as well as a linking with .dataget or .dataset (with or without index).

This is an example for the use of multiple Models (Data Models: “RecUsers”, “RecManager”,
“VarValid”, “LbUsers”) by multiple Views (“listbox LbUsers”, “edittext EtName”, “pushbutton PbKill”).

dialog D
record RecUsers
{

string Name[integer];
.Name[1] := "miller";
.Name[2] := "smith";
.Name[3] := "moreno";
string Rights[integer];
.Rights[1] := "guest";
.Rights[2] := "user";
.Rights[3] := "root";

}

record RecManager
{

string CurrUser := "moreno";
boolean IsAdmin := true;
rule boolean ChangeUser(string Name)
{

variable anyvalue Idx;
Idx := RecUsers:find(.Name, Name);
if typeof(Idx) = integer then

this.CurrUser := Name;
this.IsAdmin := stringpos(RecUsers.Rights[Idx], "root") > 0;
return true;

endif
return false;

}
}

color CoError "red";
variable object VarError := true;

window Wi
{

.title "Datamodel Model-View Coupling";

.width 200; .height 200;
boolean Valid := false;

A.06.03.b 119

120 ISA DialogManager

listbox LbUsers
{

.xauto 0; .yauto 0;

.ybottom 60;

.datamodel RecUsers;

.datamodel[.activeitem] RecManager;

.dataget .Name;

.dataget[.activeitem] .CurrUser;
on select, .activeitem changed
{

EtName.dataindex[.content] := this.activeitem;
VarError := null;
RecManager:ChangeUser(EtName.content);

}

:represent()
{

if Attribute = .activeitem then
Value := this:find(.content, Value);

endif
pass this:super();

}
}

edittext EtName
{

.yauto -1; .xauto 0;

.ybottom 30;

.datamodel LbUsers;

.datamodel[.bgc] VarError;

.dataget .content;

.dataget[.bgc] .value;

.dataindex[.content] 0;
on deselect_enter
{

if not RecManager:ChangeUser(this.content) then
VarError := CoError;

endif
}

}

pushbutton PbKill
{

.yauto -1;

.text "Kill All Processes";

.sensitive false;

.datamodel RecManager;

.dataget[.sensitive] .IsAdmin;
}

on close { exit(); }
}

To make the definition of common links between View and Model attributes as straightforward as pos-
sible, the IDM default linkages may be utilized (as can be seen in the example for “EtName”, where
.datamodel and .dataget are used without index). These defaults are described in the table below:

Table 4: Default linkages of View attributes

Object Class
Default View Attribute

for .dataget
Default View Attribute

for .dataset

pushbutton
statictext
messagebox

.text –

checkbox
radiobutton
timer

.active .active

image
menuitem

.text .active

filereq .value .value

listbox
treeview
tablefield

.content .activeitem

notepage .title –

edittext .content .content

poptext .text .activeitem

progressbar .curvalue –

scrollbar
spinbox

.curvalue .curvalue

menubox
toolbar
window

.title –

The above example shows another particular feature. Once a visible object is used as Data Model
(the View component “EtName” is linked to the Model “LbUsers”).

A.06.03.b 121

122 ISA DialogManager

Basically, the IDM supports all object classes that allow user-defined attributes as Data Model, as well
as global variables and functions with the function type datafunc. Linking multiple Models is also pos-
sible. For visible (visual) objects, however, one thing should be kept in mind: the user interaction does
not trigger changed events for attributes and therefore also no automatic propagation of changes to
the Model. This needs to be done explicitly or through the appropriate synchronization setting.

As View objects, as well any object classes that allow user-defined attributes are supported.
However, the synchronization automatisms between model and view are designed for view objects to
be instances with a visual representation.

6.3 Sequence and Value Aggregation
To populate a View object, a correct sequence is required when setting the View attributes. They are
set by the IDM in a predefined, class-specific sequence (as in the attribute list of the object) to take the
dependencies between the attributes into account. For a poptext, as an example, the sequence

…, .itemcount, …, .text[], …, .activitem, …, .userdata[], …

applies to observe the dependency of .text[], .activeitem and .userdata[] upon the .itemcount attribute.
However, this sequence can only be observed for the representation (that is, a synchronization
triggered at the View component, e.g. via :represent()). The IDM has no influence on the sequence
when the synchronization is triggered by the Model component, e.g. when using the DM_
DataChanged() function.

If a Data Model is linked to all four attributes, first the number of elements is set, then the texts, then
the active element is altered and finally the .userdata[] field is set.

In principle, the IDM does not prohibit using user-defined attributes as View attributes, but cannot
ensure a consistent sequence for them. User-defined attributes and predefined attributes that do not
belong to the object class are always handled after the predefined attributes for which the object class
determines the sequence.

There are different kinds of value aggregation, i.e. the relation of data values between Model and
View:

Figure 25: Relations between Model and View

There are two attributes to enable these kinds of relations:

anyvalue .dataindex[<View or Model attribute>] <index>
attribute .datamap[<View attribute>] <View attribute>

The .dataindex[] attribute is used to select a value from a value list and to transform indexed values. It
should be noted that the attributes may occur as scalar, array, associative array or matrix (two-dimen-
sional array), but access always only allows a vector (i.e. a one-dimensional array).

When assigning collections (value count <n>) to a vector attribute (one-dimensional or two-dimen-
sional), the following transformations are carried out depending on the index:

Table 5: Index transformations when assigning collections

Index Assignment

[0,<col>] [1,<col>] … [<n>,<col>]

[<row>,0] [<row>,1] … [<row>,<n>]

[<row>,<col>] [<row>,<col>]

0 1… <n>

<row> <row>

void void

others void

The .datamap[] attribute allows merging data values (from one or more Data Models), which shall be
mapped to exactly one View attribute. The main field of application will be two-dimensional attributes

A.06.03.b 123

124 ISA DialogManager

as found on the tablefield object. For this purpose, a “virtual” View attribute is used, which is then
mapped to an “actual” View attribute by means of the .datamap[] attribute. Any predefined or user-
defined attribute may serve as a “virtual” attribute, but it may be preferable to use an existing attribute
on the View object to influence the sequence for a complete representation of all model values.

Example

The following example illustrates these different kinds of relations. For instance, the View object
“PtMonth” is linked to the entire content of the attribute “.MonthName[]” from the Model object
“RecDate”. In contrast, the View object “StCurMonth” displays only the 3rd item from the
“RecDate.FullMonthName[]” array.

For the View object “TfCurWeek”, the data linkage is quite more complex. The weekday names from
“RecDate.DayName[7]” are distributed to the header row (elements [1,1] … [1,7]) by the linkage
.dataindex[.content] [1,0];. To link the week numbers into the table, the .field attribute is used
by means of the definitions .dataget[.field] .WeekNr; and .dataindex[.field] [0,8];.
Since there is a header row set through .rowheader 1;, the week numbers are written to the ele-
ments [2,8] … [6.8]. For marking the current day, the “virtual” attribute “.text” is used, for what a map-
ping .datamap[.text] .content; has been established to direct the marker text into the field
“.content[4,3”.

dialog D
record RecDate
{

integer CurMonth := 3;
integer CurDay := 23;
integer CurWeekDay := 3;

string DayName[7];
.DayName[1] := "Mon";
...
string MonthName[12];
.MonthName[1] := "Jan";
...
string FullMonthName[12];
.FullMonthName[1] := "January";
...
integer WeekNr[5];
.WeekNr[1] := 9;
...

}

window WiData
{

.title "Datamodel: index-coupling";

.width 600; .height 400;

.datamodel RecDate;

poptext PtMonth
{

.xauto 0;

.dataget .MonthName; /* fills poptext.text[] with "Jan","Feb","Mar",...
*/

.dataget[.userdata] .FullMonthName; /* fill full names into .userdata[]
*/

.dataget[.activeitem] .CurMonth;
}

statictext StCurMonth
{

.ytop 30;

.xauto 0;

.alignment 0;

.dataget .FullMonthName;
/* fills statictext.text with "Mar" by Model index */
.dataindex[.FullMonthName] 3;

}

tablefield TfCurWeek
{

.xauto 0; .yauto 0;

.ytop 60;

.rowheight[0] 30; .colwidth[0] 60;

.colcount 8; .rowcount 6;

.content[1,8] "Week";

.rowheader 1;

.dataget[.content] .DayName;

.dataindex[.content] [1,0]; /* fill "Mon"... to first row via View index
*/

.dataget[.field] .WeekNr; /* map to .field attribute to fill week no.
*/

.dataindex[.field] [0,8]; /* vertical into last column below the header
*/

.datamodel[.text] Marker; /* mark a specific day using the
*/

.dataget[.text] .value; /* .datamap attribute, because it goes into
*/

.datamap[.text] .content; /* the already used View attribute .content!
*/

.dataindex[.text] [4,3];
}

on close { exit(); }
}

The screenshot for it looks like this:

A.06.03.b 125

126 ISA DialogManager

Figure 26: A tablefield populated from different Data Models

It is crucial to understand this fact:

Data exchange between Model and View works via the existing mechanisms of the IDM, i.e. setvalue
(), getvalue(), setvector() und getvector(). This implies that the exchanged data values are either
scalar or vectorial.

