
RULE LANGUAGE

A.06.03.b

This manual explains the Rule Language of the ISA Dialog
Manager that is used to program the dynamic behavior of the
user interface. Some of the topics are event and rule pro-
cessing, data types, extent of the Rule Language, syntax of
statements, and built-in functions.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 Introduction 11

2 Events 13

2.1 User Events 13
2.1.1 Objects and their User Events 15
2.1.2 Drag and Drop Events 23

2.1.2.1 Cut Event 24
2.1.2.2 Paste Event 24
2.1.2.3 Examples 24
2.1.2.4 Tips & Tricks for Drag & Drop and Clipboard 25

2.1.3 User Events with Special Inheritance 26
2.2 Internal Events 27
2.3 System Events 28
2.4 External Events 29

3 Rule Processing 31

3.1 Normal Rules 31
3.2 before Rules 31
3.3 after Rules 31
3.4 Processing Order 32

4 Named Rules (Subprograms) 35

5 Special Objects and Object Referencing 37

5.1 this 37
5.2 Object Referencing 37
5.3 null Object 40
5.4 Event Object thisevent 41

6 Data Types 43

6.1 Collection Data Types 44
6.1.1 Syntax of Expressions 45

A.06.03.b 5

6.1.2 List Size and Default Values 45
6.1.3 Access and Assignment of Collections 45
6.1.4 Automatic Conversion 46
6.1.5 Performance 47
6.1.6 Local and Global Variable 47
6.1.7 Relational Operators 48
6.1.8 Uninitialized variables 49

7 Functions 50

7.1 Function Called in Rules 51
7.1.1 Alias Name with Optional Code Page Definition 52
7.1.2 Calling Parameters of a Function during Runtime 53

7.2 Callback Function 55
7.3 Canvas Function 55
7.4 Data Function 56
7.5 Format Function 57
7.6 Reloading Function 57
7.7 Simulation of Functions 57
7.8 Functions in modularized dialogs 60

8 Global Variables 61

8.1 Variable Definition 61
8.2 Variable Definition with Initialization 62
8.3 Configurable Variables 62
8.4 Protecting Variables against Changes 63
8.5 Attributes of Global Variables that Can Be Changed Dynamically 63

9 Validity Range for Better Type Checking 65

9.1 Restrictions 66
9.2 Access and Value Tests 67
9.3 Derivation of the Validity Range 68
9.4 Enhancement of the IDM Syntax 69
9.5 Attributes in Relation to Validity Ranges 70

10 Actions in the Program Block 71

10.1 General Structure of a Statement 71
10.2 Commenting Instructions 72
10.3 Comments 73
10.4 Operators in the Rule Language 74

10.4.1 Assignment Operators 74

6 ISA DialogManager

A.06.03.b 7

10.4.2 Comparison Operators 74
10.4.3 Arithmetical Operators 75
10.4.4 Logical Operators 75

10.5 Brackets in the Rule Language 76
10.6 Changing Attribute Values 77
10.7 Control of the Program Flow 77

10.7.1 if-then-else 78
10.7.2 if-elseif-else 78
10.7.3 case Statement 79

10.8 Loop Constructs 81
10.8.1 for Loop 81
10.8.2 foreach Loop 82
10.8.3 while Loop 83

10.9 Calling Named Rules 83
10.10 Local Variables 83

10.10.1 Normal Local Variables 84
10.10.2 Static Variables 85

10.11 Return of Values 86
10.12 Call of Application Functions 87

11 Built-in Functions 88

11.1 append() 88
11.2 applyformat() 91
11.3 atoi() 92
11.4 beep() 93
11.5 closequery() 95
11.6 concat() 97
11.7 countof() 99
11.8 create() 101
11.9 delete() 104
11.10 destroy() 107
11.11 dumpstate() 109
11.12 exchange() 113
11.13 execute() 116
11.14 exit() 120
11.15 fail() 122
11.16 find() 124
11.17 first() 127
11.18 getvalue() 128

11.19 getvector() 130
11.20 indexat() 132
11.21 inherited() 134
11.22 insert() 135
11.23 itemcount() 139
11.24 itoa() 141
11.25 join() 142
11.26 keys() 145
11.27 length() 146
11.28 load() 147
11.29 loadprofile() 148
11.30 max() 149
11.31 min() 150
11.32 parsepath() 151
11.33 print() 154
11.34 querybox() 155
11.35 queryhelp() 157
11.36 random() 158
11.37 regex() 159
11.38 run() 165
11.39 save() 166
11.40 saveprofile() 167
11.41 second() 169
11.42 sendevent() 170
11.43 sendmethod() 172
11.44 setinherit() 173
11.45 setvalue() 174
11.46 setvector() 176
11.47 sort() 179
11.48 split() 181
11.49 sprintf() 182
11.50 stop() 188
11.51 strcmp() 189
11.52 stringpos() 191
11.53 strreplace() 192
11.54 substring() 196
11.55 tolower() 197

8 ISA DialogManager

A.06.03.b 9

11.56 toupper() 198
11.57 trace() 199
11.58 trimstr() 200
11.59 typeof() 201
11.60 updatescreen() 202
11.61 valueat() 203
11.62 values() 205

12 Formal Syntax of Rules and Statements 207

12.1 Operators 207
12.2 Expression 208
12.3 Statements 217

Index 221

10 ISA DialogManager

1 Introduction
The behavior of the generated dialog objects is described in the IDM rule base.

A rule consists of the

event and

action part.

Basically, the IDM rules consist of the so-called "event line" and a "program block" (in braces) which
will be executed as soon as the event described in the event line occurs.

The rule processing is triggered by an event that is directly or indirectly initiated by the user. This
event is described in the "event line".

An event is an action made by the user or by the IDM, referring to a IDM object or its attributes (e.g.
window relocating, resizing, clicking of buttons, text input, etc.).

There are the following event types:

user events

keyboard and help events

internal events

object class events

system events

external events.

The functionality of the rules is described by the program block, set in braces, following the event line.
With this rule component the entire dialog execution including its functionality can be described by the
IDM.

Actions are for example:

changing attributes or attribute values

calling application functions

calling built-in functions.

<event line>
{
 <program block>
}

In this definition, the program block is executed each time the event is occurring.

A.06.03.b 11

12 ISA DialogManager

Precondition

In the following definition, the program block will be executed only, if an additional precondition is ful-
filled.

The keyword for the additional precondition is if.

The program block consists of a sequence of assignments and statements concerning conditional pro-
gram execution.

<event line>
if(<additional precondition>)
{
 <program block>
}

There are further control structures to influence the program flow, e.g. the possible sub-rules "if then
else endif".

Note

The precondition ("if") has principally the same structure as the "if" in the conditional program flow.
However, there is one difference:

the preconditional "if" is checked before each rule execution, whereas

the conditional "if" is only checked when the rule is processed.

Thus the rule succession is not relevant for the preconditional "if" since a rule cannot block another
rule, if the preconditions are fulfilled.

2 Events
The event line is started with the keyword on.

Every rule may have a maximum of one event line which, however, can consist of several events for
one object

The rule-triggering events can be divided into the following groups:

User events

Keyboard and help events

Internal events

System events

External events.

2.1 User Events
Events referring to a certain object, model or object class are called "user events". It is decisive for this
kind of events that the user is the responsible cause for the event, i.e. the relevant event has been
triggered as a result of user actions.

The syntax for this kind of event line is as follows:

on <object ID> <event> { , <event> }

This definition shows that a rule can be bound to only one object, but it can be bound to several events
separated by a comma.

Object IDs are the identifiers for existing IDM objects such as “OK_Button”, “TestWindow”, etc.

Event types describe user-initiated events such as “selected”, “moved”, “closed”.

Example

on Pushbutton select
{
 Action;
}

The following event types are provided by the IDM.

A.06.03.b 13

14 ISA DialogManager

Event Type Description

activate The indicated object has been activated. This event can be triggered
for all objects whose active states can be clearly recognized by the
user.

changed Value of indicated variable or object attribute has been changed.

charinput A character was input into an edittext. It can e.g. be checked now.

close Close mechanism (e.g. closebox) of a window was used.
A sub-tree of a treeview has been closed.

cut The user has cut an object by Drag and Drop.

dbselect The user has selected the object with a double click, i.e. has edited
an object.

deactivate The user has deactivated an object, e.g. if he selects a checkbox
which has already been activated, so that it is now deactivated.

deiconify The icon for a window has been re-opened.

deselect An object has been deselected (by selecting another object or by end-
ing the input in an edittext with the Return key).

deselect_enter A text array input has been canceled by pressing the Return key.

extevent An external event has occurred.

finish End of a dialog or a module.
An application has been disconnected.

focus The input focus has been set on the indicated object.

help The user has asked for help for the current object. Calling the help
function is carried out according to the requirements of the relevant
window system (e.g. on Motif & Windows: F1 key, for Qt shortcut
SHIFT+F1).

hscroll The user has scrolled horizontally.

iconify The iconifybox of a window has been activated -> window becomes
an icon.

key The user has pressed the accelerator given after the keyword key for
the object for which this rule has been written (see also "Keyboard-
and Help-events").

Event Type Description

modified The user has finished editing a text after actively changing it.

move The user has moved the window.
A toolbar has been moved. With a docked toolbar the move event
occurs only if the movement changes the attributes .dock_offset or
.dock_line.

open A menubox has been opened.
A sub-tree of a treeview has been opened.

paste The user moved an object by Drag and Drop and has dropped it on
another object.

resize The size of a window has been changed.
With a splitbox the size of a split area has been changed.

scroll The user has scrolled.

select An object has been selected by user.

start Start of a dialog or a module.
A connection to an application has been established.

vscroll The user has scrolled vertically.

2.1.1 Objects and their User Events
All events which can be triggered by the user for an object are listed in the following chart.

Object Event Description

Application extevent

finish End of dialog (execution only if .local =
true).

start Beginning of dialog (execution only if
.local = true).

Canvas extevent

focus

help

Checkbox extevent

A.06.03.b 15

16 ISA DialogManager

Object Event Description

focus

help

key

select, activate Checkbox "on".

select, deactivate Checkbox "off".

Dialog deactivate A timeout occurred.

extevent

finish

help

key

start Dialog has been started.

Edittext charinput

deselect Edittext has been exited by a mouse
click or by an unallowed key.

deselect_enter Edittext has been exited by pressing
the Return key.

extevent

focus

help

key

modified Contents of edittext has been
changed.

select, activate Clicking on edittext.

Groupbox extevent

help

key

Object Event Description

scroll, hscroll Scrolling has been carried out hori-
zontally.

scroll, vscroll Scrolling has been carried out ver-
tically.

select Clicking into groupbox without hitting
anything else.

Import none

Image dbselect

focus

help

key

select

Listbox dbselect Double clicking on item.

extevent

focus

help

key

scroll, hscroll Horizontal scrolling

scroll, vscroll Vertical scrolling

scroll, activate Item has been selected.

select, deactivate Item has been deactivated (only in
multiselection).

