
RESOURCE REFERENCE

A.06.03.b

In this manual all resources of the ISA Dialog Manager are
explained. Resources are objects like cursors, colors, texts
and fonts, which are used to define certain properties con-
cerning the appearance or behavior of IDM objects.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 Introduction 7

2 Layout Resources 9

2.1 accelerator and Mnemonic 11
2.1.1 accelerator 11

2.1.1.1 Menus and accelerators under Microsoft Windows 15
2.1.2 Mnemonic 16

2.2 color 18
2.2.1 Predefined Colors 21

2.2.1.1 Independent UI-colors 21
2.2.1.2 Motif (X-Windows) 22
2.2.1.3 Microsoft Windows 24
2.2.1.4 Qt 25

2.2.2 Dynamically changeable attributes 28
2.3 cursor 29

2.3.1 Bitmap-Cursor 29
2.3.2 Predefined Cursor 31

2.3.2.1 Independent UI-Cursor 31
2.3.2.2 Motif 32
2.3.2.3 Qt 34
2.3.2.4 Microsoft Windows 35

2.4 display 36
2.4.1 Example 36

2.5 font 39
2.5.1 Calculating the Grid Size from a Reference Font 40
2.5.2 Predefined UI-Fonts 41
2.5.3 Font Definition 42
2.5.4 Font Definition for Microsoft Windows 42
2.5.5 Font Definition for Qt 43
2.5.6 Dynamically changeable attributes 44

2.6 format 47
2.7 text 53

A.06.03.b 5

2.7.1 Note on the use of symbol fonts under Microsoft Windows 55
2.8 tile (pattern) 57

2.8.1 Internal pattern (Bitmap) 57
2.8.2 External pattern 58
2.8.3 Scaling 60
2.8.4 Dynamically Changeable Attributess 60
2.8.5 SVG Support 61

2.8.5.1 Qt 61
2.8.5.2 Windows 61

3 Programming Resources 64

3.1 message 64
3.2 source 65
3.3 target 67

Index 69

6 ISA DialogManager

1 Introduction
In this manual you will find a summary of the definition of the Dialog Manager

layout resources,

programming resources,

Every object to be accessed in the Dialog Manager must have a valid identifier. In contrast to objects,
resources (with few exceptions) can be accessed only if they have a name. This name has to be
unambiguous in the module or dialog.

Resources are objects which are assigned to other objects as attribute values or which are necessary
to program a dialog run. These resources are defined with a logic name and may have different phys-
ical properties.

The following resources are available for the dialog designer:

Layout resources

Accelerator
Enables keyboard access to objects.

Color
The object appearance can be defined with different colors.

Cursor
Different cursors indicate certain dialog states to the user, e.g. waiting states.

Display
With display resources windows can be mapped to different screens in multiscreen systems.
Multiscreen support is available in the IDM for Motif only.

Font
Different fonts may be assigned to individual objects.

Format
To be able to format strings in editable texts and tablefields, you can define format resources.

Text
Different languages can be defined with text resources.

Tile
Tiles can be defined by means of this resource.

Programming resources

Message
With this resource messages can be defined that can be sent to objects as external events.

Source

A.06.03.b 7

8 ISA DialogManager

This resource is used to mark an object as being moveable per Drag&Drop. This resource
defines the action (cut, copy) with which the movement is triggered.

Target
This resource is used to mark an object as being the target of a Drag&Drop operation.

2 Layout Resources
The layout resources are used to hide operating-system and graphics-system details from the user.
This means that every resource gets a DM-internal identifier from the dialog designer. The dialog
designer then works with this identifier.

Layout resources are:

accelerator

color

cursor

display

font

format

text

tile

The general formalism for the resource definition is as follows:

Resource Definition

{export | reexport} <resource class> <Identifier> <resource description>;

Note

The keyword export means that the corresponding object can even be referenced outside the module
where it has been defined. export is only allowed, if the object or the resource has been defined
within a module.

See Also

Chapter “Modularization” in manual “Programming Techniques”

The definition above allows one single value to be assigned to a resource.

In order to define portable applications for most varying platforms (e.g. as far as different keyboards,
screens, languages and window systems are concerned), there is a second method to define several
variants for the value of the highly platform-specific resources color, cursor, font and tile.

Since two options are available in the definition of a dialog, a high degree of flexibility is achieved. The
simple cases can be covered by the method described above, complex tasks will be solved by the
method described in the following.

A.06.03.b 9

10 ISA DialogManager

Note

The programming resources function and variable do not depend on the platform the dialog is
executed on. Variant notations are therefore not supported for these resources.

Keyword:

<resource class>

In addition to the above described specification format (e.g. specification of colors using RGB values,
or specification of fonts using the logical font format), there is another specification format that allows
variants for the resources accelerator, color, cursor, font, text and tile.

The non-variant syntax of the resource definition can be written in the variant notation using the same
syntactical elements, as shown in the following definitions.

Non-variant Definition

<resource-class> <resource-label> <resource-value>;

Variant Definition

<resource-class> <resource-label>
{
 0: <resource-value>;
 <cardinal>: <resource-value>;

[<cardinal>: <resource-value>;]
}

The DM stores a variant notation with only one variant 0 as non-variant resource, therefore such a
notation has also to be defined as non-variant notation.

The variant 0 has to be defined for all variant resources except for text, where it is not necessary.

The following sections will specify first the non-variant description and then the variant description of
each resource.

2.1 accelerator and Mnemonic
Accelerators and Mnemonics enable practiced users to work quickly and efficiently with an applic-
ation. Accelerators and mnemonics are used primarily in the menu system. The DM supports accel-
erators and mnemonics for all selectable objects. Their usability, however, depends above all on the
used window system.

If accelerators and mnemonics are used, the marginal conditions multilinguality and use of different
keyboards have to be considered, because alphanumeric characters are language-dependent and
function and special keys are keyboard-dependent. There is no reliable subset of function keys and
special keys on keyboards.

Remarks

The Dialog Manager application and mnemonics do not distinguish between capital and small let-
ters. This is why it makes no difference whether you type “a” or “A”.

Mnemonics, similar to the accelerators, trigger the object immediately.

If a mnemonic or accelerator is defined for a non-selectable statictext, the selection of the cor-
responding mnemonic or accelerator will put the focus on the object following the statictext
(provided that this object is visible and selectable).

2.1.1 accelerator
An accelerator is defined as a key or a key combination linked to a dialog object. By pressing an accel-
erator key or

alphanumeric keys, which are language-dependent, but may also be keyboard-dependent,

alphanumeric keys which are not language-dependent, but may be keyboard-dependent, the dia-
log object linked to this accelerator is selected and the action linked to the dialog object is
executed.

To provide an object with an accelerator, you first have to define a resource accelerator. This
resource accelerator consists of the keyword accelerator, an identifier, an opening brace, of one or
several key specifications, and the closing brace. The key specification is preceded by a number and
a colon. This number stands for the keyboard type. The relevant key specification is selected by set-
ting the keyboard type.

By using the key combination the dialog object which is linked to this accelerator will be selected and
the action specific to the object will be executed.

Definition

{ export | reexport } accelerator <Identifier> <acceleratorSpec> |
<variantDef>

acceleratorSpec ::=
<key definition> { , "<display name>" | <text resource> } ;

A.06.03.b 11

12 ISA DialogManager

key definition ::=
{ <modifier> + } { <modifier> + } { <modifier> + }
& | '<alphanumeric key>' | <function key> | <special key>

modifier ::= alt | cntrl | shift

function key ::= F1 | F2 | … | F98 | F99

variantDef ::=
{

0 : <acceleratorSpec>
[<number> : <acceleratorSpec>]

}

In some dialog objects, the key combination for an accelerator is displayed on the right of the text
(depends on the window system).

The optional string or text resource after the actual definition of the button can be used to specify the
text that is to appear as accelerator text in the object. This text will then be displayed accordingly in
menu items.

In contrast to mnemonics, accelerators do not have a visual feedback. The attribute .real_visible has
to be true, but the object does not have to be in the visible area. Only dialog objects with accelerators
in the active window can be selected. The accelerators of all dialog objects in a window have to be
clearly defined. If an accelerator is used more than once in a window, it cannot be predicted which
accelerator will actually be activated.

Accelerators are language-dependent as well as keyboard-dependent, and are thus treated as nor-
mal resources (e.g. colors and fonts), which are hardware-dependent as well.

The DM differentiates three types of keys:

function keys which are keyboard-dependent;

alphanumeric keys which are language-dependent, but may be keyboard-dependent;

alphanumeric keys which are not language-dependent, but may be keyboard-dependent.

The keyboard type can be set if the Dialog Manager is called with the option

-IDMkeyboard [<Number>]

0 is the default keyboard type, which is used if no keyboard type was set or if the accelerator does not
have a variant for the chosen keyboard type. This is why it is useful to use the 0 variant in the accel-
erator definition in general
An accelerator key combination consists of a key which can be preceded by an arbitrary number of
modifier keys with the + symbol. Modifier keys are cntrl, alt, and shift. Alphanumeric keys are specified
by 'single quote - character - single quote'.

Example

accelerator A

{
 0: alt+'a';
}

In the current Motif version of the Dialog Manager, accelerators are labeled only in the object menu-
item.

Example

accelerator A_QUIT
{
 0: cntrl+F2;
 1: cntrl+F5;
}

If an accelerator shall be language-dependent and shall change automatically if the language
changes, a “&” has to be specified in place of the key. This specification has the effect that the mne-
monic character for the dialog object is also used for the accelerator (provided that this object has a
mnemonic).

Example

accelerator A_QUIT
{
 0: cntrl+&;
 1: cntrl+alt+&;
}
text "E&xit"
{
 1: "&Beenden";
 2: "&Finito";
}
child menuitem M1
{
 .text E&xit;
 .accelerator A_QUIT;
}

This resource, identified as A_QUIT, can now be assigned to a dialog object. The dialog object is auto-
matically labeled with the accelerator text (provided that the used window system allows the labeling
for this object).