If the change of a Model attribute is signaled (e.g. in a custom data function by calling the DM_
DataChanged() function), this usually yields a Model index as an indication for the changed detail
(typically of type void, integer or index). Since this change signaling is processed by the IDM as a
datachanged event, multiple changes are combined into the overall change (void index) respectively
redundant events are omitted.

In conjunction with the ability to influence the value aggregation through the .dataindex[] attribute, this
has several consequences and particularities to be considered:

1. Complete population of a two-dimensional attribute (e.g. .content[] at the tablefield) is possible
without problems if the alignment as well as the number of columns and rows match the data
length. The table size is adjusted through the setvector() functionality.
However, single value modifications can only be updated at the correct cell in the tablefield if the
Data Model issues a change notification with the respective index.
Transfer of a two-dimensional array with its row and column form to an arbitrary position in a table-
field is however not possible, only the signaling of value changes at any position.

2. With the use of .dataindex[] at the tablefield, a scalar or vector data value can be moved to an
explicitly defined cell, row or column. Automatic cell extension happens according to the rules of
setvalue() or setvector() and therefore also depends on the index transformation. Please note
that user-defined attributes (e.g. arrays) do not support automatic extension.

3. The same applies to vector and matrix attributes as they exist on listbox, treeview and poptext.

4. The index for a Model attribute is used to avoid unnecessary propagation of value changes (e.g. a
change of “Data.Attr[5]” is of no relevance for View objects linked to “Data.Attr[2]” only).

5. When using void (default value for .dataindex[]) for the index transformation, propagation of the
Model index – signaled by a datachanged event – is performed depending on the attribute type
(scalar, vectorial, two-dimensional) up to the presentation by :represent(). Among others this is
used in the example randomcolors.dlg to link color values from an associative array to the .bgc[]
attribute of a tablefield object. However, this also means that linkages with different value dimen-
sions (e.g. an array is mapped to a scalar) result in a value update depending on the index of the
last change - which is usually not surprising. A possible solution is to use the correct index for the
View and Model attributes by means of the .dataindex[] attribute.

6. Setting default values (index [0], [0,0], [0,*] or [*,0]) of the involved Model and View attributes is not
possible.

The following examples (located in the examples/datamodel/ subdirectory of the IDM installation dir-
ectory) are worth a look at the source code as well as the trace file during execution:

relations.dlg

Demonstrates various value aggregations of scalar or vector data values in a listbox object with
and without adaptation of the .content[] field as well as the effect of single changes.

Figure 27: Value aggregations for list objects, example relations.dlg

matrixrel.dlg

Demonstrates several simple and complex value aggregations of different data values into a table-
field object.

A.06.03.b 127

128 ISA DialogManager

Figure 28: Value aggregations for tablefields, example matrixrel.dlg

numbers.dlg

Demonstrates the complete population of a tablefield object with a header row, including auto-
matic row count adjustment.

Figure 29: Populating an entire tablefield, example numbers.dlg

puzzle.dlg

Demonstrates populating a tablefield from a record as a Data Model or with a data function (local
or remote).

Figure 30: Populating a tablefield from record and data function, example puzzle.dlg

6.4 Synchronization Between Model and View
Automatic synchronization between Model and View is controlled by the .dataoptions[] attribute.

Table 6: Options for synchronization between Model and View

Attribute Index Default Component Meaning

dopt_represent_on_map true View Immediately before the View is made
visible, the data values are fetched
from the Model components and set on
the View object.

dopt_represent_on_init false View During object initialization (:init
method), the data values are retrieved
and set on the View object.

A.06.03.b 129

130 ISA DialogManager

Attribute Index Default Component Meaning

dopt_apply_on_unmap false View Immediately before the View is made
invisible, the data values are fetched
from the View object and assigned to
the linked Model components.

dopt_apply_on_event false View If a user interaction triggers a dialog
event which indicates a possible
change of a View attribute, this is
assigned to the linked Model com-
ponents.

dopt_propagate_on_start true Model When a dialog or module is started, the
data from the Model objects is for-
warded to the linked View components.

dopt_propagate_on_
changed

true Model Modifications to a Model attribute are
forwarded to the linked View com-
ponents.

dopt_cache_data true Model This index value is only available for
the doccursor.

true
The data selected by the
doccursor is buffered for
further accesses
(“caching”).

false
With each access, the doc-
cursor selects the data
anew from the XML Docu-
ment.

A key feature of the Datamodel is that data changes are always signaled and processed “asyn-
chronously” via the event processing. For example, if the Data Model (Model object) is a record or
another object with user-defined or predefined attributes, an attribute change, which is signaled by a
datachanged event, is transmitted to the linked View objects so that they can update themselves. The
dialog programmer can suppress a changed event with the operation “::=”, but never a datachanged
event.

A global variable may be used as a Model component as well, but does not allow controlling the syn-
chronization. Variable values s are always propagated when the dialog or module is started and when
the variable value is changed.

When .dataoptions[dopt_apply_on_unmap] := true; is used on a dialogbox, messagebox or
filereq via a querybox call, the data values are only transferred from the View to the Model in case of
a positive confirmation (button_ok or button_yes).

Manual intervention is not necessary in most cases. However if required, manual synchronization can
be accomplished using the following methods:

Table 7: Manually callable Datamodel methods

Method Component Function

:represent() View The data of all linked Model attributes (.dataget) is retrieved
and assigned to the View object

:apply() View The data from all linked View attributes (.dataset) is fetched
and assigned to the Models

:propagate() Model The Model object communicates a change of all its Model
attributes to the View objects that have a linkage.

:collect() Model The Model object fetches all data from the linked View objects
to assign it to its Model attributes.

Synchronization only happens between instances, never with Default objects or Models.

For optimized synchronization of partial values, there is another particular feature. If a value change is
signaled, the index of this value change is forwarded so that only this single value needs to be
updated by the View component.

Example

Through a timer object, random colors are picked and assigned to random table cells.

dialog D
color CoRed "red";
color CoYellow "yellow";
color CoGreen "green";
color CoBlue "blue";

timer TiRandomColors {
.active true;
.starttime "+00:00:00";
.incrtime "+00:00:00'100";
object Color[index] := null;

on select
{

variable index RandIndex := [1 + random(5),1 + random(5)];
variable object RandColor := D.color[1 + random(D.count[.color])];
/* change the color at a specific index */

A.06.03.b 131

132 ISA DialogManager

this.Color[RandIndex] := RandColor;
}

}

window Wi
{
.title "Datamodel - random colors";
.width 400; .height 400;

tablefield Tf
{

.xauto 0; .yauto 0;

.rowcount 5; .colcount 5;

.colwidth[0] 60; .rowheight[0] 30;

.dataoptions[dopt_represent_on_map] false; /* avoid initial :represent()
*/

.datamodel TiRandomColors;

.dataget[.bgc] .Color;
}

}

This is the screenshot for it:

Figure 31: Randomly colored tablefield cells with a timer as Data Model

6.5 Conversion and Conversion Methods
During synchronization between Model and View components, data values are exchanged, which usu-
ally means setting or querying attributes (similar to , getvalue(), setvector(), getvector()). Inter-
vention of the application programmer by redefinition of the :set() and :get() methods is not possible.

However, on the View component it is possible to exert influence by means of the redefinable meth-
ods :represent(<Value>, <Attribute>, <Index>) and :retrieve(<Attribute>, <Index>).

When attributes are set at the View component, the IDM default handling normally performs a type
conversion to the target data type. The following example demonstrates how a special handling for
the View attribute .activeitem is achieved through redefinition.