Menubox extevent

Menuitem extevent

help

select Button as menuitem has been selec-
ted.

A.06.03.b 17

18 ISA DialogManager

Object Event Description

select, activate Checkbox or radiobutton as menu-
items were selected.

select, deactivate Checkbox as menuitem has been
deselected.

Menuseparator extevent

Messagebox extevent

Module extevent

finish Module is de-loaded.

start Module has been loaded and started.

Notebook extevent

focus

help

key

Notepage activate

deactivate

extevent

focus

help

hscroll

key

scroll

select

vscroll

Poptext activate

charinput

deselect

Object Event Description

deselect_enter

extevent

focus

help

key

modified

select User has selected a new item.

Pushbutton extevent

focus

help

key

select Clicking.

Radiobutton activate Clicking on a non-active radiobutton.

deactivate

extevent

focus

help

key

select

Rectangle dbselect

extevent

focus

select

help

key

Scrollbar extevent

A.06.03.b 19

20 ISA DialogManager

Object Event Description

focus

help

key

scroll

Setup none

Statictext extevent

focus

help

key

select

Statusbar extevent

focus

help

key

paste

select

Spinbox charinput

cut

extevent

focus

help

key

paste

select

scroll

Object Event Description

Tablefield activate Object in tablefield has been activ-
ated.

charinput The user has entered a valid character
in the edittext attached to the table-
field. It can now e.g. be checked and
the application can react on a key
input in the tablefield.

deactivate Object in tablefield has been deac-
tivated.

dbselect Double-click on object in tablefield.

extevent

focus Focus has been changed in a table-
field or set on a tablefield.

help Help event has been sent to the table-
field.

hscroll Tablefield has been scrolled hori-
zontally.

key A key not needed by the tablefield has
been pressed.

modified Object in tablefield has been changed.

scroll Tablefield has been scrolled.

select Tablefield has been selected.

vscroll Tablefield has been scrolled vertically.

Timer select

Treeview close An item has been closed.

cut

dbselect

extevent

focus

A.06.03.b 21

22 ISA DialogManager

Object Event Description

help

key

open An item has been opened.

paste

scroll, hscroll Treeview has been scrolled hori-
zontally.

scroll, vscroll Treeview has been scrolled vertically.

select, activate An item has been selected.

select, deactivate Item has been deactivated (only in
case of multiple selection).

Window activate

close

deactivate

deiconify

extevent

help

iconify

key

move

resize

scroll + hscroll Horizontal scrolling

scroll + vscroll Vertical scrolling

select Clicking into window without hitting
anything else.

Note for IDM on Microsoft Windows

The event "dbselect" is always carried out without "activate" and "deactivate", because they have
already been created in the former "select"-event.

Examples for Event Lines

on dialog start
{

program block
/* execution on DM program start */

}

on WINDOW close
{

program block
/* on closing any window, i.e. on

activation of close button */
}

on OK_Button select
{

program block
/* on activation of OK_Button */

}

on Window.title changed
{

program block
/* on change of window title */

}

on Window.title changed
if (Variable_1 = 12)
{

program block
/* on change of window title

AND if Variable_1 contains the value 12 */
}

2.1.2 Drag and Drop Events
In this chapter the events which are triggered by Drag&Drop operations are described. As with clip-
board actions the relevant events are sent to the object. A Drag&Drop operation triggers a cut event at
the source object and a paste event at the target object.

Note: The order of the events is arbitrary!

The Drag&Drop here described currently works on Microsoft Windows systems only.

A.06.03.b 23

24 ISA DialogManager

2.1.2.1 Cut Event

On cutting the IDM does not automatically carry out a delete action, but reacts to the cut event. The
attributes thisevent.type and thisevent.value are invalid and thus not used.

2.1.2.2 Paste Event

This event triggers a paste reaction.

thisevent.type contains a type_enum and shows the assumed format.

thisevent.value contains the data (DM data type).

When processing, note that .cut_pending = true, if the source object and target object are the same in
a move operation (Cut + Paste).

2.1.2.3 Examples

The examples for these events are in directory …\examples\dragdrop.

Module with Standard Rules

The module dnd_defa.mod contains rules for the standard behavior of several objects.

Currently there are rules for Cut and Paste with the format type_text available for the objects edittext,
listbox and tablefield.

Plain Rules

rule boolean DnD_default_cut (object Obj input);
Cut rule calling the corresponding rule for an object

rule boolean DnD_default_paste (object Obj input, anyvalue Event input);
Paste rule calling the corresponding rule for an object

Special Rules

rule boolean Edittext_cut (object Obj);

rule boolean Edittext_paste (object Obj, anyvalue Type, anyvalue Value,
anyvalue Index);

rule boolean Listbox_cut (object Obj);

rule boolean Listbox_paste (object Obj, anyvalue Type, anyvalue Value,
anyvalue Index);

rule boolean Tablefield_cut (object Obj);

rule boolean Tablefield_paste (object Obj, anyvalue Type, anyvalue Value,
anyvalue Index);

The return value of all rules indicates whether the processing has been executed successfully.

Dialog “dnd_et.dlg”

This dialog is a Drag&Drop example for an edittext. The rules of the module dnd_defa.mod are
used.

Dialog “dnd_lb.dlg”

This dialog is a Drag&Drop example for a listbox. The rules of the module dnd_defa.mod are used.

Dialog “dnd_tb.dlg”

This dialog is a Drag&Drop example for a tablefield. The rules of the module dnd_defa.mod are
used.

Dialog “solitair.dlg”

This stand-alone dialog illustrates how to use the Drag&Drop data type type_object.

2.1.2.4 Tips & Tricks for Drag & Drop and Clipboard

Cut rules and paste rules should always be able to operate independently, because of the following
aspects:

The source and the target are often different objects which do not necessarily occur in one and the
same application.

Depending on the user input the order of the events may be arbitrary. It is e.g. possible to cut or
copy once via keyboard at one and the same object, carry out a Drag&Drop operation and two
hours later insert 10x.

As soon as "Cut" is allowed at an object, this operation may be triggered at any time. Before the rule
"on Cut" is executed other rules might access the object. To avoid that important information is inad-
vertently falsified, the attribute .cut_pending is set to true.

This is why you should note the following when programming:

As long as .cut_pending = true no attributes can be changed at the object, i.e. rules, which might be
called between the "Cut" triggering and the cut event (e.g. by on focus), cannot change the object per
default.

Attention

In a Drag&Drop move operation on one and the same object, the paste event occurs before the cut
event, i.e. with .cut_pending = true.

If, nevertheless, a rule is to reset attributes you may set .cut_pending := false. To inform the following
cut rule you should set .cut_pending_changed := true.

For the processing of the format DM_Object in the paste rule you should check if the object really is
available at that moment.

A.06.03.b 25

26 ISA DialogManager

2.1.3 User Events with Special Inheritance
To process also key events in the ISA Dialog Manager Rule Language, these key events can be quer-
ied as follows:

on <object ID> key <accelerator>

<object ID>
Name of an object, a Model or a Default defined in the dialog.

<accelerator>
Name of an accelerator defined in the dialog.

This event is internally inherited in the IDM according to the following scheme, so that a rule has not to
be defined for each object (if, e.g., the key F1 was pressed).

Figure 1: Inheritance at key/help-rules

This inheritance is interrupted as soon as one of these objects has defined a rule for this key.

Example

dialog Example
accelerator FK5
{

0: F5;
}

window Window
{

.xleft 10;

.width 100;

.ytop 10;

.height 200;

child pushbutton
{

.xleft 10;

.ytop 10;

.text "pushbutton";
}

}

on Example key FK5
{

print "Key F5 was pressed";
}

The rule is executed as soon as F5 is pressed in this window.

The same mechanism of hierarchical inheritance is valid for the help event, i.e. only one rule is
responsible for help. This rule is attached to the dialog.

2.2 Internal Events
Events referring to the change of an object attribute or of a variable are called “internal events”.

on <object ID><attribute name> changed

Please refer to the descriptions in the “Attribute Reference” for the attributes which can be used here.

The following is valid for variables:

on <variable name>.value changed

See Also

Attribute value

Examples

on Variable_A.value changed
{
}

on Pushbutton.xleft changed
{
}

A.06.03.b 27

28 ISA DialogManager

2.3 System Events
Events which refer to the entire IDM program system are called “system events”. These events are
used to formulate rules for dialog or module starts and dialog or module ends.

The same applies to the object application.

Start Rule

on dialog start
Event that indicates the start of the IDM program processing.

on module start
Event that indicates the start of the module processing.

on application start
Event that indicates the start of an application object processing.

Finish Rule

on dialog finish
Event that indicates the end of the IDM program processing.

on module finish
Event that indicates the end of the module processing.

on application finish
Event that indicates the end of an application object processing.

The following system events are possible:

Event Type Description

application start Event which indicates the start of the processing of the "application" object.

application finish Event which indicates the end of the processing of the "application" object.

dialog start Event which indicates the start of the dialog processing.

dialog finish Event which indicates the end of the dialog processing.

module start Event which indicates the start of the dialog processing.

module finish Event which indicates the end of the dialog processing.

Examples

on dialog start
{
}

on dialog finish
{
}

Typically, the start rule contains statements for initializing data, the finish rule contains statements for
a controlled exiting of the IDM (e.g. closing all windows).

The start rule should always be defined; at least one rule containing the keyword exit must be defined
in addition.

Execution of the rule containing the keyword exit calls the finish rule.

2.4 External Events
External events are events that are to be treated equally to the dialog events in the ISA Dialog Man-
ager as concerns their assignment and their processing. However, their source is not controlled by
the IDM. One possible source of such events can e.g. be a signal handler which generates this event
so that the dialog can respond to it.

An external event is a mixture of dialog event and parametrized rule.

As with parametrized rules, the number of parameters is limited to 16.

It has to be noted though, that only 14 parameters are usable when used from Rule Language. There-
fore it is reasonable to define external events with a maximum of 14 parameters (see also built-in func-
tion sendevent()).

on <object ID> extevent <event ID> ([<data type> <parameter name> <type>])

anyvalue <event ID>
Indicates an identifier that is unique for the respective object and refers to the external event.
For instance, a message resource may be used here.

External events are sent to an object and then passed to the object's Default until an object processes
the event.

Example

on Object1 extevent 4711 (integer ErrCode, string ErrText);
on Object2 extevent EvSave (boolean Success, string Text);

The execution of a rule attached to an external event is registered by the application with the interface
functions DM_QueueExtEvent or DM_SendEvent.“Registered” means that the rule is not executed

A.06.03.b 29

30 ISA DialogManager

immediately, but that the external event is queued and then processed according to the dialog event
mechanisms.

See Also

C functions DM_QueueExtEvent() and DM_SendEvent() in manual “C Interface - Functions”

3 Rule Processing

3.1 Normal Rules
Normal rules are rules which do not have a further keyword in the event line. These rules have a fix-
edly defined kind of processing that is described in the following.