Remark

The key combination Ctrl + Alt + Del should never be used.

Modifier keys cannot be used as accelerators. Individual alphanumeric characters and cursor keys
should not be used alone as accelerators, i.e., they should be used in combination with other keys.in
Kombination mit anderen Tasten verwendet werden.

A.06.03.b 13

14 ISA DialogManager

Keys or key combinations already having a predefined function in the corresponding window system
should not be used.

Please also refer to the section “Note on problematic situations”.

Alphanumeric characters cannot be specified in connection with the shift modifier.
Function keys and special keys can be specified by the following identifiers:

BackSpace /* back space, back char */

Begin /* BOL */

Break

Cancel /* Cancel, stop, abort, exit */

Clear

Delete /* Delete, rubout */

Down /* Move down, down arrow */

End /* EOL */

Escape

Execute /* Execute, run, do */

Find /* Find, search */

Home

Insert /* Insert, insert here */

Left /* Move left, left arrow */

Linefeed /* Linefeed, LF */

Next /* Next, Page Down */

Pause /* Pause, hold, scroll lock */

Print

Prior /* Prior, previous, PageUp */

Redo /* redo, again */

Return /* Return, enter */

Right /* Move right, right arrow */

Select /* Select, mark */

Tab

Undo /* Undo previous*/

Up /* Move up, up arrow */

Function Keys:

F1 - F99

Modifier Keys:

alt

cntrl

shift

Note concerning the Caps Lock Key

The Caps Lock key will be ignored by the function keys. If you want to use the combination Shift + F3,
you must use the Shift key, it is not possible to use the Caps Lock key to trigger the accelerator.

Note on problematic situations

System accelerators should not be used, otherwise multiple triggering or interception of the event (on
key or select) may occur; moreover, this may vary depending on the accelerator and window system.

Examples

Under Microsoft Windows, both F1 and Ctrl + F1 are system accelerators and should therefore not
be used. In both cases, an on help event is sent to the respective object, but the event is gen-
erated in Microsoft Windows itself.

The F10 accelerator calls the system menu of the active window under Windows, but in most
cases the menu is not opened (it opens when you press the Curosr Down arrow key after the accel-
erator). It should be noted that the event processing of the application is stopped as soon as the
system menu of the window is called.

In addition, the use of an accelerator

on several objects in one on key rule

on one or more objects in an on key rule and assigned attribute .accelerator (triggering the select
event)

should be carefully considered. Depending on the window system used, the current dialog state, and
the way or order in which the windows are made visible, the accelerator concerned could be triggered
twice on different objects or on the same object.

2.1.1.1 Menus and accelerators under Microsoft Windows

Under Microsoft Windows, accelerators are used to select menu functions without opening a menu.
As a result, the accelerators are no longer triggered when a menu is open. Instead, you can now use
the respective mnemonics to select a menu item.

A.06.03.b 15

16 ISA DialogManager

2.1.2 Mnemonic
Mnemonics do not belong to the resources as such; they have to be defined as attributes. Because of
their close relationship to accelerators, their definition is described here.

A mnemonic is exactly one alphanumeric character which is marked in the text of a dialog object. The
corresponding object can be activated with this character.

Example

In a menubox: File

In a pushbutton: Exit

The corresponding menu opens by hitting a special key, the so-called mnemonic key, together with
the character marked in the menu bar. A menuitem can now be activated by hitting a key which cor-
responds to the character marked in the menu. No special key needs to be hit now.

Usually mnemonics have a visual feedback. This means that the activated dialog object appears on
screen in a selected state, and the action linked to the object is executed by pressing the assigned
key. Only the dialog objects located in the currently active window can be activated.

The mnemonic character is always taken from the language-dependent text and is specified together
with this text. The letter following the & symbol is the mnemonic character. It appears highlighted on
the screen. The & symbol will not be displayed. If & shall appear in the dialog object on the screen,
two & symbols in succession have to be specified.

The language is set if the DM is called with the option

-IDMlanguage [<Number>]

Example

text "E&xit"
{

1: "&Beenden";
2: "&Finito";

}
child menuitem M1
{

.text E&xit;
}

The availability of mnemonics depends on the used window system and will only work if the object can
be selected by the user.

Microsoft Windows

Mnemonics are supported for the following objects (if .real_sensitive = true):

image

checkbox

menubox

menuitem

pushbutton

poptext

radiobutton

statictext

Mnemonics can be activated by pressing

Alt together with the mnemonic character or

first Alt and then the mnemonic character.

As an alternative, you can also use the function key F10.

Mnemonic characters must be used without Alt, if a menu is highlighted.

Motif

Mnemonics are supported for the following objects:

menubox

menuitem

poptext item

pushbutton

Mnemonics can be activated by pressing

Alt together with the mnemonic character.

If a menu is open, mnemonic characters must be used without Alt.

You can only choose the mnemonics which are visible on screen.

Qt

Mnemonics are supported for the following objects:

Checkbox

Menubox

Menuitem

Pushbutton

Radiobutton

Statictext

A.06.03.b 17

18 ISA DialogManager

2.2 color
All colors you want to use have to be declared as a resource. The number of available colors depends
on your graphics system.

The declaration of a color starts with the keyword color, followed by the color identifier and the color
definition. The declaration ends with a ; (semicolon).

Definition

{ export | reexport } color <Identifier> <colorSpec> | <variantDef>

colorSpec ::=
{ rgb(<R>, <G>,) | hls(<H>, <L>, <S>) | gradient("<kind> [, <arg>]")

|
"<predefined color>" }

{ , grey(<N>) } { , black | white } ;

variantDef ::=
{

0 : <colorSpec>
[<number> : <colorSpec>]

}

Examples

Non-variant

color RED rgb(255, 0, 0), grey(50), white;
color AQUA hls(90, 127, 255), grey(127), white;
color YELLOW rgb(255, 255, 0);
color BLUE "blue", black;
color ClMagenta "magenta";
color BEAUTYCOLOR "orchid", grey(10), white;

Variant

color BEAUTYCOLOR
{

0: rgb(100,200,200);
1: "orchid", grey(10), white;
2: rgb(150,100,190);
3: "pink";

}

Different kinds of displays use the color specifications in a different way. Color displays use exclus-
ively the color specification, greyscale displays use greyscales, and monochrome displays use black-
and-white values.

rgb(<R>, <G>,)

R, G, B are the color intensities of the portions of the colors red, Ggreen and bllue. The value
range for all three values is 0 to 255. Brackets and commas are components of the color declar-
ation.

Depending on your choice of RGB values, Microsoft Windows uses grid mixed colors. This can
mostly be avoided by choosing suitable values, e.g. 0, 63, 127, 191, 255.

color MyGrey rgb(127,127,127);
color Azure rgb(63,127,191);

hls(<H>, <L>, <S>)

In the HLS color model, colors are defined by hue H, lightness or luminance L, and saturation S.
The range for all three values is 0 to 255.

The colors are arranged within a cylinder whose top plane is white and whose bottom plane is
black. Lightness L increases from 0 (dark) at the bottom to 255 (bright) at the top. For colors within
the circle intersecting the center point of the cylinder, L is 127. These colors are neither brightened
(by mixture with white) nor darkened (by mixture with black).

Hue H is determined by the angle on the circular area. The range for H from 0 to 255 and the angle
A in the color circle (actually ranging from 0 to 359 degrees) relate as given below:

H = A / 2.

A = (H modulo 180) * 2; that is the values from 180 to 255 match the color shades from 0 to 75.

Red has a value of H = 0 (or 180), H = 60 (or 240) yields green and H = 120 yields blue.

The shades of gray lie on the vertical line through the center of the cylinder, all having a saturation
of S = 0. The colors on the lateral area of the cylinder have the highest saturation S = 255. The col-
ors on the perimeter of the middle circle with L = 127 and S = 255 sometimes are referred as pure
colors.

grey(<N>)

This is the grayscale value which is to be used on a grayscale screen for the color. N is a number
from 0 to 255.

black | white

These are the color values for monochrome monitors.

gradient("<kind> [, <arg>]")

Availability

IDM FOR QT only

color resources support gradients on Qt.

The parameter <kind> defines the gradient type. Only one gradient type may be specified.

The other parameters may include:

A.06.03.b 19

20 ISA DialogManager

Supplementary parameters for the gradient type

Stop point definitions

Color definitions

These gradient types are available:

Table 1: Types of gradients

Gradient Definition Explanation

linear gradient("Linear, ...")

gradient("LinearV, ...")

vertical gradient

gradient("LinearH, ...") horizontal gradient

radial gradient("Radial, ...")

gradient("Radial, <R>, ...")

radial gradient with default radius 50%
radial gradient with supplementary para-
meter radius R%
radius is given as a percentage of the avail-
able space

conical gradient("Conical, ...")

gradient("Conical, <S>,
...")

conical gradient with start at 90°
conical gradient with supplementary para-
meter S°, which indicates the starting angle

The color definitions are always appended after the gradient type and any supplementary para-
meters. You can use color names, HTML notation, and the rgb(…), hls(…), and grey(…)notations
known for color resources.

In addition, a stop point can be specified for each color definition, which determines the weighting
of the color. A stop point is a percentage with an optional percentage sign that always precedes
each color and affects how much space that color occupies in the gradient. A gradient starts at 0%
and ends at 100%, based on the area it fills. The specification … , 20%, green, ... means, for
example, that after 20% of the area to be filled, the color green is set. If no other color is set for the
0–20% range, the first 20% of the range is colored green. If another color is already set before
20%, then a transition between this color and green is displayed.

Stop points should always be set in ascending order. If several colors are defined with the same
stop point, the color that is furthest at the end of the parameter list applies. For example, the defin-
ition ... , 20%, green, 40%, blue, 20%, red, ... produces a gradient with a shade of red at 20%,
which changes to a blue tone that is shown as saturated at 40%.