Example

An airport list is displayed in the listbox “Lb”. The redefined methods :represent() and :retrieve()
ensure a correct conversion from and to an IATA code.

dialog D
record RecAirport
{

string Name[4];
string IATA[4];
.Name[1] := "Hartsfield Jackson Atlanta International";
.IATA[1] := "ATL";
.Name[2] := "Dubai International";
.IATA[2] := "DXB";
.Name[3] := "Stuttgart";
.IATA[3] := "STR";
.Name[4] := "Orkney Islands";
.IATA[4] := "KOI";
string NearestIATA := "STR";
string Selected := "";

}

window Wi
{

.title "Airports";

.width 200; .height 200;

listbox Lb
{

.xauto 0; .yauto 0;

.ybottom 30;

.dataoptions[dopt_apply_on_event] true;

.datamodel RecAirport;

.dataget .Name;

.dataget[.userdata] .IATA;

.dataget[.activeitem] .NearestIATA;

A.06.03.b 133

134 ISA DialogManager

.dataset[.activeitem] .Selected;

:represent()
{

if Attribute = .activeitem then
Value := this:find(.userdata, Value);

endif
pass this:super();

}

:retrieve()
{

if Attribute = .activeitem then
return this.userdata[this.activeitem];

endif
pass this:super();

}
}

edittext Et
{

.yauto -1; .xauto 0;

.editable false;

.datamodel RecAirport;

.dataget .Selected;
}

on close { exit(); }
}

This is the screenshot for it:

Figure 32:Window of the example dialog for overwriting :represent() and :retrieve()

6.6 Use of XML with the Datamodel

Availability

Since IDM version A.06.01.b

XML may be used as a Data Model, where node texts and node attributes can contain the data – usu-
ally strings. An XML Document is linked to a View through a doccursor. For this purpose, Data Model
attributes and selection patterns for nodes of the XML Document are defined at the doccursor. Fur-
ther it can be defined whether the Data Model attribute is linked to the content or an attribute value of
the node. For operations that change the XML Document, the data changes are forwarded to all Data
Model attributes.

The doccursor has the following attributes to use it as a Data Model:

Table 8: Datamodel attributes of the doccursor

Attribute Meaning

.dataselect Defines a Data Model attribute with associated selection pattern.

.dataselectattr Maps a Data Model attribute to an attribute of the selected nodes.

.dataselecttype Data type conversion of a Data Model attribute.

.dataselectcount Defines the cardinality of a Data Model attribute.

.dataoptions Controls caching via the index dopt_cache_data.

The .dataselect attribute is of crucial importance here. It defines the Data Model attributes of the doc-
cursor and their linking to nodes of the XML Document using selection patterns. The syntax of the
selection patterns is the same as the pattern definitions for the :select method. The selection pattern
of a .dataselect attribute without index – that is, without a Data Model attribute – is applied before the
selection patterns of all Data Model attributes. This enables relative selection patterns for the Data
Model attributes originating from the nodes preselected by the .dataselect attribute without index. At
the same time, this reduces the effort required to collect the data.

When collecting the data for a Data Model attribute, it is looped through the document using the selec-
tion pattern. Either the node content is fetched using the .text attribute of the doccursor or the value
of the node attribute defined by .dataselectattr.

For the Data Model attributes defined with .dataselect, data type and cardinality may be altered using
the attributes .dataselecttype and .dataselectcount. By default, the Data Model attributes contain vec-
tors with string values (data type vector[string]). With the . dataselecttype attribute a data type (e.g.
integer, boolean) can be defined to convert the values into. The cardinality (vector or scalar) of Data
Model attributes can be controlled via the attribute .dataselectcount. If the data type of the Data Model
attribute is a collection or its cardinality is the data type integer, then the Data Model attribute contains
a vector, otherwise only a scalar with the first value.

A.06.03.b 135

136 ISA DialogManager

Once retrieved values of a Data Model attribute are cached until either the XML Document or the Data
Model attributes of the doccursor change. This caching can be prevented by setting .dataoptions
[dopt_cache_data] = false at the doccursor.

Saving data in an XML Document happens in a similar way with reversed operations. However, nodes
cannot be created or deleted automatically in the XML Document.

Notes

Collecting the data can be an “expensive” operation, since the selection pattern must be searched
in the whole XML Document. The effort may be reduced by limiting the search to preselected sub-
trees by using a .dataselect attribute without index.

A doccursor used as a Data Model should not be used for other purposes, as it typically changes
its selection path constantly.

6.6.1 Example
A list of Nobel laureates shall be read from the following XML file and displayed in a table:

<?xml version="1.0"?>
<nobelprizes>

<category id="p">Physics</category>
<category id="c">Chemistry</category>
<winner year="1" category="p">Wilhelm Conrad Röntgen</winner>
<winner year="11" category="c">Marie Curie</winner>
<winner year="18" category="p">Max Planck</winner>
<winner year="70" category="c">Luis Leloir</winner>

</nobelprizes>

The names of the laureates are taken from the content of the XML nodes “winner” and stored in the
Data Model attribute “.Winner”. The years of the award can be found in the “year” attribute of the XML
nodes and are counted in the file from 1900. They are converted to integer and read as vector into the
Data Model attribute “.Year”. In the overwritten :represent method, the years are completed to four-
digit numbers for display.

dialog D

document Doc
{

doccursor DocCur
{

.dataselect[.Winner] "..winner";

.dataselect[.Year] "..winner";

.dataselectattr[.Year] "year";

.dataselecttype[.Year] integer;

.dataselectcount[.Year] integer;
}

}

window Wi
{

.title "Nobel prize winners";

.width 300; .height 220;

tablefield Tf
{

.xauto 0; .yauto 0;

.datamodel DocCur;

.colcount 2; .rowcount 1;

.rowheader 1; .colheader 1;

.rowheight[0] 25;

.colwidth[0] 180; .colwidth[1] 60;

.content[1,1] "Year";

.content[1,2] "Winner";

.dataget[.field] .Winner;

.dataget[.userdata] .Year;

.dataindex[.userdata] [0,1];

:represent()
{

variable integer I;
if Attribute=.userdata then

for I := 1 to itemcount(Value) do
Value[I] := 1900 + (Value[I] % 100);

endfor
setvector(this, .content, Value,[2,1],

[1 + itemcount(Value),1]);
return;

endif
pass this:super();

}
}

on close { exit(); }
}

on start
{

Doc:load("nobelprizes.xml");
}

This dialog produces the following window:

A.06.03.b 137

138 ISA DialogManager

Figure 33: Table with XML data used as Data Model

6.6.2 Index Value dopt_cache_data of the Attribute dataoptions

Attribute Index Default Component Meaning

dopt_cache_data true Model This index value is only available for the
doccursor.

true
The data selected by the doccursor is
buffered for further accesses
(“caching”).

false
With each access, the doccursor
selects the data anew from the XML
Document.

6.7 Actions
In order to make manipulation functions of the Model component generally available for the Presenter
logic, the concept of actions is used. These are methods with parameters which are provided by the
Data Models. They can be invoked via the :calldata() method.

6.8 Tracing
The following trace codes have been introduced to reveal the synchronization processes between
Data Models and presentation objects (Views) and to detect possible application errors.

Trace
Code

Meaning

[CD] “Call Data” to track the call for synchronization between View and Model. Typically :get()
and :set() on the Model object as well as :represent() and :apply() on the View object
are traced.

[CE] “Data Changed Event” – Event that signals a change on the Data Model, typically
triggered by setting an attribute or calling the application function DM_DataChanged().

6.9 Constraints
The IDM rejects modifications of the data linking or of the synchronization control (attributes
.datamodel, .dataget, .dataset, .datamap, .dataindex, .dataoptions) while being within a redefinable
method :represent() or :retrieve() or within a call of a data function.

Likewise the IDM rejects changes to the attributes .visible or .mapped if these are executed during
synchronization of the View component and the IDM currently is in the state of converting visibility or
invisibility.

A.06.03.b 139

140 ISA DialogManager

7Multiscreen support underMotif
The IDM for Motif has programming support for multiple screens.

Meaning of multiscreen-support under X

This refers to an X server configuration with multiple screens (multiple screens either by one graphics
card with multiple frame buffers or by multiple graphics cards in the same display host). The screens
can differ in resolution as well as in color capabilities. On the other hand, they share input devices like
mouse and keyboard. In addition, their arrangement to each other can usually be defined in the X
server configuration (e.g. screen#1 is to the right of screen#0).

Even before, an IDM application could be displayed in a specific screen, e.g. via the X option -display
<host>:<display>.<screen>. What is new is that windows can appear in different screens
within an IDM application.

Support by the IDM

The IDM supports the application programmer in that he can query the available screens and their
characteristics (this is done via the setup object, see also the attributes .screencount, .screen, etc.).

In addition, the IDM allows the assignment of which window is to be displayed on which screen. This
is done via the .display attribute on the window. It must be set to a display resource, which is to be
defined by the user. The IDM then takes care of the necessary resource management for colors, curs-
ors and images.