These objects to which rules can be defined have an internal hierarchy. A visible object (instance) can
be based on a model which itself can be derived directly from the corresponding default. This object
hierarchy plays an important role when inheriting attributes or rules. Please note that these hierarchy
steps/levels may not be mixed up with the parent-child-relation that usually does not have any influ-
ence on the inheritance of attributes and rules.

If normal rules are defined for different hierarchy levels, rules that are defined on a lower hierarchy
level will apply, but the rest will be ignored (as is the case with attributes). If rules are defined for an
object, the corresponding model or default, these rules will only apply to the object. Those rules which
were defined for the model or the default do not apply because they are minor to the object rules. In
this case the rules behave identically with the attributes.

Since this behavior is too rigid for the rule processing, additional rules can be executed by using fur-
ther keywords. Such keywords are described in the following chapters.

3.2 before Rules
With the keyword before rules can be marked so that they are carried out in any case before the nor-
mal rules. Such a keyword is given after the event line.

Syntax

on { <object ID> } <event> { , <event> } before

or

on { <object ID> } <attribute> changed before

<object ID> can only be omitted if the rule is defined within an object definition.

When searching for these before rules, the IDM starts at the relevant default of the object and then fol-
lows the model hierarchy to the actual object. All found before rules will be carried out.

3.3 after Rules
With the keyword after rules can be marked so that they are carried out in any case after the normal
rules. This keyword is given after the event line.

A.06.03.b 31

32 ISA DialogManager

Syntax

on { <object ID> } <event> { , <event> } after

or

on { <object ID> } <attribute> changed after

<object ID> can only be omitted if the rule is defined within an object definition.

When searching for these after rules, the IDM starts at the actual object and then follows the model
hierarchy to the relevant default. All found after rules will be carried out.

3.4 Processing Order
The different kind of rules are processed in a fixedly defined order which can be described as follows:

If several rules are defined for an object and an event, the order in which the rules have been defined
is decisive for the processing. However, this kind of order should only be used if the rules are inde-
pendent of each other.

If an event occurs, the IDM begins searching gradually for suitable events. In doing so, the IDM
searches first for rules beginning with before in the corresponding object default. Then the IDM looks
for rules belonging to the object models. Finally, the IDM checks at the object itself whether there is a
defined before rule. In the meantime all found rules are being processed.

Afterward the IDM searches for a normal rule with the object and, if no objects can be found, the IDM
advances to the corresponding model. If, however, a rule has been defined for the occurred event, the
IDM will not search for a model. At the model the IDM checks whether a suitable rule has been
defined. If this is the case, the rule will be processed and the search will be broken up.

Finally the IDM restarts searching for event rules at the object; this time, however, it searches for
events marked by the keyword after. From the model the IDM advances to the corresponding model
or default to search for rules. In doing so, all found rules will be processed.

There is a deviation from this scheme for the rules which are bound to key events (key) and help
events (help). For these events the IDM searches for rules also at the object parent, if no suitable rule
could be found during the whole searching procedure. In doing so, a help system in form of a rule can
be bound very easily by defining a corresponding rule in the dialog.

The following diagram illustrates the search for rules. In this picture a model directly derived from the
default is assigned to the object.

Figure 2: Order of Rule Processing

Example

For a window object the following four rules are defined:

1. on WINDOW close before

2. on Window1 close

3. on WINDOW close

4. on Window1 close after

The order thus is: 1-2-4.

Rule 3 will never be processed due to rule 1.

Supposing that for a pushbutton the following five rules have been defined:

1. on PUSHBUTTON select

2. on OKButton select

3. on PUSHBUTTON select after

4. on OKButton select before

5. on OKButton select after

The order then is: 4-2-5-3.

Rule 1 will never be processed due to rule 2.

A.06.03.b 33

34 ISA DialogManager

As an example we can mention here a system for the data input. In this system many windows are
defined which process the contents through an OK button and which ignore the contents by a Cancel
button. After pressing either of the two buttons the window is closed.

The rules can be defined so that a rule which closes the corresponding window is bound to the model
of the Cancel button. Doing the same for the OK button is more difficult, since a window-specific pro-
cessing has to come first. The following method can be used:

Each instance of the OK button is bound to a rule which calls the current function and the model of the
OK button is bound to an after rule which always closes the window. In this way, the closing of the win-
dow will be centrally and does not always have to be programmed.

4 Named Rules (Subprograms)
Besides the possibility of binding rules to objects, there is also the possibility to define rules inde-
pendently of an object. These rules are used like subprograms and can be called from several pro-
gram places. The IDM can never call this rule by a user interaction, but always by another rule.

These so-called named rules can have up to 16 parameters. These parameters can be considered
mere input values, mere output values or input/output values from the perspective of a rule. This has
to be defined in the declaration of the parameters.

Instead of the keyword on these rules begin with the keyword rule to mark that it is a completely dif-
ferent rule type.

Syntax

rule <return type> <rule name> ({ <parameter> { , <parameter> } })
{

<statements>
}

parameter ::=
<data type> <parameter name> { := <default value> } { <kind> }

<parameter> can occur up to 16 times, i.e. the rule can have up to sixteen parameters.

<return type>

<data type>
All data types that exist in the IDM are available as valid data types for rule parameters and
rule return value types. For the return value type there is also the type void which marks that
the rule does not return anything.

<rule name>

<parameter name>
This has to be a valid identifier.

<default value>
Default values can be defined for input parameters (input). These parameters then do not
have to be specified when the rule is called.
Parameters with default values must be at the end of the parameter list!

Attention
Optional parameters are not supported by the control object and the message resource. It is
currently not possible to use default values when programming an OLE Server or an OLE Cli-
ent with the OLE Interface.

A.06.03.b 35

36 ISA DialogManager

<kind>

input (default)
only input parameter

output
only output parameter

input output
input as well as output parameter

Here input and output is always seen from the perspective of the rule being defined.

Example

rule integer Add (integer Arg1 input, integer Arg2 input)

This additional rule has two figures as input parameters; two parameters will be added and will have
the result "sum of addition".

rule void CheckObjects ()

This defines a rule which is without parameter and which does not have any return value.

5 Special Objects andObject
Referencing
In the following chapters you will find the description of how objects can be referenced in the interior of
rules. Furthermore, two special objects will be introduced which facilitate the access to objects con-
siderably.

5.1 this
In the this object available in every rule always the current object which has triggered the rule pro-
cessing will be saved. In doing so, rules can be bound to models which only affect the current instance
of the model. This is why normally all rules defined for models access the current object by this and
start the relevant actions from there. The model will be accessed directly in the rules only very sel-
dom. The same applies to changes to the rules.

Example

A model of a pushbutton will be defined as follows:

model pushbutton OK {}

The window is to be accessed in a rule. This would look as follows:

!! Rule is defined at the model
on OK select
{

!! Rule accesses the corresponding window
!! via the instance

 this.window.visible := false;
}

If the rule accessed the window via the object name, the reaction would be undefined because the
instances are usually made visible individually and they would not inherit the visibility from the model
any more.

5.2 Object Referencing
There are two ways to reference objects.

By unambiguous names, i.e. the object has a clear name or a full path:

Example
END_Button
MyWindow.OKButton

By parent specification, i.e. relating the object to a parent or child.

A.06.03.b 37

38 ISA DialogManager

Examples

Object.parent
addresses the parent of the object;

Object.window
addresses the window in which the object is located.

Object.groupbox
addresses the groupbox in which the object is located.

The two possibilities of object referencing described above can be used in the event, condition and
action lines, i.e., an object can be referred to with an ambiguous name or with relations.

The term "relations" summarizes the possibilities of referencing the objects among each other. The fol-
lowing keywords are available to form a relation:

child[i]
Sets the child "i" of an object (window, groupbox, menubox).

firstchild
Sets the first child of an object.

firstmenu
Indicates the first menu of an object.

groupbox
Indicates the groupbox in which the object is located.

lastchild
Sets the last child of an object.

lastmenu
Indicates the last menu of an object.

menu[i]
Requests child "i" in the menu hierarchy of an object.

parent
Indicates the parent object.

this
Refers to the object which has triggered the relevant event.

window
Indicates the next (parent) window higher in the hierarchy.

Figure 3: Reference Options

To refer to a certain object in the hierarchy, several of the keywords named above can be strung
together. At the end of such a referencing action, the attributes of the thus found object can be spe-
cified.

<Object>::=
 <Objectpath>{<Relation>}[<Attribute>]

<Objectpath>::=
 <Objectidentifier>{.<Objectidentifier>}|
 <Variable>|
 this

Example

{
 MainWindow.ytop := this.window.ytop + this.window.height;
}

Here the window "MainWindow" is positioned at the bottom edge of the window in which the object
this is located.

Note

Use of relations is appropriate only if the general relationships of objects to each other are already
known.

A.06.03.b 39

40 ISA DialogManager

If dynamic objects are generated, this way of object referencing is often the best in order to indicate an
object.

Forward Referencing

Apart from referencing already defined objects, it is possible at certain positions to define objects after
referencing:

in rules (expressions) and

in attributes of objects.

5.3 null Object
The null object is an object with a special identifier, the IDM ID 0. This object can be used to reset
resource attributes. It can be returned by DM_SetValue, and can be used for DM_GetValue, or for
function arguments.

The null object is type-independent, which means that there is only one null object for all resources.
The null object can be used for all data types which are >= DT_instance. In DM_GetValue, the real
type of the null object depends on the attribute type.

Implications

object.text := object.accelerator
False is returned even if no accelerator is linked to the object, since the text is the type DT_text
and the accelerator is of the type DT_accel.

object.text := null
Eliminates the text in the object.

Definition:
default pushbutton
{
}
model pushbutton PBM
{
 .fgc RED;
}
pushbutton PB1
{
}
pushbutton PB2
{
 .model PBM;
}
pushbutton PB3
{
 .model PBM;

 .fgc null;
}

In this definition, the pushbuttons PB1 and PB3 do not have a color, PB2 has the foreground color
RED.
The assignment explicitly prohibits that PB3 inherits the color from its model.

5.4 Event Object thisevent
Apart from the other special objects setup and this, there is the special object thisevent.

With the help of the keyword thisevent you can obtain information on a current event that has
occurred. It returns the (virtual) event which possesses various attributes. These attributes can be
read.

Attributes of Event Object thisevent

Attribute Type Significance Valid for

.accelerator object accelerator identifier key

.attribute attribute changed attribute changed

.count integer number of timer events that
occurred

select in timer

.event_code integer code of external event extevent

.eventcount integer number of events all events

.event[EV] boolean true if EV is included all events

.event[I] event type of event I all events

.index integer selected item select, cut, paste
in listbox, poptext, treeview

.index index selected field select, cut, paste
in tablefield

.type enum kind of object affected by
Drag-and-Drop operation

paste

.value anyvalue data that has been moved
by an Drag-and-Drop oper-
ation

paste

.x integer x-coordinate of mouse (in
pixels)*

select in window, groupbox

A.06.03.b 41

42 ISA DialogManager

Attribute Type Significance Valid for

.y integer y-coordinate of mouse (in
pixels)*

select in window, groupbox

* Mouse coordinates are available only in the objects window and groupbox, and are relative to the
object to which the event refers.