Examples

gradient("Linear, green, yellow, red"); named colors, evenly distributed
gradient("Linear, #00FFFF, #00FF00, #FF0000"); HTML notation,

colors evenly distributed

gradient("Linear,red, #00FF00, rgb(0,0,255)"); mixed notations,
colors evenly distributed

gradient("Linear, 20%, green, 60%, yellow, 80%, red"); named colors with
percentage stop

points
gradient("Linear, 20, green, 60, yellow, 80 ,red"); the % sign at the

stop points is
optional

Notes

Qt allows the setting of gradients in most places, but does not necessarily apply them. Whether a
gradient is displayed depends very much on the object and the UI style. In this case, areas (e.g.
backgrounds) are usually unproblematic, with delicate structures (e.g. texts) the gradient is often
replaced by a single color. For grouping objects, gradients as a background are usually displayed.

<predefined color>

A color identifier defined by the window system that can be used in the ISA Dialog Manager.

2.2.1 Predefined Colors
A list of the predefined cursors available on the respective system can be requested via the attribute
.colorname[integer] on the setup object.

2.2.1.1 Independent UI-colors

The UI color resources are WSI-independent predefined colors that are available on all systems with
similar characteristics or meaning. The default colors used by the current desktop/window manager or
theme are used for this purpose. The uniform COLOR resources are defined as follows:

UI_BG_COLOR
(general background color)

UI_FG_COLOR
(general foreground/text color)

UI_BUTTONBG_COLOR
(background color of button-like widgets)

UI_BUTTONFG_COLOR
(foreground/text color of button-like widgets)

UI_INPUTBG_COLOR
(background color of input/selection widgets)

UI_INPUTFG_COLOR
(foreground/text color of input/selection widgets)

UI_ACTIVEBG_COLOR
(background color of active elements of input/selection widgets)

A.06.03.b 21

22 ISA DialogManager

UI_ACTIVEFG_COLOR
(foreground/text color of active elements of input/selection widgets)

UI_MENUBG_COLOR
(background color of menus)

UI_MENUFG_COLOR
(foreground/text color of menus)

UI_TITLEBG_COLOR
(background color of title bars, dialog frames)

UI_TITLEFG_COLOR
(foreground/text color of title bars, dialog frames)

UI_HEADERBG_COLOR
(background color of table headers)

UI_HEADERFG_COLOR
(foreground/text color of table headers)

UI_BORDER_COLOR
(border color)

UI_NULL_COLOR
(no color)

Note for Windows

The UI_*_COLOR colors access the Windows system colors. It should be noted that with the intro-
duction of Visual Styles, the individual objects no longer use the system colors, but rather bitmaps
defined by the theme. Depending on the selected theme there can be strong discrepancies. Therefore
no colors (or UI_NULL_COLOR) should be set under Windows mach Möglichkeit. On the other hand,
it should be noted that with Windows 10 the color variety has been reduced. For example, the colors
UI_HEADERBG_COLOR, UI_HEADERFG_COLOR, UI_MENUBG_COLOR, UI_MENUFG_
COLOR, UI_TITLEBG_COLOR and UI_TITLEFG_COLOR are no longer supported. This means that
these colors can still be used, but they are not used by any object.

2.2.1.2 Motif (X-Windows)

When using system names for color resources, it is possible to address Motif's default colors. The fol-
lowing system names are available:

BACKGROUND

FOREGROUND

TOP_SHADOW

BOTTOM_SHADOW

SELECT

ACTIVE_BACKGROUND

ACTIVE_FOREGROUND

ACTIVE_TOP_SHADOW

ACTIVE_BOTTOM_SHADOW

ACTIVE_SELECT

TEXT_BACKGROUND

TEXT_FOREGROUND

TEXT_TOP_SHADOW

TEXT_BOTTOM_SHADOW

TEXT_SELECT

INACTIVE_BACKGROUND

INACTIVE_FOREGROUND

INACTIVE_TOP_SHADOW

INACTIVE_BOTTOM_SHADOW

INACTIVE_SELECT

SECONDARY_BACKGROUND

SECONDARY_FOREGROUND

SECONDARY_TOP_SHADOW

SECONDARY_BOTTOM_SHADOW

SECONDARY_SELECT

On Motif (X Windows) systems all colors from the color definition file rgb.dat can be used.

black / Black

blue / Blue

light blue / LightBlue

medium blue / MediumBlue

midnight blue / MidnightBlue

navy blue / NavyBlue

navy / Navy

sky blue / SkyBlue

coral / Coral

cyan / Cyan

gold / Gold

yellow / Yellow

green / Green

dark green / DarkGreen

A.06.03.b 23

24 ISA DialogManager

forest green / ForestGreen

lime green / LimeGreen

pale green / PaleGreen

spring green / SpringGreen

dark slate grey / DarkSlateGrey

dim grey / DimGrey

light grey /LightGrey

magenta/ Magenta

maroon / Maroon

orange / Orange

pink / Pink

red / Red

indian red / IndianRed

orange red /OrangeRed

violet red / VioletRed

salmon / Salmon

sienna / Sienna

tan / Tan

turquoise / Turquoise

violet / Violet

blue violet / BlueViolet

wheat / Wheat

white / White

2.2.1.3 Microsoft Windows

BLACK

BLUE

CYAN

DARKBLUE

DARKCYAN

DARKGREEN

DARKGREY

DARKPINK

DARKRED

GREEN

PINK

RED

WHITE

YELLOW

These system colors are available in the IDM FÜR WINDOWS:

CLR_ACTIVEBORDER

CLR_ACTIVETITLE

CLR_ACTIVETITLETEXT

CLR_APPWORKSPACE

CLR_BACKGROUND

CLR_BUTTONFACE

CLR_BUTTONHIGHLIGHT

CLR_BUTTONSHADOW

CLR_BUTTONTEXT

CLR_GRAYTEXT

CLR_HIGHLIGHT

CLR_HIGHLIGHTTEXT

CLR_INACTIVEBORDER

CLR_INACTIVETITLE

CLR_INACTIVETITLETEXT

CLR_MENU

CLR_MENUTEXT

CLR_SCROLLBAR

CLR_WINDOW

CLR_WINDOWFRAME

CLR_WINDOWTEXT

2.2.1.4 Qt

As color identifiers all SVG color names can be used (http://www.w3.or-
g/TR/SVG/types.html#ColorKeywords), where upper and lower case is ignored. When using these
color names (for example, green), the colors are realized according to the SVG color names of the
W3C. Therefore, some colors differ in tone and intensity from the X11 colors.

In addition, the following Qt default colors depending on the current settings are available:

A.06.03.b 25

26 ISA DialogManager

BASE background of input fields and certain container objects (lists)

BASETEXT foreground of input fields and certain container objects (lists)

BUTTON button background

BUTTONTEXT button foreground

HIGHLIGHT background for selection and active entry

HIGHLIGHTTEXT foreground for selection and active entry

SHADOW shadow color, mostly very dark to black

WINDOW window background

WINDOWTEXT window foreground

BRIGHTTEXT Text color for low contrast

ALTERNATEBASE alternatively background color (mostly for tables)

TOOLTIPBASE tooltip background

TOOLTIPTEXT tooltip foreground

LINK link foreground

LINKVISITED visited link foreground

PLACEHOLDERTEXT placeholder foreground for various input windgets, since Qt 5.12

ACTIVE_BASE

ACTIVE_BASETEXT

ACTIVE_BUTTON

ACTIVE_BUTTONTEXT

ACTIVE_HIGHLIGHT

ACTIVE_HIGHLIGHTTEXT

ACTIVE_SHADOW

ACTIVE_WINDOW

ACTIVE_WINDOWTEXT

ACTIVE_BRIGHTTEXT

ACTIVE_ALTERNATEBASE

ACTIVE_TOOLTIPBASE

ACTIVE_TOOLTIPTEXT

ACTIVE_LINK

ACTIVE_LINKVISITED

ACTIVE_PLACEHOLDERTEXT since Qt 5.12

DISABLED_BASE

DISABLED_BASETEXT

DISABLED_BUTTON

DISABLED_BUTTONTEXT

DISABLED_HIGHLIGHT

DISABLED_HIGHLIGHTTEXT

DISABLED_SHADOW

DISABLED_WINDOW

DISABLED_WINDOWTEXT

DISABLED_BRIGHTTEXT

DISABLED_ALTERNATEBASE

DISABLED_TOOLTIPBASE

DISABLED_TOOLTIPTEXT

DISABLED_LINK

DISABLED_LINKVISITED

DISABLED_PLACEHOLDERTEXT since Qt 5.12

INACTIVE_BASE

INACTIVE_BASETEXT

INACTIVE_BUTTON

INACTIVE_BUTTONTEXT

INACTIVE_HIGHLIGHT

INACTIVE_HIGHLIGHTTEXT

INACTIVE_SHADOW

INACTIVE_WINDOW

INACTIVE_WINDOWTEXT

INACTIVE_BRIGHTTEXT

INACTIVE_ALTERNATEBASE

INACTIVE_TOOLTIPBASE

INACTIVE_TOOLTIPTEXT

INACTIVE_LINK

INACTIVE_LINKVISITED

INACTIVE_PLACEHOLDERTEXT since Qt 5.12

Normal and active states are identical.

The identifier DEFAULT serves as null color. If this color is assigned, the respective color is reset to
the corresponding default color (depending on the current system settings).

A.06.03.b 27

28 ISA DialogManager

2.2.2 Dynamically changeable attributes
The table below shows those atrributes of color resources, that can be changed dynamically at
runtime. Please note, that .rgb[enum], .hls[enum] and .name are mutually exclusive so that “get”
returns “can’t get value”.