Dynamic switching of the window to another screen can be done either via the .display attribute or the
display resource. For an example dialog, see also the documentation for the display resource.

Dialog boxes such as message boxes or the file requester are displayed in the same screen as the
parent specified in the querybox call. If no parent is specified, the dialog boxes are displayed in the
default screen.

Remarks

Unfortunately, the layout of the screens in relation to each other cannot be determined via X/Motif
and is therefore not accessible from the IDM.

The IDM's memory requirements are optimized for the standard single-screen application case.

Multiscreen and Non-Default Visuals: The IDM allows the specification of a visual ID via the envir-
onment variable IDM_VISUAL_ID in order to use a visual other than the default one (e.g. gray-
scale screen on a TrueColor display). In a multiscreen configuration, this specification only affects
the default screen, i.e. the windows in other screens are displayed in the default visual.

Support for the newly added attributes and resources is now available for the IDM Editor.

See also

setup, .screen, .real_screen, display, .display, .xdpi, .ydpi, .screen_width, .screen_width[integer],
.screen_height, .screen_height[integer], .pointer_width, .pointer_height, .color_type, .colorcount,
.screencount

Availability

Since IDM version A.05.01.c

This support is also available in the IDM 4 version from A.04.04.j.

A.06.03.b 141

142 ISA DialogManager

8Multi-monitor support under
Windows
With Windows it is now possible to query the setup object for the number of monitors (.screencount)
and the coordinates of the monitors (.screen_x[integer], .screen_y[integer], .screen_width[integer]
und .screen_height[integer]). The requested values are dynamic, because one can change the scal-
ing of a monitor or add or remove monitors at any time.

If several monitors are used, they are positioned in a virtual desktop. The coordinates of this virtual
desktop can be queried with .vscreen_x, .vscreen_y, .vscreen_width, .vscreen_height. The coordin-
ates of the workspace (without the taskbar) are rendered. The workspaces are included in the cal-
culation of the virtual desktop.

Figure 34: relation of .screen_*[] and .vscreen_* attributes

Attention:

If the magnification settings of the monitors differ, please note:

IDM for Windows 11

The values do not appear consistent. Based on the recommended use of .xauto = 1 and .yauto = 1
for windows, the position is converted with the system scaling factor, while the size is converted
with the monitor scaling factor. This allows a window to be set to a position and size that fills the
entire monitor.
The position and size of the virtual desktop are converted using the system scaling factor. The
monitor to which a window that spans several monitors is assigned can depend on the monitor on
which the window is currently located. For a defined behavior, coordinates should therefore only
be changed in the invisible state.

IDM for Windows 10

Microsoft Windows internally scales applications that are DPI-unaware. In this case, the different
scaling factors lead to misrepresentations. To avoid this, either all windows should be opened on
the primary monitor only, or all monitors should have the same scaling factor.

Remark for Windows 10 and 11 with several monitors:

In WINDOWS, after adding/removing a monitor or changing the display settings, you may encounter
the following problems:

No moving frame appears when moving a toolbar object. It can also happen that a rectangle
the size of the toolbar frame is displayed with an incorrect background on another monitor.

Undocked toolbar objects do not adjust to changes in DPI value. Both when moving to
another monitor or changing the magnification.

The problem is due to Windows, which on the one hand incorrectly converts the coordinates when
drawing to the desktop and on the other hand does not send important messages (WM_
DPICHANGED) to so-called tool windows and does not change the window DPI value.

After the screen saver was active or you logged in again (and after a reboot), the problem no
longer occurs.

See also

attributes .screencount, .screen_x[integer], .screen_y[integer], .screen_width[integer], .screen_
height[integer], .vscreen_x, .vscreen_y, .vscreen_width, .vscreen_height

Availability

Since IDM version A.06.03.a

A.06.03.b 143

144 ISA DialogManager

9 HighDPI Support
The resolution of modern screens is constantly growing. This means that the requirements for the
design and quality of the operating elements and interfaces are also changing. Problems are often
that applications appear much too small and text and graphics are displayed blurred or pixelated. The
resolution, DPI and scaling set in the system, as well as fonts and the size and quality of images, influ-
ence the appearance of an application. To ensure that existing applications are also displayed in
detail and sharpness on high-resolution screens, they must be prepared for HighDPI.

Figure 35: without HighDPI support

Figure 36: with HighDPI support

The IDM for MOTIF, QT and MICROSOFT WINDOWS as of version A.06.03.a (only the IDM FOR WINDOWS

11 on MICROSOFT WINDOWS) now provides the appropriate tools to support high-resolution screens
and future-proof applications.
In addition, working with multiple screens has been improved. IDM applications now respect the

system's DPI settings and scaling factors. As a result, previous problems such as pixelated, muddy,
or too-small applications or reduced font sizes at high resolutions and small screen sizes (the effects
can vary by system) no longer occur. The IDM now automatically adjusts geometry, layout, font sizes,
graphics and cursors to the appropriate resolution and DPI determined by the system.
The scaling factor is based on the system settings of the respective desktop environment.
However, the user is free to make other settings or intervene creatively through various new attrib-
utes, options and mechanisms.

9.1 Start options
-IDMscale <integer>

The startup option -IDMscale can be used to enable or disable scaling by the IDM. Under QT and
MOTIF, the value specifies the scaling in %.

Figure 37: left started normally (system scaling 100%), right started with 150% scaling

Note

This option should not be used under MICROSOFT WINDOWS. DPI awareness is a property of the
application and should be specified in a manifest file. For testing purposes, DPI awareness can be
turned on (value: 1) or off (value: 0).

Attention:

It is recommended to not use a scaling > 0 and < 100%, as this may impact the display and oper-
ation of objects.

-IDMtiledpi <integer>

Graphics are automatically scaled according to the set scaling factor. It is assumed here that the
images have been designed for a DPI value of 96. If the images of the application have been
designed for a higher resolution, this can be set via the start option -IDMtiledpi. The size of an image
is then converted to the currently valid DPI value based on this value and scaled accordingly.

Likewise, this setting can be made directly on the setup object with the .tiledpi attribute (see Enhance-
ment to the setup object).

A.06.03.b 145

146 ISA DialogManager

9.2 Layout resources
Until now, the available predefined resources in IDM were always WSI- or system-dependent and
always required complex adaptations when transferred to other systems. IDM A.06.03.a now offers
WSI-independent and HighDPI-compliant predefined layout resources for the first time. This includes
font (Zeichensatz), color (Farbe) and cursor resources, which are available on all systems in similar
form and meaning. This offers the enormous added value that dialogs which have been completely
converted to the new UI resources can now be transferred to other systems easily and without effort.
These resources can be identified by the naming scheme UI*_FONT, UI*_COLOR or UI*_CURSOR.

Example:

module Resc

font FontNormal "UI_FONT";
font FontBig "UI_FONT", 16;
font FontFixed "UI_FIXED_FONT";

cursor CurStop "UI_STOP_CURSOR";

!! Background color for group objects
color ColGrp "UI_BG_COLOR";
!! Background color for input objects
color ColInp "UI_INPUTBG_COLOR";

The UI_resource names can also be queried - like all other predefined resource names- at the setup
object via the attributes .colorname[integer], .fontname[integer], .cursorname[integer].

Cursor

The uniform Cursor resources have the naming scheme UI*_CURSOR and are defined as follows:

UI_CURSOR Default cursor usually arrow

UI_IBEAM_CURSOR Edittext insertion marker

UI_WAIT_CURSOR Busy indicator, "hourglass"

UI_CROSS_CURSOR Cross

UI_UP_CURSOR Up arrow

UI_SIZEDIAGF_CURSOR Sizing arrow from upper left to lower right

UI_SIZEDIAGB_CURSOR Sizing arrow from lower left to upper right

UI_SIZEVER_CURSOR Sizing arrow from top to bottom

UI_SIZEHOR_CURSOR Sizing arrow from left to right

UI_MOVE_CURSOR Moving arrow in all directions

UI_STOP_CURSOR Prohibition sign (crossed out circle)

UI_HAND_CURSOR Hand symbol (index finger used for pointing)

UI_HELP_CURSOR Arrow with question mark (for context help mode)

Fonts

The unified font resources have the naming scheme UI*_FONT and are defined as follows:

UI_FONT Font used by default for UI elements (Default or Dialog Font).

UI_FIXED_FONT Font with a fixed character width.

UI_MENU_FONT Font used for menus.

UI_TITLE_FONT Font used in the window title bar.

UI_SMALLTITLE_
FONT

Font used in a small/low window title bar.

UI_STATUSBAR_
FONT

Font used in the status bar.