If an attribute is not valid, it contains void data. The existence of such data can be inquired with the
built-in function: typeof.

A rule can be triggered by several events at the same time. All events are contained in the (indexed)
attribute .event[I].

The number of events can be requested with .eventcount.

If .event is indexed with an integer value, an event is returned that occurred at the same time.

If .event is indexed with a value of type event, the return value is boolean true if the indexed event is
one of the events that occurred.

You can enter an arbitrary event for EV; you can e.g. query if there is a special event: .event[select].

6 Data Types
Like in other programming languages, in the Rule Language different data types are defined which
are described below.

Data Type Description

anyvalue This data type is an arbitrary data type. Only by current allocation it gets its
actual data type. In a value defined with this data type everything can be saved.
On inquiring it is important which kind of value has been saved last.

attribute This data type is an attribute of the ISA Dialog Manager. It can be assigned all
attributes defined by the IDM like .visible or a user-defined attribute.

boolean This data type represents a boolean value. Its values are either true or false.

class This data type specifies the class of an object or resource. Values include, for
example, classes such as pushbutton, color, function, ...

datatype This data type represents a data type. Values such as string, object or integer
can be stored here.

enum This data type is an enumeration type. Here values defined by the IDM are
stored. This enumeration type is needed for example by the messagebox, if the
user presses one of the offered pushbuttons.

event This data type represents an event in the ISA Dialog Manager. Here values
such as select, dbselect, keyand help can be stored.

index This data type can be used for the addressing of two-dimensional attributes
such as the contents of a tablefield. In this data type two whole numbers can be
stored, which together address a row and a column, i.e. exactly one cell.

integer This data type represents a whole number (integer). The value range is from -2
31 to 2 31.

method This data type represents a method in the ISA Dialog Manager. It can adopt val-
ues like :insert, :delete, :clear or :exchange.

object This data type represents an object in the sense of the IDM, i.e. everything that
has a name or can get a name is an object. This applies to all resources, func-
tions, variables, rules and objects.

pointer This data type represents an unknown type for the Rule Language. It can be
used to notice application-specific data in the dialog without that the dialog hav-
ing to know the contents of the data.

A.06.03.b 43

44 ISA DialogManager

Data Type Description

string This data type represents a character string of any length in the ISA Dialog Man-
ager. The length will be adapted automatically to this type when allocated. In
this way, no measures have to be taken by the application..

6.1 Collection Data Types
The following collection data types are allowed in the IDM. Please note that only scalar types are
permitted for the addressing as well as for the addressed single values. Therefore a structure of mul-
tidimensional lists is not possible.

Table 1: Data types for collections

Data
Type

Meaning

list This data type defines a list of arbitrary values in the addressing range 0 … 231. Via 0 the
default value is addressed, which is inherited by all list values. This data type is intended
and optimized for the manipulation of lists in the Rule Language.

vector This data type defines a list that contains values of the same type. There is no default
value. Therefore, the addressing range is from 1 … 231. This data type is especially inten-
ded for communication with object attributes and is not optimized for fast manipulation.

refvec This data type defines a list that contains only values of type object. The addressing
range is 1 … 231 and does not provide a default value. Each object ID is only included
once, a null is not added to the list.

matrix This data type defines a two-dimensional array whose values can be addressed with the
index data type. If the specified row (first value of the index) or the column (second value
of the index) is 0, it is a default value that is passed on in the addressing order [0,0] →
[row,0] → [0,column] → [row,column].

hash This data type defines an associative array with any scalar addressing range and arbit-
rary values and an optional default value that is returned for an access that does not con-
tain a key.

Similar to predefined vector and matrix attributes like .content[], .userdata[] etc. an expansion of col-
lections directly after their last element is possible and allowed.

However, it is not possible to use these collection data types for user-defined attributes. User-defined
and predefined attributes do not have a unique assignment (attributes exist on an object in both a
scalar and a field variant) and allow for unindexed access to the default value.

6.1.1 Syntax of Expressions

List and Hashes

Collections with the data types hash, list, matrix, refvec or vector can be defined using the following
syntax within the rule code. A definition in the static part of a dialog or module is not possible with
expressions, only constant values may be used. Without explicitly specifying a list data type, a list of
the data type list is created. When the reference operator => is used, a hash (associative array) is
automatically created, with the expression before => defining the key or index, and the second defin-
ing the value.

Attention

For compatibility reasons, index expression takes priority. Thus, to build a two-element list of two
integer values, the list data type should be prepended.

Syntax

<list> = [<data type>] '[' [<expression> { ',' <expression> }] ']'
<hash list> = [<data type>] '[' [<expression> '=>' <expression>

{ ',' <expression> '=>' <expression> }] ']'

Examples

[1, .xleft, 17+4, Wi.Pb]
["CBS" => 2, itoa(7) => 7]
matrix[[1,1]=>"first name", [1,2]=>"last name", [1,3]=>"telephone no."]

6.1.2 List Size and Default Values
In principle, each collection data type has a current size, which results from the values set. There are
no value gaps in this currently valid indexing range, only unset values (see also the descriptions of
itemcount(), countof()).

In order to achieve consistency with the previous static local variables, the data types hash, list and
matrix allow for a default value.

This is displayed at unset value positions within the currently valid indexing range up to the current
size. For hash data types, if the default value is set, it is returned for all possible indexings.

The sequence of access to the default values for an unset value at the position <row>,<col> in a mat-
rix M is M[<row>,<col>] → M[0,<col>] → M[<row>,0] → M[0,0].

The access sequence to the default value for an unset value at <index> in a list L is L[<Index>] → L[0].

6.1.3 Access and Assignment of Collections
The indexed values (items) of a collection are accessed via the [] operation, just as known for local
variables or predefined and user-defined attributes.

A.06.03.b 45

46 ISA DialogManager

Without the [] operation, the entire value is fetched or set.

Attention

It should be noted that accessing a user-defined or predefined attribute without the [] index fetches
or sets the default value or scalar attribute. To fetch or set all values of an attribute, the functions
getvector() or setvector() should be used.

Examples

variable list Primes := [2,3,5,7,11,13];
variable vector[integer] Numbers;
variable hash Months := [1=>"Jan", 2=>"Feb", 3=>"Mar"];

print Primes[1];
Months[4] := "Apr";
Numbers := Primes;
Primes[0] := -1;
Primes := [17, 19, 23];

Output of collections via print or sprintf() is also possible. However, no default values are output. For
the data types hash and matrix the output is including the index.

Specific Features of refvec

It should also be noted that the refvec data type is handled in a special way because it ensures unique-
ness of the values and does not store null values.

With an indexed assignment of an already existing object ID, the object ID at this position is replaced
and afterward uniqueness is ensured, which may also result in a shift of the already existing object ID
to another position and a reduction of the refvec list.

In case of an indexed assignment of a null, the object ID is deleted from the refvec list and the fol-
lowing object IDs advance, which in turn results in a reduction of the refvec list.

6.1.4 Automatic Conversion
In assignments or parameter calls, collections are automatically converted to the required list type. All
values without index are copied in their “natural” order, including the default values if possible, e.g. [0]
for a list variable will be passed on if the target type also has a default value.

Exception

When assigning a hash with index data type to a matrix, the index will be taken over. With the reverse
assignment of a matrix to a hash, the index will also be transferred. To prevent this, the built-in func-
tion values() should be used.

6.1.5 Performance
In general, it should be considered that the use of collections (entire values) within expressions ini-
tially requires the values to be copied, but then in reading operations only references of this list are
used, i.e. without further copying. This ensures the necessary performance when working with col-
lections. Passing on to application functions or manipulation by built-in functions, however, requires
another copy action, possibly with a code page conversion of string values.

For this reason, it should be kept in mind that complex expressions that process collections may well
temporarily lead to large amounts of data. Coding and splitting of expressions should take into
account the maximum list sizes.

6.1.6 Local and Global Variable
The collection data types are available for local and global variables. It is also possible to initialize a
global collection with constant values.

Until now, local, static variables could also be an array or an associative array, which only could be ini-
tialized in a very limited way. Collection data types are now allowed for both local and local static vari-
ables. The initialization expression is no longer restricted.

Attention Behavior Change

The existing notation of arrays and associative arrays for static local variables is still allowed and
mapped to the data types list or hash. The static initialization via .<identifier>[<index>] :=
<value>; after the variable part is no longer possible to ensure consistency with other local vari-
ables! The initial value sets the entire value of the variable, not just the default value!

Example

dialog D

variable hash Prices := ["iMac" => 1300, "Samsung Tab" => 300];
variable vector[string] Weekdays := ["Mon","Tue","Wed"];

on dialog start
{

variable string Stations[integer] := [1=>"ABC", 2=>"CBS"];
variable hash Stations2 := [3=>"NBC", 4=>"HBO"];
static variable list AllStations := join(Stations,Stations2);
/* No longer allowed:
* variable string Stations[integer] := "UNKNOWN";
* .Stations[1] := "ABC";
* or
* static variable integer AssArray[string] := -1;
* Instead possible:
* static variable integer AssArray[string] := [nothing=>-1];
*/

A.06.03.b 47

48 ISA DialogManager

exit();
}

6.1.7 Relational Operators
For collections, only the relational operators = and <> are allowed.

Equality prevails under the following conditions:

1. The data type must be the same.

2. All contained values or index/value pairs must be equal, including the default values.

3. The number of values contained and their positions must be the same.

Comparison between a string and a text ID is done on a string basis.

When using relational operators, particular attention should be paid to the data type.

Example

dialog D
window Wi {

listbox Lb {
.content[1] "Sat";
.content[2] "Sun";

}
}
on dialog start {

variable list WeekendDays := ["Sat", "Sun"];
variable hash DayNumber := ["Sat"=>6,"Sun"=>7];
variable list Days;

print WeekendDays = getvector(Lb, .content);
print vector["Sat","Sun"] = getvector(Lb, .content);
print values(WeekendDays) = values(getvector(Lb, .content));
print WeekendDays = keys(DayNumber);
Days := WeekendDays;
WeekendDays[0] := "??";
print Days=WeekendDays;
exit();

}

Output

false => Different data types (list<>vector)
true
true
true
false => WeekendDays has a default value, but Days does not!

6.1.8 Uninitialized variables
As before, the IDM behaves differently when accessing uninitialized values. If an uninitialized local or
static variable is accessed, nothing is returned. When accessing an uninitialized global variable (equi-
valent to a variable object) or a user-defined attribute, access is denied with a “cannot get value” error.

A.06.03.b 49

50 ISA DialogManager

7 Functions
Functions are the interface to the used programming language. The keyword is function followed by
the function type and the function identifier. As to function prototypes the data types of the parameters
have to be specified instead of the function arguments. In this definition the functions have to be dis-
tinguished according to their later use.

Basically, several different kinds of functions can be distinguished here:

Function called in the rules:
This function type can have up to 16 arbitrary parameters, which have to be specified cor-
respondingly in the function declaration.