Table 2: Modifiable attributes of the color resource

Attribute Data Type Index Range Description

.rgb[enum] integer
0… 255

color_red,
color_green,
color_blue

red, green, blue

.hls[enum] integer
0… 255

color_hue,
color_light,
color_sat

hue, lightness, saturation

.gradient string – kind and parameters of a gradient

.name string – system name of the color

.grey integer
0… 255

– grey scale value

.bw enum
color_black,
color_white

– black and white value

With the attributes .rgb[enum] and .hls[enum] the color is not updated before the last value (color_
blue respectively color_sat) is set, thus giving the opportunity to define the color as a whole.

2.3 cursor
The graphic cursors you want to use have to be defined before. The keyword is cursor, followed by
the cursor identifier and the cursor definition.

Definition

{ export | reexport } cursor <Identifier> <cursorSpec> | <variantDef>

cursorSpec ::= <cursorBitmap> | "<predefined cursor>" ;

cursorBitmap ::= <x>, <y>,
<cursorString>

[, <cursorString>]

variantDef ::=
{

0 : <cursorSpec>
[<number> : <cursorSpec>]

}

Example

Non-variant

cursor MyCursor "XC_cross";

Variant

cursor MyCursor
{

0: "XC_cross";
1: "Cross";

}

2.3.1 Bitmap-Cursor
<x> and <y> identify – as in tiles – the corresponding extensions (in pixels) on the x- and y-axes.

The IDM allows any widths (<x>) and heights (<y>) for the cursors. Some graphics systems have a
cursor size of 32 * 32 pixels (e.g. MS-Windows). Other graphics systems, however, limit the cursor
size to 16 * 16 pixels (e.g. Motif).

<cursorString> identifies a character string which consists of exactly <x> characters. You should spe-
cify exactly <y> strings with <x> characters each.

Permitted characters in <cursorString> are point (“.”), space (), plus (“+”), hash (“#”), and the upper-
case letter X. The individual characters mean the following:

A.06.03.b 29

30 ISA DialogManager

“.”
“ ” (space)

The cursor will adopt the background color, i.e. the cursor will be transparent at this point.

“+”

At this point the cursor will be displayed in the inverse background color. This is important if the
cursor foreground color is identical with the background color.

“#”

At this point the cursor will be displayed in the foreground color which is defined by the window sys-
tem.

“X”

This character marks the hotspot of the cursor. If you click on an object with the cursor, the hotspot
has to touch the object, otherwise the clicking will not be registered. This character has to occur
only once in the cursor definition.

Example

cursor Pointer 16, 16,
"........+.......",
".......+++......",
"......++X++.....",
".....++###++....",
"....++#####++...",
"...++#######++..",
"..++#########++.",
"..+++++###+++++.",
".....++###++....",
".....++###++....",
".....++###++....",
".....++###++....",
".....++###++....",
".....++###++....",
".....++###++....",
".....+++++++....";

Note for the IDM for Windows

Cursor means mouse pointer, regardless of the different meaning that cursor has in Microsoft Win-
dows.

The cursor size in Microsoft Windows is 32 x 32 (with EGA or VGA resolution). No other size is
allowed! If the cursor exceeds the permitted size, the DM converts the cursor by filling the cursor with
transparents or by clipping the right and the bottom border.

2.3.2 Predefined Cursor
A list of the predefined cursors available on the respective system can be requested via the attribute
.cursorname[integer] on the setup object.

2.3.2.1 Independent UI-Cursor

The UI cursor resources are WSI-independent predefined cursors that are available on all systems
with similar characteristics or meaning. The default cursors used by the current desktop/window man-
ager or theme are used for this purpose. The uniform CURSOR resources are defined as follows:

UI_CURSOR
(default cursor mostly arrow)

UI_IBEAM_CURSOR
(Edittext insertion marker)

UI_WAIT_CURSOR
(indication that the application is busy)

UI_CROSS_CURSOR
(Cross)

UI_UP_CURSOR
(arrow up)

UI_SIZEDIAGF_CURSOR
(sizing arrow from top left to bottom right)

UI_SIZEDIAGB_CURSOR
(sizing arrow from bottom left to top right)

UI_SIZEVER_CURSOR
(sizing arrow from left to right)

UI_SIZEHOR_CURSOR
(sizing arrow from top to bottom)

UI_MOVE_CURSOR
(sizing arrow in all directions)

UI_STOP_CURSOR
(forbidden sign/ crossed out circle)

UI_HAND_CURSOR
(hand symbol/ index finger)

UI_HELP_CURSOR
(arrow with question mark)

A.06.03.b 31

32 ISA DialogManager

2.3.2.2 Motif

When the cursor is defined with a name, the corresponding X Cursor is loaded from the X Windows
cursor fonts:

XC_X_cursor

XC_arrow

XC_based_arrow_down

XC_based_arrow_up

XC_boat

XC_bogosity

XC_bottom_left_corner

XC_bottom_right_corner

XC_bottom_side

XC_bottom_tee

XC_box_spiral

XC_center_ptr

XC_circle

XC_clock

XC_coffee_mug

XC_cross

XC_cross_reverse

XC_crosshair

XC_diamond_cross

XC_dot

XC_dotbox

XC_double_arrow

XC_draft_large

XC_draped_box

XC_exchange

XC_fleur

XC_gobbler

XC_gumby

XC_hand1

XC_hand2

XC_heart

XC_icon

XC_iron_cross

XC_left_ptr

XC_left_side

XC_left_tee

XC_leftbutton

XC_ll_angle

XC_lr_angle

XC_man

XC_middlebutton

XC_mouse

XC_pencil

XC_pirate

XC_plus

XC_question_arrow

XC_right_ptr

XC_right_side

XC_right_tee

XC_rightbutton

XC_rtl_logo

XC_sailboat

XC_sb_down_arrow

XC_sb_h_double_arrow

XC_sb_left_arrow

XC_sb_right_arrow

XC_sb_up_arrow

XC_sb_v_double_arrow

XC_shuttle

XC_sizing

XC_spider

XC_spraycan

XC_star

XC_target

XC_tcross

A.06.03.b 33

34 ISA DialogManager

XC_top_left_arrow

XC_top_left_corner

XC_top_right_arrow

XC_top_side

XC_top_tee

XC_trek

XC_ul_angle

XC_umbrella

XC_ur_angle

XC_watch

XC_xterm

Example

cursor Clockcursor "XC_clock";

2.3.2.3 Qt

There are the following named cursors where the corresponding Qt CursorShape is loaded:

arrow

blank

busy

closedhand

cross

dragcopy since Qt 4.7

dragmove since Qt 4.7

draglink since Qt 4.7

forbidden

ibeam

openhand

pointinghand

sizeall

sizebdiag

sizefdiag

sizehor

sizever

splith

splitv

uparrow

wait

whatsthis

The appearance of the cursors may vary depending on the UI style.

2.3.2.4 Microsoft Windows

When the cursor is defined with a name, the corresponding cursor is taken from the Microsoft Win-
dows objects.

The following cursors are predefined system cursors on Microsoft Windows:

APPSTARTING

ARROW

CROSS

HAND

HELP

IBEAM

ICON

NO

SIZE

SIZEALL

UPARROW

WAIT

SIZENESW

SIZENS

SIZEWE

SIZENWSE

Notes

If you have used the identifier HAND for an individually defined cursor then the system cursor
will be loaded instead of your individual cursor when using IDM A.05.02.f or higher.

A.06.03.b 35

36 ISA DialogManager

2.4 display
The display resource is used for the allocation of a window to the screen stated in the resource defin-
ition or set by the .screen attribute of the display resource. It is meant to be used in multiscreen envir-
onments (MOTIF only). The .screen attribute can be changed dynamically in Rule Language to move
a window to another screen. The actually selected screen can be queried via the .real_screen attrib-
ute.

Definition

{ export | reexport } display <Identifier> { screen(<number>) } ;

attributes

Attribut RSD PSD Eigenschaft Kurzbeschreibung

.screen integer integer S,G/-/- screen number

.real_screen integer integer -,G/-/- actual screen number

In cases of invalid screen numbers the window is displayed on the default screen (usually, but not
necessarily, 0). Valid screen numbers are greater than or equal to 0. This means that e.g. when stat-
ing -1, the default screen is used.

Particularities

The .screen attribute can also be implemented dynamically by rule language.

Availability

Multiscreen support is only available with IDM for MOTIF. Valid screen numbers can be determined
with the program xdpyinfo and the .screen[integer] attribute of the setup object.

See also

Chapter „Multiscreen Ssupport untder Motif“ in manual „Programmiertechniken“

2.4.1 Example
The dialog shows how two windows can be placed on different screens and how e.g. a single-screen
configuration can be handled.

dialog MultiScreen

display DpyDef screen(-1);
display DpyPrim screen(0);
display DpySec screen(1);

default window WINDOW
{

.width 200;

.height 100;

on close { exit(); }
}

// primary window on screen#0
// (not necessarily the default screen!)
window WiPrim
{

.display DpyPrim;

.title "Primary Window";

statictext StDefScreen { }
}

// secondary window on screen#1
window WiSec
{

.display DpySec;

.title "Secondary Window";

listbox LbScreens
{

.xauto 0;

.yauto 0;

// move secondary window to another screen dynamically
on select
{

this.window.display.screen := this.userdata[thisevent.index];
}

}
}

on dialog start
{

variable integer I;
StDefScreen.text := "Default Screen: " + setup.screen;

// position second window below primary
// when running in single-screen configuration
if (setup.screencount = 1) then

WiSec.ytop := WiPrim.ytop + WiPrim.real_width + 50;
endif

A.06.03.b 37

38 ISA DialogManager

// list available screens
for I:=1 to setup.screencount do

LbScreens.content[I] := "Screen#" + setup.screen[I] + " " +
setup.screen_width[I] + "x" + setup.screen_height[I];

LbScreens.userdata[I] := setup.screen[I];
endfor

LbScreens.activeitem := LbScreens:find(.userdata, DpySec.real_screen);
}

2.5 font
All fonts you want to use have to be declared as a resource. The number of displayable fonts depends
on the graphics system you use. The declaration of a font begins with the keyword font, followed by
the identifier describing the font within the DM and by the font definition.