UI_NULL_FONT Behavior as if no font setting was made (null).
The WSI uses the default system font provided for the UI element or a sys-
tem fallback font.

Color

The color resources have the naming scheme UI*_COLOR and are defined as follows:

UI_BG_
COLOR

Color used by default for general backgrounds of (mostly group) objects.
Used for object classes with attribute .bgc/.bgc[], e.g. window, groupbox, note-
page, statictext, pushbutton...

UI_FG_COLOR Color used by default for general foreground/text color of (mostly group) objects.
Used for object classes with attribute .fgc/.fgc [], e.g. window, groupbox, note-
page, statictext, pushbutton...

UI_INPUTBG_
COLOR

Color used by default for backgrounds of input/selection objects.
Use e.g. for edittext, lists, tables, poptext, treeview...(e.g. object classes with
attributes .bgc/.textbgc)

UI_INPUTFG_
COLOR

Color used by default for foregrounds of input/selection objects, such as edittext,
lists, tables, poptext, treeview
(e.g. object classes with attributes .fgc/.textfgc).

A.06.03.b 147

148 ISA DialogManager

UI_
BUTTONBG_
COLOR

Color used by default in the background of button-like objects, e.g. pushbutton or
image
(e.g. object classes with attribute .bgc/.imagebgc).

UI_
BUTTONFG_
COLOR

Color used by default when foregrounding button-type objects,
e.g. pushbutton or image (e.g. object classes with attribute .fgc/.imagefgc).

UI_BORDER_
COLOR

Color used by default as border (e.g. at .bordercolor).

UI_
ACTIVEBG_
COLOR

Color that is used by default as background color of the active element, e.g. for
lists, pop text, tables, possibly progressbar, markers etc.
Mostly inversion of the normal foreground and background colors of the widget
(e.g. object classes with attribute .bgc).

UI_
ACTIVEFG_
COLOR

Color that is used by default as foreground/text color of the active element, e.g.
for lists, poptext, tables, possibly progressbar, markers etc.
Mostly inversion of the normal foreground and background colors of the object
(e.g. object classes with attribute .fgc).

UI_TITLEBG_
COLOR

Color used by default as background color for title bars or borders of win-
dows/dialogs,
if supported (e.g. at attribute .titlebgc).

UI_TITLEFG_
COLOR

Color to be used by default as foreground/ text color for title bars or borders of
windows/dialogs,
if supported (e.g. at attribute .titlefgc).

UI_MENUBG_
COLOR

Color to be used by default as background color for menus,
if supported (e.g. at attribute .titlebgc).

UI_MENUFG_
COLOR

Color to be used by default as foreground/text color for menus,
if supported (e.g. at attribute .titlefgc).

UI_
HEADERBG_
COLOR

Color used by default as background color in table headers - if supported.

UI_
HEADERFG_
COLOR

Color used by default as foreground/text color for table headers – if supported.
Use with tablefield (e.g. at attribute .rowheadfgc, .cloheadfgc).

UI_NULL_
COLOR

Behavior as if no color (null) was set. WSI draws according to its default palette.

It may happen that not all UI*COLORS differ from each other. This is due to the fact that most colors
are "calculated" from a few basic colors from the desktops.

Notes Motif:

In addition to the UI*_COLOR colors, the system names for color resources have been com-
pleted. Newly added are:

INACTIVE_BACKGROUND

INACTIVE_FOREGROUND

INACTIVE_TOP_SHADOW

INACTIVE_BOTTOM_SHADOW

INACTIVE_SELECT

SECONDARY_BACKGROUND

SECONDARY_FOREGROUND

SECONDARY_TOP_SHADOW

SECONDARY_BOTTOM_SHADOW

SECONDARY_SELECT

Notes Windows:

The UI*_COLOR colors access the Windows system colors. It should be noted that with the intro-
duction of Visual Styles, the individual objects no longer use the system colors, but the colors
defined by the theme. Depending on the selected theme there can be strong discrepancies. There-
fore, if possible, no colors (or better the UI_NULL_COLOR) should be set under Windows.
Furthermore, it should be noted that with Windows 10 the color variety has been reduced. For
example, the colors UI_HEADERBG_COLOR, UI_HEADERFG_COLOR, UI_MENUBG_
COLOR, UI_MENUFG_COLOR, UI_TITLEBG_COLOR and UI_TITLEFG_COLOR are no longer
supported. This means that these colors are still available and usable for the user, but they are cur-
rently not used by any object by default.

Notes Qt:

The UI*_COLOR colors access the colors of the standard palette offered by Qt. The colors are
based on the ColorGroup Normal or Active. The colors of the standard palette are determined by
the currently set system style.

In addition to the UI*_COLOR colors, the predefined colors have been supplemented by further
ColorRoles offered by the Qt Toolkit. New additions (in all forms of the ColorGroups) are:

BRIGHTTEXT

ALTERNATEBASE

TOOLTIPBASE

TOOLTIPTEXT

LINK

LINKVISITED

PLACEHOLDERTEXT

A.06.03.b 149

150 ISA DialogManager

9.3 Enhancement to the tile resource
The existing scaling options at the Tile resource have been extended. It is now possible to specify a
.scalestyle that determines how a tile should be scaled. Thus, tiles can now be scaled according to the
following characteristics:

automatic

according to a specific factor

proportional

free in all directions

based on the DPI value and no scaling

Figure 38: the same picture with different values of the attribute .scalestyle at a system scaling of 150%

The following values are available for selection in the rule language:

Definition
on Tile

Dynamic
setting

Meaning

noscale scalestyle_
none

The pattern or image is not scaled. setup.tiledpi has no impact.

scale scalestyle_
any

The height and width of the pattern or image are fully enlarged to fit
the available area.

propscale scalestyle_
prop

Height and width of the pattern or image are enlarged to the available
area, while height and width proportions of the pattern or image are
maintained in any case. I.e. free spaces can be created above and
below or left and right.

numscale scalestyle_
num

The scaling of the pattern or image is done by a numerical scaling
divider. The scaling is done in quarter steps, i.e. 1.25-fold, 1.5-fold,
1.75-fold, 2-fold, 2.25-fold, 2.5-fold, and so on.
A downscaling is done down to a maximum of 0.25-fold.

dpi scalestyle_
dpi

The pattern or image is always scaled according to the set screen
scaling.

Not
provided

scalestyle_
auto

The pattern or image is scaled according to the set screen scaling. A
scaling compatible to the previous version takes place. Default
value

The scalestyle can be specified either directly with the tile definition or as a dynamic attribute.

Tile definition:

tileSpec ::= <tileBitmap> | "<file path>" | "<graphics resource>" { scale |
noscale | numscale | propscale | dpiscale} ;

Dynamic attribute:

Identifier Data Type

Rule Language .scalestyle enum

C AT_scalestyle DT_enum

COBOL AT-scalestyle DT-enum

Classification object-specific attribute

Objects tile

Access get, set Default value scalestyle_auto

changed event no Inheritance –

Example:

dialog D
tile Ti_Rect_Pattern 5,5,
 "#####",
 "# #",
 "# #",
 "# #",
 "#####" noscale; // corresponds to scalestyle_none
tile Ti_BG „bg.gif“ scale; // corresponds to scalestyle_any
tile Ti_Logo „logo.gif“; // default: scalestyle_auto
...
on dialog start {
 if setup.scale > 100 then
 Ti_Logo.scalestyle := scalestyle_prop; // dynamic
endif
}

See also chapter „tile (Muster)“ in manual „Ressourcenreferenz“.

9.4 Enhancement to the font resource
The font resource has a new property .propscale. This controls whether the horizontal and vertical ras-
ter should be set proportionally to the maximum value, which is determined by calculating the value of
xraster and yraster of the font raster.

A.06.03.b 151

152 ISA DialogManager

The property can be specified either directly whith the font definition or as a dynamic attribute.

The divisor is used to refine the grid.

Font definition:

fontspec ::=
...
...
{ x:= * <xscale> % + <xoffset> | / <xdivider>} { y:= * <yscale> %
+ <yoffset> | / <ydivider>}
{ propscale }
{ r:= "<RefString >" } ;

Dynamic attribute:

Identifier Data Type

Rule Language .propscale boolean

C AT_propscale DT_boolean

COBOL AT-propscale DT-boolean

Classification object-specific attribute

Objects font

Access get, set Default value false

changed event no Inheritance –

See also chapter „font (Zeichensatz)“ in manual „Ressourcenreferenz“.