Function connected to an object (callback function):
This function, which is specified directly in the object definition by .function, has to be defined as a
callback function. The IDM defines which parameters this function will get. This is why they must
not be specified in the declaration. In addition, the definition of this function specifies the user
events for which the function is to be called.

Function connected to a "canvas" object (canvas function):
Since this object is a significant exception in the IDM, and has to be treated differently by the
application, there is a special function type canvasfunc for it. Its function parameters are also pre-
defined by the IDM and must not be given in the declaration.

Data function:
This function can be specified in the .datamodel attribute of all objects that also support user-
defined attributes. A data function can serve as a Data Model (Model component) to provide the
presentation objects with data values. The parameters of a data function are predefined by the
ISA Dialog Manager and cannot be changed by the user.

Format function:
This function is indicated when defining format resources as well as at editable texts and table-
fields (attribute .formatfunc). The function parameters are predefined by the IDM and must not be
defined in the declaration.

Reloading function for tablefields:
This function is indicated in the attribute .contentfunc when defining tablefields. The function para-
meters are predefined by the IDM and must not be defined in the declaration.

Permitted languages are:

C

COBOL

If no language is defined, C is chosen as default language.

Permitted data types are:

Data Type Value Range

anyvalue Arbitrary, undefined data type; will be defined only by actual occupation.

attribute Attribute data type in the IDM.

boolean Boolean value (true | false).

class Class of an object, e.g. "window".

datatype IDM data type.

enum Symbolic constant; enumeration type for special attributes, e.g. "sel_row".

event Type of event, e.g. "select".

index Index value for 2-dimensional attributes [I,J].

integer Integral number ("long integer"), e.g. 42.

method Method, e.g. "delete".

object Object in the sense of the IDM (actual objects, resources, functions, rules,…).

pointer Pointer from the application.

string Character string which can be arbitrarily long (zero terminated), e.g. "hello".

void Data type without value.

Note for IDM on Microsoft Windows

The IDM data type integer corresponds to the data type long in the C Interface.

The ISA Dialog Manager uses the Pascal Calling Convention as default. It is advisable to have the
IDM write and integrate the function prototypes.

7.1 Function Called in Rules
These functions can be explicitly called up from the rules. They must have one of the permitted func-
tion types and are parametrizable with a maximum of 16 arguments. The data type of any argument
can be indicated in the function braces. If there is more than one argument, they have to be separated
with a comma.

Syntax

{ export | reexport } function { <language> } <data type> <function name>
({ <parameter> { , <parameter> } }) ;

language ::= c | cobol

A.06.03.b 51

52 ISA DialogManager

parameter ::=
<data type> { [<size>] } { <parameter name> { := <default value> } }
{ input } { output }

Within this declaration of the function parameters, the parameter values can be defined. There are
three possibilities:

Only input value
If a parameter shall serve only as input value in a function, the keyword input is optional after the
definition of the data type, because this type is the default. This parameter can only be read in the
function by this declaration.

Only output value
If a parameter shall serve only as output value of a function, the keyword output has to be added
after the definition of the data type. This means that the parameter has to be set in the application
and can afterward be processed in the IDM.

Input value as well as output value (input output)
If a parameter shall serve as input value in a function and simultaneously as output value of this
function, the keywords input and output have to be added after the definition of the data type.
With this declaration, you have the possibility to specify an attribute value in a function as input
parameter, to manipulate the value there, and to display the result of this manipulation in the rel-
evant attribute.

Parameter of functions can also be defined by names, e.g. to be able to see for what the individual
parameters are used.

Example

function c boolean ReadData(string Filename,
integer Index,
string Value output);

It is also possible to define default values for arguments of type input. These arguments are optional
and need not be stated when calling the function.

Note

Arguments with default values must be at the end of the parameter list.

The length of a parameter can also be indicated to the system. This is especially important if a char-
acter string shall be passed to an application, e.g. with COBOL. The size has to be given in brackets (
[<size>]).

7.1.1 Alias Name with Optional Code Page Definition

Availability

Since IDM version A.06.01.d

When defining application functions, the keyword alias followed by a string can be specified after the
function parameters.

Syntax

{ export | reexport } function <language> <return_data_type>
<function_identifier> ({ parameter [, parameter] })
alias <alias_string> ; | <code_block>

alias_string ::=
"<alias-name>{ ;<code_page> } | <code_page>"

code_page ::=
[CP=]<code_page_identifier>

The alias specification is used to provide a correct function name for dynamic binding (i. e. without the
restrictions that apply to function identifiers).

In the alias string a function-specific code page for string processing can be specified as well. This
has to begin with “CP=”, immediately followed by the code page identifier (analog to the CP defines
from IDMuser.h, but without the prefix “CP_”).

If an alias name is defined in addition, the code page specification must follow it, separated by a semi-
colon (“;”).

Examples

function integer Atoi (string S) "myatoi;CP=utf8";
function string CurTime() "CP=utf16b";

7.1.2 Calling Parameters of a Function during Runtime
It is possible to query the parameters of a function also during runtime. For this purpose the attributes
.type for the data type and .input for the input value or .output for an output value have to be specified
each with the index of the parameter to be queried. If the relevant parameter is of the type string, you
can query the size of the parameter with the attribute .size.

The following attributes are valid for a function:

Attribute Description

.count Number of parameters.

.language Programming language in which function is to be written.

.type Data type of the return value of function.

.input[I] Parameter I is input value.

.output[I] Parameter I is output value.

A.06.03.b 53

54 ISA DialogManager

Attribute Description

.size[I] Size of string parameters (only relevant for COBOL).

.type[I] Data type of I-th parameter.

Example

dialog Test
{
}

function void MyTestFunc(integer A input output,
 string[20] B output, boolean C input,
 pointer D input output);

on dialog start
{
 variable integer I;
 print MyTestFunc.count;
 print MyTestFunc.type;
 print MyTestFunc.language;
 for I := 1 to MyTestFunc.count do
 print MyTestFunc.input[I];
 print MyTestFunc.output[I];
 print MyTestFunc.size[I];
 print MyTestFunc.type[I];
 endfor
}

results in the following tracefile output

[XR] rule on dialog start (this=dialog Test)
 4
 void
 "default"
 true
 true
 0
 integer
 false
 true
 20
 string
 true
 false
 0
 boolean

 true
 true
 0
 pointer
[XD] rule on dialog start

7.2 Callback Function
A callback function is called when an object to which the function is attached receives an event which
was specified when defining this callback function. The callback function is called before the event
rule processing. The corresponding event rules are only processed if the callback function returns the
value true.

Syntax

{ export | reexport } function { <language> } callback <function name> ()
for <event> [, <event>] ;

Callback functions are later linked to an object in the object definition with the attribute .function. The
definition of the function specifies which user events trigger calls of this function, e.g. select, activate,
deselect or charinput.

The parameters of the function are predefined by the IDM and cannot be changed.

Example

function callback ObjectCall () for close, move, activate;

window TestWindow
{
 .function ObjectCall;
 .xleft 17;
}

This function is called when the user is closing, moving or activating the window.

See Also

Chapter “Object Callback Functions” in manual “C Interface - Basics”

7.3 Canvas Function
Canvas functions serve for processing of special canvas events and allow the display of graphics
within a canvas. The canvas events and how the graphics are displayed in the canvas are window sys-
tem-dependent.

A.06.03.b 55

56 ISA DialogManager

Syntax

{ export | reexport } function { c } canvasfunc <function name> () ;

These functions can be indicated when defining canvas objects with the attribute .canvasfunc.

The parameters of the function are predefined by the IDM and cannot be changed.

Example

function canvasfunc HandleCanvas ();

window CanvasWindow
{
 .xleft 17;

 child canvas Dynamic
{

 .canvasfunc HandleCanvas;
 .width 100;
 }
}

See Also

Chapter “Canvas Functions” in manual “C Interface - Basics”

7.4 Data Function
A data function can serve as a Data Model (Model component) to provide the presentation objects
with data values. The function is called when data values shall be synchronized, i.e. either to retrieve
data values from the Data Model or to assign them.

Syntax

{ export | reexport } function { <language> } datafunc <function name> () ;

These functions can be specified in the .datamodel attribute of all objects that also support user-
defined attributes.

The data function can be implemented in C/C++, as of IDM version A.06.01.d COBOL is also sup-
ported as application language with the COBOL interface for MICRO FOCUS VISUAL COBOL.

The data function may be implemented on the DDM server side.

The parameters of the function are predefined by the IDM and cannot be changed.

See also

Chapter “Data Functions” in manual “C Interface - Basics”

Chapter “Data Functions” in manual “COBOL Interface”

Chapter “Datamodel” in manual “Programming Techniques”

Attributes .dataget[attribute], .datamodel[attribute], .dataoptions[enum], .dataset[attribute]

7.5 Format Function
Format functions serve the formatting of edittext and tablefield contents.

Syntax

{ export | reexport } function formatfunc <function name> () ;

These functions can be specified when defining format resources. When defining edittexts and table-
fields they can be specified with the attribute .formatfunc.

The parameters of the function are predefined by the IDM and cannot be changed.

See Also

Chapter “Format Functions” in manual “C Interface - Basics”

7.6 Reloading Function
Reloading functions can be used for dynamic reloading of tablefield contents and are called by the
IDM when a user is scrolling in a tablefield in such a way that the area visible after the scroll action con-
tains rows and columns without contents. The reloading function can then load the missing contents
into the tablefield and, if necessary, delete contents which are not in the visible area and which are not
needed anymore.

Syntax

{ export | reexport } function { <language> } contentfunc <function name> ()
;

These functions can be given when defining tablefields with the attribute .contentfunc.

The parameters of the function are predefined by the IDM and cannot be changed.

See Also

Chapter “Reloading Functions” in manual “C Interface - Basics”

7.7 Simulation of Functions
Functions which are not linked to the ISA Dialog Manager can be simulated by rules. When large
applications are developed the programmer of the graphic user interface often cannot dispose of all
functions he needs for the process or simulation of his surface. He can only test parts of his

A.06.03.b 57

58 ISA DialogManager

application. To make the dialogs independent of the missing functions, these functions can be sim-
ulated by rules. Functions which are bound to the Dialog Manager are called as usual.

The following functions can be simulated:

functions called out of rules

callback functions

On defining the function you usually also indicate the rule. Instead of concluding the definition with a
semicolon, you type an opening brace to define the simulation rule. The simulation rule has the same
attributes like a named rule.

Example of a function definition without simulation rule

function c boolean CheckOnline();

Example of the same function with simulation rule

function c boolean CheckOnline()
{
 return(true); // always online simulation
}

The simulation rules can be used similarly to the named rules. They have the same parameters as the
simulated function.