Definition

{ export | reexport } font <Identifier> <fontSpec> | <variantDef> ;

fontSpec ::=
"<fontName>" { , <size> { , <modifier> } } |
"<Predefined UI-Font>" |
"<X Logical Font Description (XLFD)>" | // Motif,

Qt
"<fontName> [, <parameter>]" { , <modifier> } | // Qt
"<fontName>" { , <size> { , <modifier> { + <modifier> } } } |
"<size>.<fontName>" | "<systemFont>" // Windows
{ x:= * <xscale> % + <xoffset> | / <xdivider>} { y:= * <yscale> %

+ <yoffset> | / <ydivider>}
{ propscale }
{ r:= "<RefString >" } ;

variantDef ::=
{

0 : <fontSpec>
[<number> : <fontSpec>]

}

The name determined by the window system as well as size and attributes of the font are specified in
the font definition.

Depending on your graphics system, it may not be possible to define font size and attributes inde-
pendently of the selected font. In this case only the first font variant can be defined. Other following
font sizes and attributes are ignored.

In addition to the system's means of viewing the available fonts, the list of fonts can also be viewed in
the IDM Editor. Depending on the system, it is possible to filter the list of fonts by UI Fonts, XFT and
XLFD.

Examples

Non-variant

font BIG "white_shadow-48";
font KilterBold "-adobe-courier-bold-r-normal*";
font KilterItalic "kilter 12i";
font UI "UI_FONT";

A.06.03.b 39

40 ISA DialogManager

// Defines the font vtsingle of the window system X as font NORMAL in the IDM
font NORMAL "vtsingle";

// Defines the font Courier in size 12 as resource Courier
font Courier "Courier", 12;

// As in the previous definition, with the additional attribute bold
font Bold "Courier", 12, bold;

// Defines the font with the system font usually used for UI objects;
// additionally with the attribute propscale to control the font-raster
font UIpropscale "UI_FONT" propscale;

// Defines an XFT font (e.g. on an Ubuntu system); additionally the size 12
// and the attribute bold for bold display are defined
font XFT "DejaVu Sans", 12, bold;

Variant

font BIG
{

0: "white_shadow-48";
1: "walla_walla-12";
2: "helvetica", 24, bold;
3: "harakiri", 48, roman;

}

2.5.1 Calculating the Grid Size from a Reference Font
On calculating the grid size from a reference font, you can specify correction factors at the font defin-
ition and thus can arbitrarily change the calculation base for the grid which was determined by the
font.

It is also possible to specify a reference string for calculation of grid width. The grid width will then be
calculated as width of the entire string, divided by the number of characters (with mathematical round-
ing). Specifying a reference string makes the calculation of grid width independent of the average and
maximum character widths from the font description, which may vary between different systems. A ref-
erence string is defined by adding r:="<RefString>" to the font definition.

Based on the above font definition the grid size calculated as follows:

xraster = ((width of font) * xscale) / 100 + xoffset
yraster = ((height of edittext with this font) * yscale) / 100

+ yoffset

The effect of this calculation that the font size will be provided with the indicated factor and will then be
enlarged according to the given constant.

The <xdivider>/<ydivider> allows the division of a raster without rounding effects. The IDM
ensures that a raster in the full divider size is at least as large as the raster without divider. This
ensures a complete object representation.

xraster = ((width of font) + (xdivider - 1)) / xdivider
yraster = ((height of edittext with this font) + (ydivider - 1))) / ydivider

Example

font Font "6x13" x:=*150%+2 y:=*200%+10;

In this case, the grid size resulting from this font is calculated as follows:

xraster = (6 * 150) / 100 + 2
= 11

yraster = (13 * 200) / 100 + 10
= 36

Important: improved calculation of the raster width under Windows

With IDM version A.06.03.a, the calculation of the raster width has been substantially changed. If no
reference string is set, the raster width is now calculated from an internal reference string (“M”) to
avoid excessive width growth due to excessively wide letters within a font.

For compatibility reasons, however, the opt_fontraster_compat option, the -IDMfontraster_compat
startup option, or the IDM_FONTRASTER_COMPAT environment variable can temporarily reactivate the
old raster width calculation (with the drawback that excessive width growth may occur again).
When using the opt_fontraster_compat, the size calculation is partly based on the system font, which
is not High DPI capable, so High DPI capable applications created with IDM FOR WINDOWS 11 should
not use this option.

2.5.2 Predefined UI-Fonts
The UI font resources are WSI-independent predefined fonts that are available on all systems with
similar characteristics or meaning. The default fonts used by the current desktop/window manager or
theme are used for this purpose. The uniform FONT resources are defined as follows:

UI_FONT
(font used by default for UI elements)

UI_FIXED_FONT
(font with a fixed letter width)

UI_MENU_FONT
(font used for menus)

UI_TITLE_FONT
(font used in the window header)

A.06.03.b 41

42 ISA DialogManager

UI_SMALLTITLE_FONT
(font used in a small/low window header - if supported by WSI)

UI_STATUSBAR_FONT
(font used in the status bar - if supported by WSI)

A list of the fonts available on the respective system can be requested via the attribute .fontname
[integer] on the setup object.

2.5.3 Font Definition
There are the following definition methods for a font:

By specifying a string and additional modifiers according to the following pattern:

fontSpec ::=
"<fontName>" { , <size> { , <modifier> { + <modifier> } } } ;

In doing so, you can choose a font with a defined name, size (in points), and corresponding mod-
ifiers - in form of font weight or font face/slant.
Valid font modifiers are:

normal

light

medium (font weight between normal and demibold)

demibold (font weight between medium and bold)

bold

black

italic

normal (default)

oblique (if necessary is mapped on italic)

roman (is ignored)

Note:

It should be mentioned that it depends on the selected character set whether and to what extent the
selected modifiers are applied.

2.5.4 Font Definition for Microsoft Windows
There are the following definition methods for a font:

By specifying a string according to the following pattern:

fontSpec ::= "<size>.<fontName>" ;

In doing so, you can choose a font with a defined name and size (in points).

by using a standard system font by giving a string according to the following pattern:

fontSpec ::= "<systemFont>" ;

The following system fonts are possible:

SYSTEM_FONT

ANSI_FIXED_FONT

ANSI_VAR_FONT

DEVICE_DEFAULT_FONT

Remark
You can find a list of existing and usable system fonts along with their sizes in “Control Panel” →
“Fonts”.

Remark

If the specified font is not available, the system font will be chosen instead.

Warning

All fonts available in the system can be used, since there is no limitation to the code page when choos-
ing fonts.

This may lead to choosing fonts with a wrong code page so that the wrong characters are displayed.
The IDM on MICROSOFT WINDOWS has no possibility to make a code page conversion since only the
WINANSI code page is defined.

See also

Chapter “Note on the use of symbol fonts under Microsoft Windows”

2.5.5 Font Definition for Qt
Fonts can be defined in the following ways:

Qt Style with Comma-separated Parameter List

Family, PointSize, PixelSize, QFont::StyleHint, QFont::Weight, QFont::Style,
Flag underline, Flag strikeout, Flag pixedPitch, Flag rawMode

"Helvetica, 12, -1, 5, 75, 1, 0, 0, 0, 0"

Not all parameters have to be specified, "Helvetica, 12" is sufficient, for example.

Font with Independent Display Attributes (Size and Style)

"Helvetica", 12, bold

A.06.03.b 43

44 ISA DialogManager

The styles bold, italic and oblique are supported.

Qt style specifications can be combined with independent display attributes:

"Helvetica, 12", bold

X Logical Font Description (XLFD)

"-adobe-helvetica-medium-r-normal--12-*-*-*-p-*-iso8859-1"
"*adobe-helvetica-bold-r-normal-*-100-*-iso8859-1"

Notes

QT has problems processing wildcards in XLFD's.

If QT can't match a font exactly, it takes the font family that is most likely to match. Inevitably, sub-
stitution of values occurs.

Font aliases (file fonts.alias in the font directory of X11) are not supported by Qt. Therefore, for
example, font fixed cannot be used.

Attention

Since QT5, supporting functionality for processing XLFD fonts has been depricated.

Using XLFD fonts is not recommended.

2.5.6 Dynamically changeable attributes
For fonts, the following attributes can be set and queried dynamically at runtime:

Table 3: Modifiable attributes of the font resource

Attribute Data Type
Index
Range

Description

.face enum
face_
default,
face_italic,
face_
oblique,
face_
roman,

– font face/ slant

Attribute Data Type
Index
Range

Description

.height[enum] integer scale_
factor,
scale_
offset

y-scaling and offset

.name string – font name

.refstring string – reference string for cal-
culating the grid width

.propscale boolean – raster control

.size integer – font size

.style enum
face_
default,
face_light,
face_nor-
mal,
face_
medium,
face_
demibold,
face_bold,
face_black
face_italic,
face_
oblique
face_
roman,

– font style

A.06.03.b 45

46 ISA DialogManager

Attribute Data Type
Index
Range

Description

.weight enum
face_
default,
face_light,
face_nor-
mal,
face_
medium,
face_
demibold,
face_bold,
face_black

– font weight

.width[enum] integer scale_
factor,
scale_
offset

x-scaling and offset

2.6 format
You can define format resources in order to format strings in editable texts and tablefields.

A format resource connects a string as a format description with an optional format function which
interprets the string.

Definition

{ export | reexport } format <Identifier> <formatSpec> | <variantDef>

formatSpec ::=
<format string> [<format function>] ;

variantDef ::=
{

0 : <formatSpec>
[<number> : <formatSpec>]

}

If no format function is given, the format string is interpreted internally by the Dialog Manager. If a
format function is given, it has to be defined as formatfunc (please see chapter “Format Function” in
manual “Rule Language”).