9.5 Enhancement to the setup object

Identifier Data Type

Rule Language .tiledpi integer

C AT_tiledpi DT_integer

COBOL AT-tiledpi DT-integer

Classification object-specific attribute

Objects setup

Access get, set Default value –

changed event no Inheritance –

../../../../../../Content/rr/font.htm

Identifier Data Type

Rule Language .tiledpi integer

C AT_tiledpi DT_integer

COBOL AT-tiledpi DT-integer

Classification object-specific attribute

Objects setup

Access get, set Default value 96

changed event no Inheritance –

This attribute determines for which resolution the images/patterns were designed. The size of an
image/pattern is converted to the currently valid DPI value based on this value.

See also chapter „setup“ in manual „Objektreferenz“.

9.6 Enhancement to the image object
For better alignment and extended layout options, the following attributes on the Image object can
now be used to control margins or spacing:

Identifier Data Type

Rule Language .xmargin integer

C AT_xmargin DT_integer

COBOL AT-ymargin DT-integer

Classification object-specific attribute

Objects image

Access get, set Default value 0

changed event no Inheritance ja

This attribute determines the horizontal distance between the border and the display area.

Identifier Data Type

Rule Language .ymargin integer

C AT_ymargin DT_integer

A.06.03.b 153

../../../../../../Content/or/setup.htm

154 ISA DialogManager

Identifier Data Type

COBOL AT-ymargin DT-integer

Classification object-specific attribute

Objects image

Access get, set Default value 0

changed event no Inheritance ja

This attribute determines the vertical distance between the border and the display area.

See also chapter „image“ in manual „Objektreferenz“.

9.7 Support of HiDPI image variants
To achieve an optimal design of the interface regarding images and application icons when using the
higher resolution, it is recommended to use images adapted to the scaling factor.
Until now, there were only limited options for the WINDOWS and QT window systems. Up to now,
WINDOWS has offered the ICON/BITMAP mechanism and QT the Icon Resource mechanism for sup-
port in this regard. Both mechanisms allow multiple resolution levels to be maintained, but are limited
in terms of image type or usage. Such a mechanism does not exist for MOTIF.
The IDM A.06.03.A therefore provides an option for loading multiple resolution levels that can be
applied equally to WINDOWS, QT and MOTIF and is thus also system-independent.
The tile management of the IDM was only able to load one image file (e.g.: tile Ti “smiley.gif”) and did
not keep several resolution factors of these (except for the exceptions mentioned above). If there is a
scaling of the application, the new loading mechanism for tile files now tries to load the image data for
the corresponding scaling factor first. For this purpose, the extension @nx is added to the file name
and in front of the suffix, similar to the QT mechanism. Here n stands for the scaling factor between 2
and 9. The numbre 2 corresponds to a scaling of 150%-249%, 3 of 250%-349%, and so on.
Reasonably the size changes of the variant images should correspond to the scaling factor, whereby
a check by the IDM does not take place. So, for example, original image “smiley.gif” (32x32 pixels),
smiley@2x.gif (64x64 pixels), smiley@3x.gif (96x96 pixels), smiley@4x.gif (128x128 pixels).

Example:

tile Ti „smiley.gif“; // at a scaling of 200% the IDM
 // automatically loads the image
 // smiley@2x.gif, if present (Windows, Motif, Qt)

 // at a scaling of 300% the IDM
 // automatically loads the image
 // smiley@3x.gif, if present (Windows, Motif, Qt)

tile Ti2 „smiley.ico“ // only Windows! ICON mechanism of Windows
 // takes the best image for the resolution level

../../../../../../Content/or/image.htm

 // from the .ico file

tile Ti3 „:/smiley“ // only Qt! The resource mechanism of Qt takes
 // the best image for the resolution level
 // from the resource file with the given alias
 //

9.8 Installation notes
To prepare an application for different resolutions, it may be necessary to keep the images for the dif-
ferent scaling levels. If you want to use this feature and not use the ICON mechanism of WINDOWS or
the resource mechanism of QT, you should take care to deliver the image files according to the @
naming (see chapter “Support of HiDPI image variants”) with your application or include them in the
installation packages if necessary.

9.9 Geometry and coordinates
Coordinates and dimensions are transformed by the IDM to match the scale factor of the system to
ensure a representation consistent with the system settings.

The geometry units are set in IDM pixel values or raster as before.

The IDM pixel values are internally extrapolated and converted into real pixel values according to
the scaling factor. This scales the application as a whole and maintains ratios and proportions of
objects to and among each other.

This conversion is done in both directions. When querying the size and position of objects as well as
during event processing, the real pixel values from the IDM are also cleaned up and returned in IDM
pixel values. The scaling factor is then calculated out again. This applies to all pixel-oriented geo-
metry attributes.

Raster values are either linked to the (HighDPI-capable) character set used or are also set in IDM
pixel values and then scaled up. The raster units can also be determined to IDM pixel values based
on the underlying font.

9.10 High resolution support under Motif
The Motif toolkit itself does not contain any special technology to support high resolutions, but if the X
display used has the Xrender extension implemented and there is support for XFT fonts with the cor-
responding fonts, IDM applications for Motif can be run on HighDPI screens respecting the scaling
factor of the desktop.

What can be done to check whether support is available on the X-Display/desktop used? For this pur-
pose, the server information of the X-Display can be queried via the -IDMserver option:

A.06.03.b 155

156 ISA DialogManager

$ idm -IDMserver
ServerVendor The X.Org Foundation
VendorRelease 12013000
Motif at compiletime @(#)Motif Version 2.3.8
Motif at runtime 2003
XRenderVersion 11 (active)
XFT Support yes (active)
Scaling 200% (active)
Screen dpi 96 (tile dpi: 96, scaled dpi: 192)

The version of the Xrender extension and its usability (active) is listed as well as the presence of XFT
and its usability. The "Scaling" line shows the scaling factor set by the user in the desktop/ display set-
tings, or the scaling factor overwritten by the user.

The dpi information provided by X is mostly the default value of 96dpi and thus does not necessarily
reflect the real DPI value available on the monitor. The optionally output "tile dpi" and "scaled dpi" are
used to control the DPI values used for the images and controls.

Dynamic scaling change is not provided for Motif applications. Likewise, a conversion of the scaling
cannot be detected in the desktop.

XFT / Font Handling / Motif Font Support

For a GUI application, the basis for different desktop scaling is provided by the fonts used. In contrast
to the fonts that could previously be used under Motif/X, which were mostly specified via an XLFD (X
Logical Font Descriptor), XFT fonts are also scaled according to the defined scaling of the desktop.

Until now, the fonts that could be used for IDM FOR MOTIF had not automatically adapted to different
desktop scaling.

XFT support is available in the IDM only on Linux platforms. Since most desktops on Linux platforms
do not set the default font for Motif widgets properly, the IDM uses Liberation Sans as the default font
and Liberation Mono as the fixed-width font if no font is set in the dialog. This causes texts in IDM dia-
logs to scale even without a font set.
By explicitly disabling scaling (via the -IDMscale=0 startup option), the old default fonts can be pre-
served.

To set an XFT font, only the font name and any additional modifiers are required, as with previous font
definitions in the IDM. If the font is available as an XFT font on the system, it will be loaded. The list of
XFT fonts available on the system can be viewed in the IDM EDITOR.

Under CDE-compliant platforms such as AIX and HP-UX, the IDM uses “-dt-interface_system-
medium-r-normal-*” as the default font and “-dt-interface_user-medium-r-normal-*” as the fixed-width
font if no font has been set. Depending on the scaling factor, different sizes of the font are used.
Between 1%...75% xs (extra small) is used, between 75%-150%m (medium) is used, between
150%-250% l (large) is used and from 250% xxl (extra extra large) is used. This allows scalability for
such applications even if no XFT fonts are available.

9.11 High resolution IDM support for Windows 11
There is now one IDM for Windows 11 and one for Windows 10. The IDM FOR WINDOWS 11 sup-
ports DPI awareness and High DPI.

The IDM FOR WINDOWS 11 supports high resolutions of the “PerMonitor V2” model. Since the support
of high resolutions is a feature of the application, it must be marked accordingly in the application
manifest. Corresponding settings can be found in the IDM examples. The IDM then recognizes this
independently and converts the coordinates accordingly to the configured scaling factor. In other
words, the pixel coordinates of the IDM are virtual pixels that are converted according to the defined
scaling factor.

The manifest files of the IDM examples mark the built applications as “High DPI-Aware”. To build an
application that is not “DPI-Aware”, the entire <asmv3:application> block must be removed from
the manifest file.