Example

function c void ConvertDate(boolean CurrentDate input,
 string Date input output)
{
 // Date will be in format YYYYMMDD and we are to lazy to do
 // this here, it will be sufficient for us to do this with
 // two different dates
 if (CurrentDate) then
 Date := "11.11.2011"; // simulate always with this
 // date as current
 else
 Date := "1.4.2010"; // no conversion supplied,
 // this is sufficient
 endif
}

function cobol boolean GetExchangeRate(string From input,
 string To input, string ExchangeRate output)
{
 case From
 in "EUR":
 case To
 in "EUR": ExchangeRate := "1.000";

 in "USD": ExchangeRate := "1.3249";
 in "GBP": ExchangeRate := "0.8550";
 ... // many more currencies
 endcase
 in "USD":
 case To
 in "USD": ExchangeRate := "1.000";
 in "EUR": ExchangeRate := "0.7548";
 ...
 ...
 endcase
 return (true);
}

record Currency
{

string Which;
string EUR;
string USD;
string CHF;
...

}

function cobol boolean GetCurrencyRates(record Currency
 input output)
{
 case Currency.Which
 in "EUR":
 Currency.EUR := "1.000";
 Currency.USD := "1.3249";
 ...
 in "USD":
 ...
}

This simulation should suffice most of the applications. In most cases, a complete substitution of the
function is not necessary, since it is enough to control the dialog process usefully.

The ISA Dialog Manager enables the developer to specify directly the functions for events. These are
called directly on occurrence of the specified event. For these callback functions you can also indicate
simulation functions. In doing so, you can program a useful function simulation for the dialog sim-
ulation and the testing procedures. The simulated callback function has the same attributes as an
event rule. The accompanying event rules, if there are any, are always executed after the simulated
callback function.

Example

function callback PushbuttonSelect() for select, focus

A.06.03.b 59

60 ISA DialogManager

{
 if (thisevent.event[select]) then
 // the simulation code for select
 endif
 if (thisevent.event[focus]) then
 // the simulation code for focus
 endif
}

default pushbutton
{
 .function PushbuttonSelect;
}

on PUSHBUTTON select
{
 // is also executed
}

The developer can control the dialog and react to the events without having to implement additional
event rules.

7.8 Functions in modularized dialogs
In order to use functions in modularized dialogs the attributes .application on the import object and
.masterapplication on the module or dialog object are available. Thus all functions of a module can
be assigned from "outside" to a special application. The procedures for both variants - for import and
for use - are described in chapter “Programming Techniques” / “Modularization” / “Object Application”.

8Global Variables
A variable declaration consists of the keyword variable, the data type, the variable identifier and the
terminator ;. In one declaration more than one variables of the same data type can be defined. In this
case the identifiers of the variables have to be separated by , (commas).

If a variable is declared and not within a rule or method (see also chapter “Local Variables”), it is called
a global variable.

In IDM global variables are treated like objects so that not only the content of a variable but the vari-
able itself can be changed at runtime (see chapter “Attributes of Global Variables that Can Be
Changed Dynamically”).

8.1 Variable Definition

Syntax

{ export | reexport } variable <data type> <variable name>
[, <variable name>] ;

The following data types are available:

Data type Value Range

anyvalue Arbitrary, undefined data type; will be defined only by actual occupation.

attribute Attribute data type in the IDM.

boolean Boolean value (true | false).

datatype IDM data type.

class Class of an object, e.g. "window".

enum Symbolic constant; enumeration type for special attributes, e.g. "sel_row".

event Type of event, e.g. "select".

index Index value for 2-dimensional attributes [I,J].

integer Integral number ("long integer"), e.g. 42.

method Method, e.g. "delete".

object Object in the sense of the IDM (actual objects, resources, functions, rules,…).

pointer Pointer from the application.

A.06.03.b 61

62 ISA DialogManager

Data type Value Range

string Character string which can be arbitrarily long (zero terminated), e.g. "hello".

void Data type without value.

8.2 Variable Definition with Initialization
The following definition initializes the generated variable immediately with a value. The data type of
the value has to be identical with the data type of the variable.

Syntax

{ export | reexport } variable <data type> <variable name> := <value>
[, <variable name> := <value>] ;

Object references, numbers, colors, strings, and boolean values, i.e. anything which is supported by
the ISA Dialog Manager, can be stored in variables of the type anyvalue.

Example

variable integer Filling_level;
variable boolean Valve_state := true;
variable string Valve_identifier := "main valve";
variable enum Mode;
variable object PbSwitch; // Let PbSwitch be a pushbutton

A character string is always in quotation marks.

Valve_identifier := "main valve";

In this example the words "main valve" are a string.

8.3 Configurable Variables
The additional keyword config marks a global variable as configurable, i.e. its value can be set in a
configuration file.

Syntax

{ export | reexport } { config } variable <data type>
<variable name> { := <value> } [, <variable name> { := <value> }] ;

The configuration file is loaded with the functions loadprofile(), DM_LoadProfile or DMcob_LoadPro-
file.

See Also

Attribute .configurable

Chapter “Configuration File” in manual “Development Environment”

8.4 Protecting Variables against Changes
Changes to the content of a global variable can be prevented by using the keyword constant instead
of variable in the declaration or by setting the attribute .constant of the variable to true.

Syntax

{ export | reexport } constant <data type> <variable name> := <value>
[, <variable name> := <value>] ;

See Also

Attribute .constant

Example

dialog D

variable integer V := 123;
constant integer C := 456;

on dialog start
{
 C:=V; // Evaluation error because C cannot be changed
 V := 234; // OK
 V.constant := true;
 V := 345; // Error – Variable is write-protected now
}

8.5 Attributes of Global Variables that Can Be Changed
Dynamically
The table below shows those attributes of variables, that can be queried and changed dynamically at
runtime.

Attribute Value Range Meaning

.value anyvalue Value

.type datatype Data type

.constant boolean Changeability of content

A.06.03.b 63

64 ISA DialogManager

In order to refer to the variable itself and not to its content the attribute .self is used. This is followed by
the attribute that shall be addressed.

Example

variable integer I := 2;

print I.self.type // integer
print I.self.value // 2

I.self.type := boolean;
print I.self.type; // boolean

Note

This applies to global variables only and not to local variables (i.e. variables declared within rules and
methods).

9 Validity Range for Better Type
Checking
User-defined attributes, variables, local variables (in rules), parameters and return types of rules,
user-defined methods, extevent rules and application functions can be enhanced with a range of valid-
ity. This has been introduced so that a stricter type checking can take place during the initial loading
process enabling errors in the dialog to be detected early on.

Sample use case: restriction of attributes or variables to objects that are derived from a certain model.

The validity range is an add-on to a "value container" e.g. an attribute or a variable (incl. parameters)
and does not form a type of its own. A defined range of validity ensures that only settings that fit within
this range are allowed – so the "value container" always has a consistent value. The corresponding
tests for this happen during the loading and execution of rule code.

Secondly, the range of validity can also limit further access from the "value container". Access in this
sense refers to the access to a child, attribute or method. Such access can lead to the return of a
value with a derived range of validity.

Example

dialog D
// Basic model with a child
model window MWi {
 statictext StHeader {}
}
// Derived and expanded model
MWi Wi {
 .StHeader {
 integer Width := 10;
 }
 edittext Et {
 }
}
// A second model
model window MWi2 {}
// Entity from the second model
MWi2 Wi2 {

// Attribute that can only be contained in MWi2-derived objects
 object[MWi2] Ref := Wi; // Syntax error due to violation of validity range
}
// Rule that can only be used on objects derived from MWi
rule void SetHeader(object[MWi] O, string Header) {
 O.StHeader.text := Header; // O can never be Wi2!
 O.Et.xauto := 0; // Syntax error due to access violation
 O.StHeader.Width := 20; // Syntax error due to access violation

A.06.03.b 65

66 ISA DialogManager

}
on dialog start {
 variable object[MWi] O; // Variable only for MWi-derived objects
 SetHeader(Wi,"First");
 SetHeader(Wi2,"Second"); // Syntax error due to violation of validity range
 O := D.child[2]; // Dynamic violation of the validity range
}

9.1 Restrictions
The following restrictions are currently possible for the data types listed below

Data
Type

Validity
Value

Value and Access Restrictions,
Derivation of the Validity Range

string integer
value (>0)

No restrictions. As before this validity value serves to represent the string
size that is necessary for the generation of trampoline data for COBOL.

object object The value can be null or it must be identical with the validity value or rather
be derived from it (comparable to :instance_of method).
Access restrictions to user-defined attributes, children and methods that
exist on the object given as validity value.
Derivation of the validity range when accessing a child object.

object class The value can be null or it must be an object of the corresponding class.
No access restrictions.

A validity range can be defined in the following cases:

1. Data type of a user-defined attribute

2. Index data type of a user-defined associative field

3. Data type of a global variable

4. Return type of an application function, named rule or user-defined method

5. Parameter types of application functions, named rules and user-defined methods as well as event
rules

6. Data types of local variables in named rules and user-defined methods as well as event rules

Example

dialog D
model window MWi {} // Following numbers
MWi Wi { // refer to the
record Rec { // previous list

object[MWi] Ref := Wi; // 1)
boolean AssArray[object[MWi]]; // 2)
.AssArray[Wi] := true;

}
variable object[MWi] GlobalVariable := Wi; // 3)
function object[color] GetBgc(object[MWi] Window); // 4), 5)
rule object[MWi] GetModel(object[Wi] P) { // 4), 5)

return P.model;
}
on Wi extevent 123 (object[MWi] P) { // 6

variable object[MWi] V := P;
}

9.2 Access and Value Tests
Static definitions containing validity ranges are always tested during the loading process. This is also
true for assignments and accesses in rules that are recognizable as constants. In this sense object
paths (e.g. "Wi" in the example below) are to be seen as a "constant" value that can be tested during
the loading process.

A dynamic test always takes place in references to value containers with a set validity range or rather
in value calls or accesses from within these, and as a result create a Fail and can be intercepted
within the parenthesis of a fail() construct. Call parameters and returns of user-defined methods are
possibly only dynamically tested. This is due to the validity information not necessarily being available
at loading time when using attributes and methods of imported objects.

As a rule predefined "variables" such as this or thisevent are not bound to a validity range. This is
also true for return types and parameters of predefined attributes, methods and built-in functions.
Therefore the usage should be carried out with "special cautiousness".

Since the validity range has no type of its own, no type checking or type conversion takes place. A
"casting", as is used in other programming languages, is not necessary most of the time. This can
take place via the intermediate storage on a variable of the data type object.

The access testing only takes into consideration the actual status (objects, existing children and attrib-
utes).