Variants can be used, for example, to make adaptations to different languages.

The following format descriptions are permitted, if the Dialog Manager has to interpret the format
string internally:

Empty string

If the format is an empty string, the input strings will not be formatted.

Input pattern

The following characters are available within the format string:

A alphabetic characters

C numbers and uppercase letters

H hexadecimal digits

N digits

U alphabetic characters, only uppercase letters

X any input permitted

9 digits (like N)

A.06.03.b 47

48 ISA DialogManager

/ formatting character

, formatting character

. formatting character

- formatting character

: formatting character

Space (BLANK) formatting character

The formatting characters are inserted into the display string for display and input. They are
skipped during input and thus cannot be overwritten. After the input, they are not adopted in the
contents string and are not available there.

Example

Time input:

.format "NN:NN:NN";

Input of “120300”

Hidden formatting

If the format string starts with an "S", the contents string is displayed and edited invisibly.

The character following "S" is interpreted as a special sign for hiding. If no further character is fol-
lowing "S", "*" is chosen as hiding sign. Then, the following format strings are possible:

empty string

input pattern

numeric format

With hidden formatting, you can e.g. make a password input.

Example

.format "SxAAA";

allows the input of three characters which, however, are all displayed as "x".

Numeric format

allows the formatting of numbers. The format string has to be specified according to the following
pattern (element in square brackets [] is optional, i.e. it may be left out):

% [<|>] [+|-] [[0] 0] length [' [sepch] sepcount] [(. | ,) [0]
trail]
[u|s] (b|d|f|h|o|x|X) [<|>] [+|-] [/(c[0]|p|t|z)+]

Meaning of the Various Elements

Formatzeichen Zeichen Bedeutung

% Indicating initial character for numeric formats.

[<|>] Alignment with left margin:

no entry Padding with blanks before sign.

> Padding with blanks between sign and digits.

< No padding, left-justified.

[+|-] Leading sign:

no entry Display of negative sign only, if no trailing sign is defined.

- Display of negative sign only.

+ Display of positive and negative sign.

[[0]0] Display of leading zeros:

no entry No leading zeros are displayed.

0 A single leading zero is displayed, if the integral part is zero.

00 Displays zeros for all non-occupied digits of the integral part.

length Overall number of digits (not counting special characters).

[' [sepch] sep-
count]

At each sepcount-position of the integral part a sepch-char-
acter or a “'” if no sepch is specified is displayed (e.g. as thou-
sands marker in digit grouping). If sepcount is 0 then 3 will be
used by default.

[(.|,) [0] trail] Description of the fractional part:
Defines either a point or a comma as decimal mark.

trail defines the number of decimal places. If the optional zero
is used, non-occupied places will be filled with zeros.

[u|s] Input of negative numbers:

u “unsigned”, no negative numbers permitted

s “signed”, negative numbers are permitted

(b|d|f|h|o|x|X) Formatting signs indicating the number system:

A.06.03.b 49

50 ISA DialogManager

Formatzeichen Zeichen Bedeutung

b Binary numbers.

d Decimal numbers.

f Floating point values with decimal mark in the input string.

h Same as x.

o Octal numbers.

x Hexadecimal numbers with lowercase letters.

X Hexadecimal numbers with uppercase letters.

Except when using the formatting sign “f”, the content string
may contain no decimal mark. The decimal mark is only inser-
ted into the display string for display and input.

[<|>] Alignment with right margin:

no entry Padding with blanks after sign.

> Padding with blanks between sign and digits.

< No padding, right-justified.

[+|-] Trailing sign:

no entry No display of sign.

- Display of negative sign only.

+ Display of positive and negative sign.

[/(c[0]|p|t|z)+] Format modifier:

The format behavior can be determined by specifying one or
more modifiers.
Default behavior:
During input, the digits are shifted over the decimal mark.
Empty strings are allowed as input and are different from zero.
The decimal mark is always displayed, even if the content
string is empty.

Formatzeichen Zeichen Bedeutung

c Digit deleting mode:
Deleting the very last digit in a string leads to an empty string
and not to a string with the value “0”.
This modifier has no impact when it is combined with the “z”
format modifier (zero-mode).

c0 0-deletion-mode:
When a string represents the numerical value “0” after an
entry or a deletion, then the string will be replaced with an
empty string.
In 0-deletion-mode a content string can change to an empty
string when only one digit not equal to “0” exists and this digit
is deleted.
Example: “7000.00” will be changed to an empty string after
deleting the “7” by using the Del or Backspace key.
This modifier has no impact when it is combined with the “z”
format modifier (zero-mode).

p Point-mode: if the content string is empty, no decimal mark is
displayed.

t Technical number input: the places before and after the
decimal point are edited separately.

z Zero-mode:
empty strings are converted to zeros, empty strings cannot be
input, depending on the format, zeros may be displayed as
empty string.

Remarks

Leading and trailing zeros are inserted into the display string only. They will not be taken into
the content string, not even after the entry has been finished and therefore are not present in it.

Given a one-digit content string, this digit may not be situated rightmost within the formatted
string. Rather it can be the first digit left of the comma, e.g. at technical number input.

In an entry field characters that are inserted into the display string by a format cannot be
deleted using the Backspace or Del keys.
A sign inserted by a format can be altered using the + and - keys. In doing so + switches to a
positive sign or retains it. Entering - toggles between positive and negative sign (just like mul-
tiplying by -1).

A.06.03.b 51

52 ISA DialogManager

Regular Expression

Availability

Since IDM version A.06.02.g

A matching expression of the form "/ … /" is accepted in order to allow the content or input to be
validated.

If the content does not match the pattern, an empty string is displayed or the input is prevented.

Examples

format FmtKommaZahl "/^(\\d+(\\.\\d*)?)?$/";
Permitted strings e.g. "", "1", "07654.321"

format FmtHexZahl "/^[abcdefABCDEF0123456789]*$/";
Permitted strings e.g. "", "AF4513c", "a", "7EF"

format FmtSpecial "/^([[:alpha:]]*\n\\d*\n[01]*)?$/";
Permitted strings e.g. "", "City\n999\n01", "Milwaukee\n53288\n01101110"

See also

Built-in function regex and chapter “PCRE Library for Support of Regular Expressions”.

2.7 text
To support multilingual dialogs the DM provides the resource text. The dialog is initially developed in
one language.

The resource text is introduced during the translation into a new language. A string from the original
language is defined together with its translations in this process.

Definition

{ export | reexport } text { <Identifier> } "<original string>"
<variantDef> | ;

variantDef ::=
{

1 : "<translated string>" | nlscat(<message number>) ;
[<number> : "<translated string>" ;]

}

The identifier is optional, i.e. it does not have to be indicated necessarily. By means of the identifier,
the text can be referenced in the dialog.

The first translation can be either a <translated string> or an entry from a message or text catalog nls-
cat(<message number>), further translations are defined as <translated string>.

The access of the Dialog Manager to the text is as follows:

The function which was installed with DM_InstallNlsHandler() is called. Then the text is stored intern-
ally. The access applies only to texts actually used.

The texts have to be defined in ISO 8859/1 standard, which is suitable for almost all European lan-
guages, so that as many different characters as possible can be represented. Then the DM converts
this representation into the representation of the corresponding window system, so that the char-
acters are correctly represented.

The characters can be input according to the following pattern:

All 7-bit characters are directly entered with the relevant editor, i.e. all ASCII characters can be dir-
ectly entered. This kind of character input guarantees that all editors can correctly represent these
characters, because many editors can only represent 7-bit characters.

All 8-bit characters have to be entered in octal notation, i.e. characters that are larger than 127 have to
be entered as octal number with a leading backslash "\".

A.06.03.b 53

54 ISA DialogManager

Figure 1: Table for Octal Values

To describe a certain character, e.g. "A", you first have to specify the corresponding value on the y-
axis:

-> 10x

"x" then has to be substituted by the corresponding value on the y-axis:

-> xx1 (xx stands for the above results of 10)

It results in:

=> \101

Further Examples

ö 36x xx6 => \366

04x xx3 => \043

Example

text "Hello world"
{
 1: "Hallo Welt";
 2: "Allo le monde";
 3: "Buon giorno il mondo";
 4: "Holá mundo";
}

By selecting one of the languages 1–4 with the option -IDMlanguage, the string "Hello World" is
replaced with the corresponding translation throughout the dialog. You can get the defined text either
by inputting the original text or by inputting the identifier.

Example

text WindowText "Window"
{

1: "Fenster";
}

Window.title := WindowText;

is the same as

text "Window"
{

1: :"Fenster";
}
Window.title := "Window";

Remark

With the attribute .text you can get the string in the current language variant.

2.7.1 Note on the use of symbol fonts under Microsoft Windows
When using fonts that contain symbols (e.g. Wingdings) the following should be observed:

1. The name must correspond to the actual name of the font (no alias). If Windows executes a font
exchange, IDM recognizes this and forces the replacement to a font that supports the WIN ANSI
character set. This is necessary to prevent the unintentional selection of an illegible font.

2. A font that contains symbols is allocated to the Windows SYMBOL character set. This is mapped
on the Unicode rage \uF000–\uF0FF (user-defined range in Unicode). In order to display the

A.06.03.b 55

56 ISA DialogManager

character 0xFE, \uF0FE must be defined.

Remark
This is generally not necessary on a western European Windows system as the system code page
CP1252 is almost identical to the lower Unicode range and contains almost all characters. This is
why this does not lead to a conversion and the desire character is shown – quasi by chance. This
however is not the case on other Windows language versions.

2.8 tile (pattern)
Graphics, pictures and patterns used within the IDM must be declared as resources. The keyword for
this is tile, followed by an identifier and the tile definition. The tile definition is either included directly in
the IDM file or in a separate graphics file.