Notes IDM for Windows 11

Note for all functions that process Microsoft Windows messages: If the application supports high
resolutions, then all coordinates received via Microsoft Windows messages are the real high-res-
olution coordinates. The IDM, on the other hand, uses coordinates adjusted for the scaling factor.
It must therefore be taken into account that in the case of support for high resolutions, the IDM
coordinates are generally no longer identical to the Microsoft Windows coordinates. This affects,
for example, input handler, canvas, monitor and subclassing functions, as well as the USW imple-
mentations.

Notes IDM for Windows 10 and 11:

The support of high resolutions requires a different processing of Windows messages. As a result,
this means that it is no longer possible to adjust windows to underlying constraints, such as grid
coordinates, while moving or zooming. Only after releasing the mouse button the window is adjus-
ted to the next grid coordinate.

Internally defined cursors are now enlarged or reduced to the size required by the system in order
to automatically adjust them to the defined scaling factor. This ensures that the cursors are dis-
played correctly if the application supports high resolutions. Previously, the cursors were either
filled with transparent areas or simply cut off if the size did not fit.

Images (tile resource) are automatically enlarged according to the defined scaling factor. It is
assumed that the images are designed for a DPI value of 96. If the images of the application are
designed for a higher resolution, then this can be set in the setup object with the attribute .tiledpi.
Automatic adjustment applies only to the tile resource. Images specified directly via filename at
the .picture attribute of the image object are not automatically adjusted.

The dialog or message font defined in the system parameters is now used as the default font,
since this adapts to the resolution. This can lead to changes in the display of objects that do not
have a font set. The mentioned font can be configured via Windows system settings.

The old system fonts are not DPI-Aware. Only the new UI*_FONT fonts adapt to the set resolution.
The old Windows fonts “ANSI_FIXED_FONT”, “ANSI_VAR_FONT”, “DEVICE_DEFAULT_FONT”

A.06.03.b 157

158 ISA DialogManager

and “SYSTEM_FONT” cannot be adapted to different resolutions, so their use is discouraged. The
use of fonts without size specification is not recommended, because in such a case a font-specific
default size is chosen by Windows font mapper, which does not adapt to different resolutions.

9.12 High resolution support under Qt
To support high resolutions, the IDM enables Qt-side HighDpi scaling as well as the possible ren-
dering of images beyond their actual requested size. I.e. the scaling is done based on the pixel dens-
ity of the monitor.

Among Linux desktop environments, the support for HighDPI is unfortunately very different and
advanced. Since the values for logical and actual pixel density as well as scaling factors are obtained
from the Qt framework, less popular desktop environments may provide insufficient values here.

Notes for HighDPI preferences

Qt still offers some environment variables that can be used to control the display at high res-
olutions. When using such environment variables, however, you should be aware that this over-
rides the behavior of the IDM, which can lead to unwanted display effects.

Remarks for tile scaling

Objects are displayed by default with the values specified by the desktop style by the WSI/Toolkit.
It can therefore happen in certain situations that the desired settings regarding the size and scal-
ing of tiles are not implemented. This applies to the use of tiles for objects with tabs such as the
notebook or notepages as well as menus with menuitems. Although the IDM sets the desired dis-
play options, the final display is subject to the display policy of the respective DrawingEngine of
the set UI style. This means that the display may differ from the set options depending on the style
or options may be ignored completely.

9.13 Enhancements/ changes to the IDMED
Arbitrary selection of the font for the user interfaces or rule code is no longer possible. Instead, the
font size can be selected between Small - Normal - Large - Extra Large. Of course, this has an influ-
ence on the window size.

Under Motif, XFT fonts are also listed in the fonts setting dialog. In addition, the list of selectable fonts
can be reduced to UI fonts, X fonts, and XFT fonts for clarity.

The IDMED, TracefileAnalyzer as well as the debugger now use UI resources.

9.14 High-resolution support for USW programming
The DM_GetToolkitDataEx function has been improved to support HighDPI. The Toolkit datena-S
strukcture DM_ToolkitDataArgs has been extended for this purpose and now provides detailed inform-
ation about DPI, scale factor and image. These can be requested via the AT_DPI and AT_XWidget
attributes.

Note Motif

The USW programmer must convert the coordinates between the IDM (this concerns attributes as
well as events) and the Motif values/structures/functions (X.../ Xt.../ Xm...). The data required for a con-
version can be requested via function DM_GetToolkitDataEx using AT_DPI and the DM_
ToolkitDataArgs structure (tile.scale.factor). Depending on the image type, scaling may also be
required.

Note for Windows 11

The IDM for Windows 11 supports high resolutions. If an application is released for high res-
olutions, then the USW objects it uses must also support high resolutions. This means that the
USW objects from Windows will have real coordinates (scaled up by the scaling factor), while the
IDM will work with virtual coordinates (not scaled up). Practically, not much will change, since the
IDM performs the coordinate calculations for the USW object. But it should be taken into account
that the control call for “UC_C_PrefSize” expects real coordinates, since these are normally cal-
culated from toolkit values. If fixed numbers are used here as in the ucarrow example, then these
must be corrected by the current DPI value (see ucarrow example).

If the application was started as DPI-Aware, the task “UC_I_clientarea” of the function UC_
Inquire now also expects the high-resolution values.

Extensions to the C Interface for DM_GetToolkitDataEx and DM_GetToolkitDataEx()

In order to support high definition, the C Interface functions "DM_GetToolkitData()", "DM_
GetToolkitDataEx()" and "DM_ToolkitDataArgs" (for toolkit data structure) have the following:

Attribute AT_DPI

Renders the DPI value of the system or the displayed object. The function "DM_GetToolkitDataEx()"
must be selected with a pointer on a "DM_ToolkitDataArgs" toolkitdata structure. Further DPI related
information is rendered in this structure. It is extended with the data field "dpi" and the sub data struc-
ture "scale".

Attribute "AT_Tile" resp. "AT_XTile"

This attribute already exists for the "tile" ressource. Now the function "DM_GetToolkitDataEx()" can
be selected by a pointer on the toolkit data structure "DM_ToolkitDataArgs" that has been extended
with the sub data structure "tile". This structure contains, among other values, the DPI value for which
the "tile" ressource has been developed.

Attribute "AT_IsNull"

Renders a value unequal "0" if the specified "color" or "font" ressource has previously been defined to
"UI_NULL_FONT" resp. "UI_NULL_COLOR".

See also chapter „Toolkit datena-S strukcture DM_ToolkitDataArgs“ in manual „C-Schnittstelle -
Grundlagen“.

See also chapter „DM_GetToolkitDataEx“ in manual „C-Schnittstelle - Funktionen“.

A.06.03.b 159

160 ISA DialogManager

See also chapter „DM_GetToolkitData“ in manual „C-Schnittstelle - Funktionen“.