The following short example contains correct and incorrect applications and shows the expected time
at which the test is carried out (load time or run time).

dialog D
:
model window MWi { child edittext Et{} }
MWi Wi { child pushbutton Pb {} }

A.06.03.b 67

68 ISA DialogManager

model window MWi2 { }
MWi2 Wi2 { checkbox Cb {} }
:
variable object[MWi] I1 := Wi
variable object[MWi2] I2 := Wi2
variable object O;
:
O := I1; // Validation test not necessary
I1 := O; // Validation test during loading process
I2 := I1; // Validation test during loading process – VALIDATION ERROR!
I2 := W1; // Validation test during loading process – VALIDATION ERROR!
:
// Valid/allowed access to child object:
print I1.Et;
print O.Pb;

// ACCESS ERROR to child object and its test time period:
print I1.Pb; // Access test during loading process because I1 possesses
validity range
print O.Unknown; // Access test during loading process
print I2.Cb; // Access test during loading process
print I2.Unknown; // Access test during loading process
print getvalue(I2,. Unknown); // Access test during loading process

9.3 Derivation of the Validity Range
The validity range is derived further when children and attributes are accessed.

This happens when an attribute with a validity range is accessed. This is also true when access to a
child object occurs from a value container with a validity range.

dialog D
model window MWi {

child groupbox Gb {

child edittext Et {
rule void Apply() {}

}
}

}
MWi Wi {

object[MWi] Ref := MWi;
.Gb {

checkbox Cb { rule void Apply(); }
}
rule void Apply() {

variable object[MWi] This := this;
This.Gb.Et:Apply();

This.Gb.Cb:Apply(); // Access error because Cb is not in MWi.Gb
this.Ref.Gb.Cb:Apply(); // Access error because Cb is not in MWi.Gb

}
}

9.4 Enhancement of the IDM Syntax
Syntactic changes to the Rule Language are as follows (highlighted red):

General Definitions

<DataType> ::= anyvalue | attribute | boolean | class | enum | event |
index | integer | method | object | pointer

<ParameterType> ::= { input } { output }
<ReturnType> ::= void | <DataType>
<Validity> ::= '[' <ValidityValue> ']'
<ValidityValue> ::= <Class> | <Object> | null | <IntegerValue>
<Object> ::= <Identifier> [.<Identifier> { :'[' <IntegerValue> ']' }]

Definitions for Named Rules and Methods

<Rule> ::= { export | reexport } { public } { extern } rule
<ReturnType> { <Validity> } <Identifier>
'(' { <Parameter> [, <Parameter>] } ')' { <ReposId> }
<OptionalProgramBlock>

<Parameter> ::=
<DataType> { <Validity> } <Identifier> { := <Value> } <ParameterType>

<OptionalProgramBlock> ::= ';' | <ProgramBlock>

Definitions for External Events

<ExternalEventRule> ::= on <Object> extevent <ConstantValue>
{ '(' { <Parameter> [, <Parameter>] } ')' }
{ <RuleCondition> }
<ProgramBlock>

Definitions for Local Variables

<VariableStatement> ::= { static } variable <Variable> [',' <Variable>] ';'
<Variable> ::= <DataType> { <Validity> } <Identifier> { := <Value> }

Definitions for Global Variables

<GlobalVariable> ::= { export | reexport } { config } <VariableType>
<DataType>

{ <Validity> } <Identifier> { <ReposId> } { := <Value> } ';'

A.06.03.b 69

70 ISA DialogManager

<VariableType> ::= constant | variable

Definitions for User-defined Attributes

<AttributeDefinition> ::=
<DataType> { <Validity> } <Identifier> <AttributeType> ';'

<AttributeType> ::= <ScalarAttribute> | <IndexedAttribute> |
<AssociativeAttribute> | <ShadowAttribute>

<ScalarAttribute> ::= { := <Value> } ';'
<IndexedAttribute> ::= '[' <IntegerValue> ']' { := <Value> }
<AssociativeAttribute> ::= '[' <DataType> { <Validity> } ']' { := <Value> }
<ShadowAttribute> ::=

shadows { instance } <Object> <Attribute> { '[' <Index> ']' }

Definitions for Application Functions

<ApplicationFunction> ::= { export | reexport } function { <Language> }
<ReturnType> { <Validity> } <Identifier>
'(' { <FunctionParameter> [, <FunctionParameter>] } ')'
{ alias <String> } { <ReposId> } <OptionalProgramBlock>

<FunctionParameter> ::= <Parameter> | <RecordParameter>
<RecordParameter> ::= record <Object> { := <Value> } <ParameterType>

9.5 Attributes in Relation to Validity Ranges
The following attributes exist for querying validity ranges dynamically. Further information can be
found at the respective attribute descriptions in the “Attribute Reference”.

scope[attr]
Returns the validity range of user-defined attributes.

indexscope[attr]
Queries the validity range for the index of user-defined associative attributes (associative arrays).

typescope
Retrieves the validity range for return types of user-defined functions and rules.

typescope[I]
Queries the validity range for the parameters of user-defined functions and rules.

10 Actions in the Program Block
The functionality of the rules is described in the program block, stated in braces ({ }), following the
event line. With this rule component, the entire dialog execution including its functionality can be
described by the DM.

Actions can be e.g

changing of attributes or attribute values

calling of application functions

calling of built-in functions

"if-then-else-endif" constructs

sub-rules

variables.

The program block contains assignments of any type (logical, arithmetic and strings), calculations and
mechanisms for the conditional execution of commands.

Example

on PB_Show select /* 1 */
{ /* 2 */

if (MainWindow.visible = false) /* 3 */
then /* 4 */

MainWindow.visible := true; /* 5 */
endif /* 6 */

} /* 7 */

Line 1 (event line) defines that if the pushbutton “PB_Show” is selected, the following program block
in lines 2 to 7 is to be executed.

The braces in lines 2 and 7 limit the program block connected to the event line. Line 3 will trigger a con-
ditional program execution, leading to processing the commands in line 5 if the expression in brackets
is true. If this expression is false, line 5 will not be executed.

Line 5 assigns the value true to the object attribute .visible of the main window, so this window
becomes visible.

10.1 General Structure of a Statement
Each instruction in the Rule Language will be concluded by a semicolon. This character marks the
end of a statement. Exceptions here are the keyword end and the derived words such as endif, end-
for, endcase, endwhile, which do not need a semicolon.

A.06.03.b 71

72 ISA DialogManager

Syntax

<statement> ;

If this semicolon is missing, the system usually outputs an error for the following line.

10.2 Commenting Instructions
Comments can be added to the rule structure almost at any position. Comments are introduced by

!!

marking that the entire following line has to be considered as comment. Comments may be made
before the event line and before every statement in the rule interior. They must not occur before the
declaration of local variables and within expressions.

Example

!! Something has been selected in the list. This is why
!! the pushbuttons Delete and Information are released
on LListe select
{

!! Switching the Delete pushbutton
 this.window.PLoeschen.sensitive := true;

!! Switching the Information pushbutton
 this.window.PInfos.sensitive := true;
}

Of course, comments can be placed at attribute definitions. Predefined attributes like .visible or .text
may be commented as well as indexed attributes. The same applies to user-defined attributes.

Beispiel

!! Example
dialog Comments

!! Communication model for data
model record MRComm
{

!! Unique identifier for the respective record
 integer ID;

!! Database identifier
 string S[3];

!! Host
 .S[1] := "aldadin";

!! Database
 .S[2] := "inforaclemix";

!! Query language

 .S[3] := "SQL";
}

model listbox MList
{

!! First entry
 .content[1] "Yes";

!! Second entry
!! with two lines

 .content[2] "It works";
!! "normals" work too

 .width 100;
}
!! End of dialog

Please note the following with regard to comments in text files when using the IDM Editor:

With !! comments placed before attributes, the ISA Dialog Manager does not distinguish between
attribute declaration and assignment of a default value, as in output both will be put on the same line
anyway.

Since IDM version A.05.01.e !! comments for the same attribute are merged in order to e.g. preserve
all comments for multiple assignments as well as for separated declarations and assignments of
default values together with the last value.

Comments for shadow attributes should be used with caution. These comments can only be main-
tained for the attribute declaration as the actual value is usually stored at another object.

10.3 Comments
The ASCII dialog file may contain comments. There are two types of comments.

1. Comments which are preserved when the file is read or written by the IDM editor, indicated by
"!!"
The comments depend on objects. They can be defined in special positions:

immediately in front of the object to which the comment is assigned,

in rules between statements.

When the ASCII file is written, such comments are automatically indented, depending on their pos-
ition, and not depending on the indentation that may have existed when the file was read.

2. Comments which are not preserved when the file is read or written by the IDM editor, indicated by
/* ... */
// ...
Such comments can be inserted anywhere in the ASCII file (between statements). Their position
does not influence the IDM parser.

A.06.03.b 73

74 ISA DialogManager

10.4 Operators in the Rule Language

10.4.1 Assignment Operators
With the assignment operator the left side of the operator is assigned the value of the right side. An
assignment operator is represented in the Rule Language through a colon followed by an equals sign.

:=

or through two colons followed by an equals sign.

::=

The “:=” assignment always triggers changed events. With the “::=” assignment operator no changed
events are triggered.

With assignments it is important that the data types on both sides correspond, i.e. a numerical value
can only be assigned to a numerical value but not to a string, for example.

Example

dialog D
record R
{

integer I;
on .I changed
{

print "Event!";
}

}

on dialog start
{

!! triggers event
R.I := 1;
!! triggers no event
R.I ::= 2;

}

10.4.2 Comparison Operators
In the Rule Language values can be compared with comparison operators (as in other programming
languages).

To do so, there are the following comparison operators in the Rule Language:

Operator Characters Description

< less

<= less or equal

= equal

>= greater or equal

> greater

<> unequal

With the help of these expressions, integer values can be compared. For the operators “=” and “<>” all
data types are allowed.

10.4.3 Arithmetical Operators
Like in other programming languages, expressions or values in the Rule Language can be connected
with the help of arithmetical operators.

The following arithmetical operators exist in the Rule Language:

Operator Characters Description

+ Addition of two values.

- Subtraction of two values.

/ Division of two values.

* Multiplication of two values.

% Modulo formation of two values (remainder with division).

All these operations can be used for integer values.

Also, two strings can be concatenated with the “+” operator.

10.4.4 Logical Operators
In the Rule Language expressions can be combined with the help of logical operators.

For this there are the following logical operators:

A.06.03.b 75

76 ISA DialogManager

Operator Description

and By means of this operator two expressions are combined by a logical AND. All partial
expressions are evaluated, even if the result is already known, and only finally the res-
ult is calculated.

andthen Like and, but the expression is evaluated only until the remaining part of the expres-
sion does not affect the result. Evaluation is stopped at this point and the result is
returned immediately.

or By means of this operator two expressions are combined by a logical OR. All partial
expressions are evaluated, even if the result is already known, and only finally the res-
ult is calculated.

orelse Like or, but the expression is evaluated only until the remaining part of the expression
does not affect the result. Evaluation is stopped at this point and the result is returned
immediately.

not By means of this operator an expression is negated.

For instance, the operator andthen comes in handy to check if an object has been created before
some action is performed with it:

variable object O := null; !! not instantiated yet

if O <> null andthen O:DoSomething() then

This does not raise an error message, because andthen stops the evaluation after O <> null has been
evaluated to false.

10.5 Brackets in the Rule Language
In the Rule Language there are three kinds of brackets with different meanings.

Bracket
Type

Description

{ } With the help of braces the rule bodies can be combined. Within these braces the
actual rule, i.e. the part which is to execute something, is written.