Definition

{ export | reexport } tile <Identifier> <tileSpec> | <variantDef>

tileSpec ::= <tileBitmap> | "<file path>" | "<graphics resource>" { scale |
noscale | numscale | propscale | } ;

tileBitmap ::= <x>, <y>,
"<pattern line>"

[, "<pattern line>"]

variantDef ::=
{

0 : <tileSpec>
[<number> : <tileSpec>]

}

For the definition of variants it is recommended to always define a variant with the number 0, since
this is the default variant if no variant, a non-existent variant, or an invalid variant is set. The other num-
bers may be arbitrary natural numbers.

The tile variant to be used can be set with the command line option -IDMtile when starting the applic-
ation. During runtime of the application it can be queried and set with the .tile attribute of the setup
object.

2.8.1 Internal pattern (Bitmap)
<x> and <y> represent the number of pixels in horizontal and vertical direction. Width (<x>) and height
(<y>) may be chosen arbitrarily.

<pattern line> denotes a string of <x> characters in which each character represents one pixel of the
tile. Only rectangular tiles are possible, therefore exactly <y> pattern lines with <x> characters each
have to be defined.

The pattern lines consist of the characters period (“.”) space (“ ”) and hash (“#”), which have the fol-
lowing meaning:

“.”
“ ” (Leerzeichen)

Adopts the background color, i.e. the pattern will be transparent at this point.

If the tile resource is used in the .picture or .picture[enum] attributes of an image object whose .im-
agebgc attribute is set, a pixel in the color .imagebgc is displayed here.

A.06.03.b 57

58 ISA DialogManager

“#”

At this point, a pixel in the foreground color will be displayed.

When using the tile resource in the .picture or .picture[enum] attributes of an image object, this
will be the color set in the .imagefgc attribute of the image object.

Example for the Definition of an Internal Pattern

tile TiGray 16, 16,
"# # # # # # # # ",
" # # # # # # # #",
"# # # # # # # # ",
" # # # # # # # #",
"# # # # # # # # ",
" # # # # # # # #",
"# # # # # # # # ",
" # # # # # # # #",
"# # # # # # # # ",
" # # # # # # # #",
"# # # # # # # # ",
"# # # # # # # # ",
" # # # # # # # #",
"# # # # # # # # ";

2.8.2 External pattern
With the definition using a file name (including path), the IDM assumes that the definition of the tile is
in a separate graphics file. The IDM loads the corresponding file and displays its contents using the
system functions of the respective toolkit. Therefore it depends on the platform which graphics
formats can be displayed.

The following table shows which graphics formats are supported on each platform:

Table 4: Graphics formats supported by the tile resource

Graphics Format File Extension MICROSOFT WINDOWS MOTIF QT

Graphics Interchange Format .gif yes yes yes

Device Independent Bitmap .bmp yes no yes

X PixMap .xpm no since MOTIF 2.1 no

JPEG File Interchange Format .jpg yes since MOTIF 2.3 yes

Portable Network Graphics .png yes since MOTIF 2.3 yes

Graphics Format File Extension MICROSOFT WINDOWS MOTIF QT

Enhanced Metafile
Windows Metafile

.emf

.wmf
yes no no

Aldus Placeable Metafile .apm yes no no

Windows Icon Resource File .ico yes no no

Windows Icon Resource
Windows Bitmap Resource

– yes no no

Scalable Vector Graphics .svg yes no yes

The definition using a graphics resource is only supported by the IDM FOR WINDOWS. The identifiers
“IDM_AppIcon” and “IDM_DefIcon” of the resources defined in the IDM libraries may be used here
(see also attribute .icon in the “Attribute Reference”).

Additionally, on MICROSOFT WINDOWS, the following identifiers for predefined bitmap resources of the
system can be specified:

BTNCORNERS BTSIZE CHECK CHECKBOXES CLOSE

COMBO DNARROW DNARROWD DNARROWI LFARROW

LFARROWD LFARROWI MNARROW OLD_CLOSE OLD_DNARROW

OLD_LFARROW OLD_REDUCE OLD_RESTORE OLD_RGARROW OLD_UPARROW

OLD_ZOOM REDUCE REDUCED RESTORE RESTORED

RGARROW RGARROWD RGARROWI SIZE UPARROW

UPARROWD UPARROWI ZOOM ZOOMD

Note

The images of the tile resource are now automatically enlarged according to the configured scal-
ing factor. It is assumed hereby that the images were designed for a DPI value of 96. If the images
of the application are designed for a higher resolution, then this can be set in the setup object with
the attribute .tiledpi.

When specifying an external file, it is recommended not to define the absolute path but rather to use
an environment variable, e.g. "IDM_IMAGEPATH:Check.gif".

Other graphics formats can be processed using a self-implemented graphics handler (GFX handler;
see function DM_PictureHandler in manual “C Interface - Functions”).

A.06.03.b 59

60 ISA DialogManager

2.8.3 Scaling
By specifying a scalestyle in the tile definition, the tile or picture will be resized to fit the available
space according to specific criteria.

Best practice: If possible, patterns should already be available in the correct or used size, as any
scaling is associated with a loss of sharpness or richness of detail.

“scale | noscale | numscale | propscale”

Determines the type of scaling of the pattern or image.

Definition
on Tile

Dynamic
setting

Meaning

noscale scalestyle_
none

The pattern or image is not scaled. setup.tiledpi has no impact.

scale scalestyle_
any

The height and width of the pattern or image are fully enlarged to
fit the available area.

propscale scalestyle_
prop

Height and width of the pattern or image are enlarged to the avail-
able area, while height and width proportions of the pattern or
image are maintained in any case. I.e. free spaces can be cre-
ated above and below or left and right.

numscale scalestyle_
num

The scaling of the pattern or image is done by a numerical scaling
divider. The scaling is done in quarter steps, i.e. 1.25-fold, 1.5-
fold, 1.75-fold, 2-fold, 2.25-fold, 2.5-fold, and so on.
A downscaling is done down to a maximum of 0.25-fold.

dpi scalestyle_
dpi

The pattern or image is always scaled according to the set screen
scaling.

Not
provided

scalestyle_
auto

The pattern or image is scaled according to the set screen scal-
ing. A scaling compatible to the previous version takes place.
Default value

See also

Attribute .scalestyle in manual “Attribute Reference”

2.8.4 Dynamically Changeable Attributess
The modifiable attributes can be found in the following table. It should be noted that .name on the one
hand and .width, .height and .pattern on the other hand are mutually exclusive, so that “get” leads to a
“can't get value” error message.

For variant tile resources, the attributes of the current tile variant are accessed; the current variant
can be queried and set using the .tile attribute of the setup object.

Table 5: Modifiable attributes of the tile resource

Attribute Data Type Index Range Description

.name string – File path of an image file.

.width integer – Width of the pattern in pixels.

.height integer – Height of the pattern in pixels.

.pattern string – Complete pattern as string.

.pattern[integer] string 1… .height Single lines of the pattern.
The length of each string must be equal to .width.

.scale boolean – Resizing to the available space.
Default value false (no resizing).

.scalestyle enum – Controls the display and scaling of a tile.
Default value scalestyle_auto

2.8.5 SVG Support
On WINDOWS and QT, the tile resource now also supports vector images in SVG format.

2.8.5.1 QT

The IDM for QT was already able to display SVG images, but only via a pixel-based proxy image that
was scaled accordingly. The .svg file extension is now recognized as an SVG image format and vec-
tor-based drawing is used when displaying it in the various objects. This ensures the best possible
reproduction of vector images for applications that are displayed on HiDPI screens.
For performance reasons, the pixel-based proxy image is used when drawing background tiles of
grouping objects in the tilestyle_tiled style.

Installation note: The QT package qt5-qtsvg must already be installed in order to make the cor-
responding SVG support library available and to ensure that an IDM application can be started.

2.8.5.2 WINDOWS

MICROSOFT DIRECT2D is used to ensure the support of graphic formats. The SVG support of
MICROSOFT DIRECT2D depends on the MICROSOFT WINDOWS version. As of the WINDOWS 10
CREATORS UPDATE, support is provided in a limited form.

Noteson the usage of the svg Format as ICON

The SVG format cannot be perfectly converted to an icon, so it is not suitable for displaying as a .pic-
ture of the treeview or notepage object. Nor is it suitable as an .icon of the window object. Unsightly
edges may appear at the transition between the transparent and drawn areas.

A.06.03.b 61

62 ISA DialogManager

Possible changes to the previous version:
As this graphics package uses different scaling methods than the WINDOWS GDI, patterns
(images) that need to be scaled for display may look different than in the previous versions of the
IDM. This applies in particular to patterns that are used as window icons or as images in the
treeview and notepage objects, as MICROSOFT WINDOWS requires the icon data type here.
Best practice: Patterns (images) are already stored in the required size.

The SVG support with MICROSOFT DIRECT2D

Support depends on the MICROSOFT WINDOWS version. As of the WINDOWS 10 CREATORS UPDATE, the
following SVG elements and attributes are supported:

Element Supported attributes

circle id, style, transform, cx, cy, r

clipPath id, style, transform, clipPathUnits

defs id, style, transform

desc id

ellipse id, style, transform, cx, cy, rx, ry

g id, style, transform

image id, style, transform, x, y, width, height, preserveAspectRatio, xlink:href

line id, style, transform, x1, y1, x2, y2

linearGradient id, style, x1, y1, x2, y2, gradientUnits, gradientTransform, spreadMethod,
xlink:href

path id, style, transform, d

polygon id, style, transform, points

polyline id, style, transform, points

radialGradient id, style, cx, cy, r, fx, fy, gradientUnits, gradientTransform, spreadMethod,
xlink:href

rect id, style, transform, x, y, width, height, rx, ry

stop id, style, offset

svg id, style, x, y, width, height, viewBox, preserveAspectRatio

title id

use id, style, transform, x, y, width, height, xlink:href

SVG presentation attributes

- clip-path

- clip-rule

- color

- display

- fill

- fill-opacity

- fill-rule

- opacity

- overflow

- stop-color

- stop-opacity

- stroke

- stroke-dasharray

- stroke-dashoffset

- stroke-linecap

- stroke-linejoin

- stroke-miterlimit

- stroke-opacity

- stroke-width

- visibility

Supported length units

The user-space length values and percentage length values as well as absolute unit identifiers: px, pt,
pc, cm, mm and in.