4

4K 144

A

accelerator 11

administration

customers and orders 39

after 22, 31

anyvalue 11

application 10, 95

AT-propscale 152

AT-scalestyle 151

AT-tiledpi 152-153

AT-xmargin 153

AT-ymargin 154

AT_propscale 152

AT_scalestyle 151

AT_tiledpi 152-153

AT_xmargin 153

AT_ymargin 153

attribute 11, 46

user-defined 36

B

before 22

binary file 83

bindir 90

boolean 11

Button 77

C

C-header-files 88

caching

doccursor 130, 136, 138

Calculation 95

Call Data (CD) 139

:calldata() 138

canvas 10

CANVAS 14

cardinality

Data Model attribute 135

CD (Call Data) 139

CE (Data Changed Event) 139

checkbox 10

CHECKBOX 14

children 77

class 11

-cleancompile 89

color 11, 92

color.if 85

color.mod 84, 86

comments 84

-compile 89

Create 40

cursor 11

customer information 62

customer structure 39

customer system 37

customer window 58, 63

Index

A.06.03.b 161

D

Data Changed event (CE) 139

data function 129

Data Model attribute

cardinality 135

data type 135

data structures

initialized 50

data type

Data Model attribute 135

datachanged 118, 130

dataget 118

dataindex 123

datamap 123

datamodel 118

Datamodel 114

default linkages 121

doccursor 135

example 116, 119, 124, 127, 136

listbox 127

tablefield 122

tracing 138

XML 135

dataoptions 129, 138

dataset 118

datatype 11

default 13

DM internal 13

default linkages (Datamodel) 121

default window

rules for 44

delete 33

destroy 33

destroying objects 33

detail window 25

Detail1-3 41

dialog 75

dialog hierarchy 73

dialog parts

application-specific 71

project-specific 71

dialog script 9

dialog structure 38, 71

Display 140, 142

DM_ControlEx 82

DMFSearchPath 82

doccursor

caching 130, 136, 138

Datamodel 135

dopt_apply_on_event 130

dopt_apply_on_unmap 130

dopt_cache_data 130, 136, 138

dopt_propagate_on_changed 130

dopt_propagate_on_start 130

dopt_represent_on_init 129

dopt_represent_on_map 129

DPI 144

E

edittext 10, 46

EDITTEXT 14

enum 11

162 ISA DialogManager

event 11

datachanged 118

example

Datamodel 116, 119, 124, 127, 136

exit 26

explicit load 91

export 75, 77

extensions at the objects 43

F

finish 75

font 11

format 11

function 11, 70

G

global variable 11

groupbox 10

GROUPBOX 14

H

help 22, 75-76

hierarchical model 16

HighDPI 144

I

identifier 3

IDM_SEARCHPATH 82

IDMLIB 85

IDMsearchpath 82

ifdir 90

image 9, 49

IMAGE 14

implicit load 91

import 74, 95

comparison with use 83

use 78

index 12

individual structures 37-38

inheritance 20

attribute 13

inheritance priority 20

Init 40

instance 9, 13, 19

integer 12

interface file 83

invoice window 68

invoices 62

item number 16

K

key 22, 75-76

L

layout attributes 20

legibility 9

List 41

listbox 10

Datamodel 127

load 91

load on use 91

M

menubox 10

A.06.03.b 163

MENUBOX 14

menuitem 10

MENUITEM 15

MENUSEP 15

menuseparator 10

messagebox 10

MESSAGEBOX 15

method 12, 33, 40

method object 49

method structure 40

model 9, 13, 15, 37

Model 114

Model-View-Presenter 114

model hierarchy 19

modularization 70

module 9, 74, 76-77

definition 75

module structure 112

modulX.if 95

Monitor 140, 142

Multi-monitor 140, 142

Multimonitor 142

Multiscreen 140

MVP 114

MyServer 95

N

name

data type 11

module 9

object 12

name conventions 9

name scheme 9

naming 9

normal 22

notebook 10

NOTEBOOK 15

notepage 10

NOTEPAGE 15

null 31

null ID 31

O

object 9, 12

object-oriented programming 36

object extensions 43

object name 38

object structure 41

on 78

order information 66

order structure 38

order window 63

P

package path 80

pointer 12

poptext 10

POPTEXT 15

Presenter 114

logic 118

production order window 68

production window 69

program start 50

project structure 113

164 ISA DialogManager

prototype 101

pushbutton 10, 50, 53

selectable 55

PUSHBUTTON 14-15

PushMe 77

R

radiobutton 10

RADIOBUTTON 15

real_sensitive 21

real_visible 21

-recompile 89

record 10

rectangle 10

RECTANGLE 15

resolution 144

resources 71

Rlist 41, 54

rule 11

rules 37

runtime behavior of dialogs 70

S

scaling 144

scheme 9

Screen 140, 142

scrollbar 10

SCROLLBAR 15

search path 81

setting 82

.searchpath 82

searchsymbol IDMLIB 85

selection pattern 135

sensitive 21

start 75

starting window 25, 51

statictext 10

STATICTEXT 15

statusbar 10

STATUSBAR 15

stop 93

string 12

structures

defining rules 39

T

tablefield 10

Datamodel 122

TABLEFIELD 15

text 11

tile 11

timer 10

TIMER 15

Tlist 41

tracing

Datamodel 138

translation

into DM structures 37

tristatebutton 10

U

unuse (method) 93

use 74-75, 78, 87, 110

comparison with import 83

A.06.03.b 165

syntax 80

USE 109

use (method) 93

USE operator 109-110

Use Path 78, 81

syntax 80

user-defined attribute 11, 31

user-defined attributes 13

userdata 31

V

View 114

visible 21

W

window 10

visible/invisible 44

WINDOW 14-15

window systems 37

writebin 88

X

XML

Datamodel 135

166 ISA DialogManager

	Notation Conventions
	Table of Contents
	1 Conventions for Names
	1.1 Purpose of the Naming
	1.2 Abbreviations for Individual Object Classes
	1.3 Abbreviations for Data Types
	1.4 Examples for Naming

	2 Use of Models
	2.1 Object Types
	2.1.1 Default Objects
	2.1.2 Models
	2.1.3 Instance

	2.2 Inheritance of Attributes
	2.3 Specific Features Regarding the Inheritance of Attributes
	2.4 Exceptions when Inheriting Attributes
	2.5 Effects on the Rule Processing

	3 User Data and User-defined Attributes
	3.1 Realization of Windows
	3.2 The MPbOkCancel Model
	3.3 Assigning Detail Windows to a Line
	3.4 Deleting a Line
	3.5 Additional Rules

	4 Object-oriented Programming
	4.1 Description of the Systems to be Developed
	4.2 Approach of Realization
	4.3 Implementation in the Dialog Script
	4.3.1 Naming
	4.3.2 Data Structures
	4.3.2.1 Structure for Orders
	4.3.2.2 Customer Structure
	4.3.2.3 Structure for Saving Elements
	4.3.2.4 Structure for Depositing Methods
	4.3.2.5 Object Structure
	4.3.2.6 Order Object
	4.3.2.7 Customer Object
	4.3.2.8 Superordinate Structure

	4.3.3 Extension of Existing Objects
	4.3.3.1 Extensions at window Object
	4.3.3.2 Extensions at the Object edittext
	4.3.3.3 Extensions at the Object image
	4.3.3.4 Extensions at the Object pushbutton

	4.3.4 Definitions for Individual Windows
	4.3.4.1 Actions on Starting and Ending a Program
	4.3.4.2 The Starting Window
	4.3.4.3 The Overview Window
	4.3.4.4 The Customer Window
	4.3.4.5 The Order Window
	4.3.4.6 The Invoice Window
	4.3.4.7 The Production Order Window

	5 Modularization
	5.1 Conversion of Modularization
	5.2 Language Description
	5.2.1 Keywords
	5.2.2 The Module
	5.2.2.1 Events of the Object module
	5.2.2.2 Children of the Object module
	5.2.2.3 Attributes of the Object module

	5.2.3 Export of Objects

	5.3 Import with use
	5.3.1 The Alternative Import Mechanism
	5.3.1.1 Special Features
	5.3.1.2 Upper and Lower Case in File Names
	5.3.1.3 Recommendations

	5.3.2 Language Specification and Use Path
	5.3.3 Use Path, File Names and Name Restrictions
	5.3.4 Search Path for Interface, Module, Dialog, and Binary Files

	5.4 Comparison Between import and use
	5.5 Interface and Binary Files when Using import
	5.5.1 From the Module to the Interface
	5.5.2 From the Interface to the Module
	5.5.3 Import Modules in Modules
	5.5.4 Use of the Object – use
	5.5.5 Binary Files

	5.6 Compiling Interface and Binary Files for Imports with use
	5.7 Dynamic Module Administration
	5.7.1 When Using import
	5.7.1.1 Loading Process
	5.7.1.2 Unloading Process

	5.7.2 When Using use

	5.8 Object Application
	5.8.1 Application assignment of module functions

	5.9 Application Examples for the Modularization
	5.9.1 Resource Basis
	5.9.2 Model Basis
	5.9.3 Exchangeable Parts of an Application
	5.9.4 Dividable Applications
	5.9.5 Prototyping & Testing

	5.10 Example
	5.10.1 The Default Module
	5.10.2 The Module for Pushbutton Models
	5.10.3 Further Modules
	5.10.4 Dialog LoadExample
	5.10.5 Example for USE Operator

	5.11 Structure of a Development Environment

	6 Datamodel
	6.1 Introduction
	6.2 Linkage Between Model and View
	6.3 Sequence and Value Aggregation
	6.4 Synchronization Between Model and View
	6.5 Conversion and Conversion Methods
	6.6 Use of XML with the Datamodel
	6.6.1 Example
	6.6.2 Index Value dopt_cache_data of the Attribute dataoptions

	6.7 Actions
	6.8 Tracing
	6.9 Constraints

	7 Multiscreen support under Motif
	8 Multi-monitor support under Windows
	9 HighDPI Support
	9.1 Start options
	9.2 Layout resources
	9.3 Enhancement to the tile resource
	9.4 Enhancement to the font resource
	9.5 Enhancement to the setup object
	9.6 Enhancement to the image object
	9.7 Support of HiDPI image variants
	9.8 Installation notes
	9.9 Geometry and coordinates
	9.10 High resolution support under Motif
	9.11 High resolution IDM support for Windows 11
	9.12 High resolution support under Qt
	9.13 Enhancements/ changes to the IDMED
	9.14 High-resolution support for USW programming

	Index