Image sources

The image element is only supported if its xlink:href attribute is set to a base64-encoded Image.

See also: https://learn.microsoft.com/en-us/windows/win32/direct2d/svg-support

A.06.03.b 63

https://learn.microsoft.com/en-us/windows/win32/direct2d/svg-support

64 ISA DialogManager

3 Programming Resources

3.1 message
With this resource objects can be defined which can be used for the definition of external events.
These events can be used in the Rule Language for instance with the built-in function sendevent().

The resource message is also used with the OLE interface of ISA Dialog Manager; please see
chapter “The message resource” of manual “OLE Interface” (definition and usage with the OLE inter-
face).

Definition

{ export | reexport } message <Identifier> { (<messageSpec>) };

Note

The argument messageSpec is not evaluated in the Rule Language when the message resource is
utilized for the definition of an external event.

More information on the argument messageSpec can be found in chapter “The message Resource”
of manual “OLE Interface”.

Example

message EvInformation;

on dialog start
{

...
sendevent(WnMain, EvInformation, “Dialogstart”);

}

window WnMain
{

...
on extevent EvInformation (string Info)
{ ... }

}

3.2 source
This resource is used to define the behavior of an object being the source of a Drag&Drop operation.
In contrast to other programming resources variants can be defined here.

The assignment to an object is carried out via the attribute .source. If this attribute is set you can
choose it as a source for a Drag&Drop operation.

Note

Drag&Drop is not supported by the IDM FOR MOTIF.

Definition

{ export | reexport } source <Identifier>
{

0 : .action <action_enum> [, <action_enum>] ;
.type <type_enum> [, <type_enum>] ;

{ <variant> : .action <action_enum> [, <action_enum>] ;
.type <type_enum> [, <type_enum>] ; }

}

As actions (<action_enum>) the values action_cut and action_copy are possible.

The following values for the type (<type_enum>) are available:

type_text
The text attribute of the object is transferred.

type_object
A DM-ID is transferred.

Example

The following example illustrates the definition of the source resource “Src” with two variants

The first variant permits the copying and cutting of texts. The second variant permits to copy the
object-ID.

The resource is then assigned to the listbox “Lb”.

source Src
{

0: .action action_cut, action_copy;
.type type_text;

1: .action action_copy;
.type type_object;

}

listbox Lb
{

.source Src;

A.06.03.b 65

66 ISA DialogManager

...
}

3.3 target
This resource is used to define the behavior of an object being the target of a Drag&Drop operation. In
contrast to other programming resources variants can be defined here.

The assignment to an object is carried out via the attribute .target. If this attribute is set you can move
another object onto this object by using Drag&Drop.

The structure is very similar to the resource source.

Note

Drag&Drop is not supported by the IDM FOR MOTIF.

Definition

{ export | reexport } target <Identifier>
{

0 : .action <action_enum> [, <action_enum>] ;
.type <type_enum> [, <type_enum>] ;

{ <variant> : .action <action_enum> [, <action_enum>] ;
.type <type_enum> [, <type_enum>] ; }

}

As actions (<action_enum>), action_copy, action_cut and action_paste are possible, with action_
paste = action_cut, action_copy.

In contrast to source the order of types and actions is analyzed. With help of the priorities list of types
the transfer format is defined. With the priorities list of actions the action is defined.

Example

target Tar
{

0: .action action_paste;
.type type_text;

}

listbox Lb
{

.target Tar;

...
}

A.06.03.b 67

68 ISA DialogManager

7

7 Bit characters 53

8

8 bit characters 53

A

accelerator 7, 11

language-dependent 13

Accelerator-Taste 11

action

Drag&Drop 65, 67

action_copy 65, 67

action_cut 65, 67

action_paste 67

alignment 49-50

alphanumeric characters 13

alphanumeric key 11-12

alt 12-13, 15, 17

ASCII 53

B

bit characters

8-bit 53

Bitmap-Cursor 29

black 19

bold 42

C

CAPS-Lock 15

character set 55

SYMBOL 55

WIN ANSI 55

Character set 42

Microsoft Windows 42

cntrl 12-13, 15

Code page conversion 43

Codepage 43

color 7, 9, 18, 21

predefined 21

color file 21

color intensity 19

colors 21

common colors 21

common cursor 31, 41

content string 50

contents string 48

cursor 7, 9, 29, 31

Bitmap 29

hotspot 30

cursor size 30

D

del 13

Dialog

multilingual 53

display 7, 36

Index

A.06.03.b 69

display string 48, 50

DM_InstallNlsHandler 53

Drag&Drop 65, 67

action 65, 67

type 65, 67

E

Editor 53

empty string 47-48

environment variable 59

export 9

external event 64

external pattern 58

externes Muster 58

F

Farbverlauf 19

font 7, 9, 39, 41

size 40

Font definition

Qt 43

font modifiers 42

font raster 41

Fontraster 41

format 7, 47

numeric 48

Regular Expressions 52

string 47-48

format function 47

format modificator 50

format stringformat description 47

formatfunc 47

formatting

hidden 48

numbers 48

function 10

keys 15

function key 12

function keys 14

G

GFX handler 59

Gradient 19

graphics format 58

graphics handler 59

graphics resource 59

grayscale 19

grey 19

grid

size 41

H

hidden formatting 48

HighDPI 21, 31, 41

hls 19

HLS color model 19

hotspot 30

hue 19

I

i18n 53

identifier 3, 7

IDM_AppIcon 59

IDM_DefIcon 59

70 ISA DialogManager

IDM_FONTRASTER_COMPAT 41

IDMfontraster_compat 41

IDMkeyboard 12

IDMlanguage 16, 55

input

pattern 48

input pattern 47

internal pattern 57

Internationalization 53

ISO 8859/1 53

italic 42

K

keys

cursor 13

function 14

modifier 13

special 14

L

language variant 55

layout resource 7, 9

color 18

cursor 29

display 36

font 39

format 47

text 53

tile 57

lightness 19

luminance 19

M

medium 42

message 7, 64

message catalogue 53

messageSpec 64

Mnemonic 11, 16

activate 17

Mnemonic key 16

modificator 42

modifier keys 12-13, 15

modularization 9

multilingual dialog 53

multilinguality 11

Muster

externes 58

N

nlscat 53

non-variant resource 10

normal 42

numbers

formatting 48

numeric format 48

O

oblique 42

octal notation 53

octal number 53

opt_fontraster_compat 41

A.06.03.b 71

P

Pattern

external 58

intern 57

portability 9

predefined color 21

programming resource 7, 10

message 64

source 65

target 67

R

raster size 40

raster wdith 41

Rasterbreite 41

real_visible 12

reference font 40

reference string 41

Referenzstring 41

Regular Expressions

format 52

resolution 21, 31, 41

resource 7, 9

accelerator 11

class 10

color 18

cursor 29

definition 9

dispaly 36

font 39

format 47

message 64

source 65

target 67

text 53

tile 57

rgb 19

rgb-value 19

roman 42

S

saturation 19

sendevent() 64

shift 12, 15

shift modifier 14

source 8, 65

special key 14

special keys 14

string

empty 47

SYMBOL character set 55

symbol font 55

system font 43

T

target 8, 67

text 7, 53, 55

catalogue 53

text catalogue 53

tile 7, 9, 57

external pattern 58

externes Muster 58

internal pattern 57

72 ISA DialogManager

Tile

external 58

intern 57

translation 53

type

Drag&Drop 65, 67

type_object 65

type_text 65

U

UI 21, 31, 41

V

variable 10

variant resource 10

visual feedback 12, 16

W

white 19

WIN ANSI character set 55

WINANSI code page 43

X

X-Cursor 32

A.06.03.b 73

	Notation Conventions
	Table of Contents
	1 Introduction
	2 Layout Resources
	2.1 accelerator and Mnemonic
	2.1.1 accelerator
	2.1.1.1 Menus and accelerators under Microsoft Windows

	2.1.2 Mnemonic

	2.2 color
	2.2.1 Predefined Colors
	2.2.1.1 Independent UI-colors
	2.2.1.2 Motif (X-Windows)
	2.2.1.3 Microsoft Windows
	2.2.1.4 Qt

	2.2.2 Dynamically changeable attributes

	2.3 cursor
	2.3.1 Bitmap-Cursor
	2.3.2 Predefined Cursor
	2.3.2.1 Independent UI-Cursor
	2.3.2.2 Motif
	2.3.2.3 Qt
	2.3.2.4 Microsoft Windows

	2.4 display
	2.4.1 Example

	2.5 font
	2.5.1 Calculating the Grid Size from a Reference Font
	2.5.2 Predefined UI-Fonts
	2.5.3 Font Definition
	2.5.4 Font Definition for Microsoft Windows
	2.5.5 Font Definition for Qt
	2.5.6 Dynamically changeable attributes

	2.6 format
	2.7 text
	2.7.1 Note on the use of symbol fonts under Microsoft Windows

	2.8 tile (pattern)
	2.8.1 Internal pattern (Bitmap)
	2.8.2 External pattern
	2.8.3 Scaling
	2.8.4 Dynamically Changeable Attributess
	2.8.5 SVG Support
	2.8.5.1 Qt
	2.8.5.2 Windows

	3 Programming Resources
	3.1 message
	3.2 source
	3.3 target

	Index