[] With the help of square brackets a value will be indexed. For example, the fifth element
of a field can be accessed. If two indices are needed for the access, both indices will be
written within the brackets separated by commas.

Bracket
Type

Description

() With the help of these round brackets function and rule call can be executed. Within
these brackets the current parameters of the rule or function are indicated. As a further
function, these brackets can be used to change the processing order within a state-
ment. The expressions in brackets will be connected first. The result hereof will then be
connected with the expressions outside the brackets.

10.6 Changing Attribute Values
Each object attribute with write access can be arbitrarily changed.

Attributes can be changed with the help of a combination of

attributes
Please refer to manual “Attribute Reference” for further details.

functions
Please see chapter “Functions of the DM Interface” in manual “C Interface - Functions” for further
details.

variables
Please see chapter “Global Variables” for further details.

Examples

Setting the visibility of a window:
MyWindow.visible := true;

Setting two lines in a listbox:
MyListbox.content[1] := "first string";
MyListbox.content[2] := "second string";

Combination of two edittexts in a third edittext with a blank in between:
Edittext3.content := Edittext1.content + " " + Edittext2.content;

10.7 Control of the Program Flow
In a rule, there are different constructs available for the control of the program flow.

if-then-else

if-elseif-else

case statement (“switch”)

A.06.03.b 77

78 ISA DialogManager

10.7.1 if-then-else
An if statement can be used to define a program branch with statements that is only processed if a
condition is satisfied. Optionally, another program branch with statements can be defined, which is
executed if the condition is not met.

Syntax

if <boolean expression>
then

<statements>
{ else

<statements> }
endif

If <boolean expression> is true, the <statements> between then and else will be executed.

If <boolean expression> is false, the <statements> between else and endif will be executed.

The else part may be left out in this statement.

Example

on PbBlink select
{

if (WnMain.visible)
then

WnMain.visible := false;
else

WnMain.visible := true;
endif

}

When confirming the “PbBlink” button it is first checked whether the window “WnMain” is visible (value
of WnMain.visible).

If the window is visible (WnMain.visible = true), it is set invisible with the statement WnMain.visible :=
false.

If the window is invisible (WnMain.visible = false), it is set visible with the statement WnMain.visible :=
true.

10.7.2 if-elseif-else
The “if-elseif-else” construct is a shortened notation for nested “if-then-else-if”.

Syntax

if <boolean expression>
then

<statements>
[elseif <boolean expression>

then
<statements>]

{ else
<statements> }

endif

elseif parts can be repeated in this statement as often as you want.

Example

on PbBlink select
{

if (WnMain.childcount = 0)
then

print "Have no objects.";
elseif (WnMain.childcount = 1)
then

print "Have one object.";
else

print "Have several objects.";
endif

}

10.7.3 case Statement
A case statement can be used instead of several “if-then-endif” constructs. It is useful when a pro-
gram is to branch itself at a certain position.

Syntax

case <expression>
[in <criterion> [, <criterion>] :

<statements>]
{ otherwise :

<statements> }
endcase

criterion ::= <value> | <min> .. <max>

Example

case Edittext.content
in "Hello":

print "Yes";
in "Bye":

A.06.03.b 79

80 ISA DialogManager

exit();
otherwise:

endcase

A case statement checks for each in expression, if it is true.

Example

variable integer V := 10;
case V

in 10:
print "10";

in 1..100:
print "1..100";

in 10..19:
print "10..19";

in 20..29:
print "20..29";

otherwise:
print "nothing";

endcase

Output

"10"
"1..100"
"10..19"

All statements which fulfill the value are enlisted here.

If none of the in expressions is fulfilled, then – and only then – otherwise will be carried out, if it is
given.

As soon as one or more in expressions are fulfilled, otherwise is not carried out any more.

In contrast to C and other programming languages, variable values may occur in in expressions, too.

Example

on PushbuttonOK select
{

case true
in Checkbox_1.active:

// action for first checkbox if it is active
in Checkbox_2.active:

// action for second checkbox if it is active
in Checkbox_3.active:

// action for third checkbox if it is active
// otherwise is not necessary here

endcase
}

Since in in expressions calculations are also allowed, the above example can be expanded for the
case that a certain action can be carried out for inactive checkboxes (not).

on PushbuttonOK select
{

case true
in Checkbox_1.active:

// action for first checkbox if it is active
in Checkbox_2.active:

// action for second checkbox if it is active
in Checkbox_3.active:

// action for third checkbox if it is active
in not Checkbox_1.active:

// action for first checkbox if it is not active
in not Checkbox_2.active:

// action for second checkbox if it is not active
in not Checkbox_3.active:

// action for third checkbox if it is not active
// otherwise still not necessary

endcase
}

Remark

Any variables are allowed. Please take care that you are using the correct type.

10.8 Loop Constructs

10.8.1 for Loop
This construct is used for the formulation of loops, if the number of runs is defined before the entry in
the loop.

Syntax

for <counter> := <start> to <end> { step <increment> } do
<statements>

endfor

At the loop start, the value <start> is assigned to <counter>. After each loop run, <increment> is
added to <counter>. If <increment> was not given, the default increment 1 is added. The loop runs
until <counter> becomes larger than <end>. At each loop run, the <statements> are performed which
can access the current value of <counter>. <start>, <end> and <increment> have to be integer

A.06.03.b 81

82 ISA DialogManager

values. <counter> has to be able to accept integer values. <start>, <end> and <increment> are cal-
culated only once before the first loop run.

Example

for Index := 1 to Window.childcount do
print Window.child[Index];

endfor

It is not possible to cancel a for loop before it is terminated.

If the cancel criteria cannot be reached at for loops, the loop will not be carried out.

Example

for I := 1 to 10 step -1 do

10.8.2 foreach Loop
This construct is used to create loops that iterate over all elements of a collection.

Syntax

foreach <item> in <expression> do
<statements>

endfor

The loop terminates with an error if the <expression> is not a collection or the loop value cannot be
assigned to the <item>. The <expression> is evaluated only once initially. The control variable <item>
may be changed within the <statements>. A change of the control variable does not affect the number
of cycles or the value of the control variable in the next cycle.

Example

dialog D
window Wi
{

listbox Lb
{

.xauto 0; .yauto 0;
}
on close { exit(); }

}

on dialog start
{

variable list StationList:= ["ABC", "CBS", "NBC", "ESPN"];
variable string Station;

foreach Station in StationList do
Lb.content[Lb.itemcount+1] := Station;

endfor
}

10.8.3 while Loop
This construct is a repetition statement, a loop statement, at which the number of repetitions depends
on a condition. The condition is checked at the beginning of a new run.

Syntax

while <condition> do
<statements>

endwhile

The value <condition> is calculated before each run of a loop. It has to be a boolean value. If it is true,
the <statements> will be carried out and the loops will be started again from the beginning. If the value
is false, the loop will be canceled. There is no other way to end a while loop.

Example

while (Index < Window.childcount) do
print Window.child;
Index := Index + 1;

endwhile

10.9 Calling Named Rules
Named rules are called by giving the name of the rule and the current setting of the parameters.

Example

A rule is defined as follows:

rule integer Calculate (integer Val1 input, integer Val2 input)

The call of this rule can be as follows:

Calculate (14, 3);

10.10 Local Variables
Local variables can be used to store any value within a rule. They are only known in the rule in which
they were defined. This is where they differ from global variables, which are known in the entire dialog
or module (see chapter “Global Variables”).

A.06.03.b 83

84 ISA DialogManager

Within the rule where they are defined, local variables overlay any existing global variables with the
same identifier.

Local variables can be declared as “normal” variables or as static variables:

Normal variables lose their value after the rule has ended. They are reinitialized each time the rule
is executed.

Static variables retain their value even after the rule has ended. They are only initialized when the
rule is executed for the first time.

10.10.1 Normal Local Variables

Syntax

variable <data type> <variable name> { := <expression> }
[, <variable name> { := <expression> }] ;

Several variables of the same data type can be declared in one statement. The identifiers of the vari-
ables are separated by , (comma).

Local variables can be initialized with a value or an expression directly in the definition. If an expres-
sion is used for initialization, the following should be noted:

The evaluation of the expression must yield a value with the data type of the variable.

Variables used in the expression must be declared before, i.e. already known.

Example

rule integer R1(integer X)
{

variable integer Z := X * 3;

if (X > 100) then
Z := Z / 2;

endif

return Z;
}

A definition without direct initialization is also possible. In this case, however, a value must have been
assigned before the first read access to the variable.

Example

rule void R2 ()
{

variable integer MyNumber;

MyNumber := 5;

print MyNumber;
}

Once local variables contain a value, they can be assigned to attributes of objects. It only needs to be
ensured that the data types of the local variable and the attribute allow this (identical data types or
object attribute of type anyvalue).

Example

rule void R3 ()
{

variable string MyWord;

MyWord := "Hello world";
Edittext.content := MyWord;

}

A variable of the type object can be used like an object, i.e. every attribute of the object stored in the
variable can be changed.

Example

rule void R4 ()
{

variable object MyObject;

MyObject := MyWindow;
MyObject.title := "New Title";
MyObject.visible := true;

}

10.10.2 Static Variables
Static variables are declared by the additional keyword static before the keyword variable. Unlike
normal local variables, they can only be initialized with values or other variables, but not with expres-
sions.

Syntax

static variable <data type> <variable name> { := <value> | <variable> }
[, <variable name> { := <value> | <variable> }] ;

Static variables may have the same data types as global or local variables.

A.06.03.b 85

86 ISA DialogManager

The initializations in the declarations of static variables are only carried out in the first rule call, but
not in further calls. This also applies if the value of the variable used for initialization has changed in
the meantime. Instead, their values from the last rule execution remain unchanged.

To initialize static variables, only variables that were previously defined in the rule code or as global
variables in the dialog or module may be used.

Examples

variable integer G:=10;
rule Example (object O input)
{

variable boolean B;
static variable integer X:=1, Y:=G, Z:=Y;
static variable object Q:=O;
static variable boolean J:=B;
variable integer I:=X;

}

rule Example2
{

static variable anyvalue A;
if A = 1 then

print "something";
else

A := 1;
print "further initializations";

endif
}

10.11 Return of Values
With the return instruction, every rule can be left at the current position and – if necessary – can
return a value to the calling rule.

Syntax

return { <expression> } ;

<expression> is required if the rule has a return type other than void. The data type of <expression>
must match the return type of the rule.

Example

rule integer Addivide (integer Arg1 input, integer Arg2 input,
integer Arg3 input)

{

variable integer Sum;
Sum := Arg1 + Arg2;
if (Arg3 <> 0) then

return (Sum / Arg3);
endif
return (0);

}

10.12 Call of Application Functions
Any functions which have been specified in a dialog file can be called directly out of the rules.

Exception

Canvas functions, object callback functions, fomat functions and reloading functions cannot be called
out of the rules!

The function parameters have to be substituted by the current values. Their types have to correspond
to the specification of the function.

Examples

Declaration:

function c integer Add (integer, integer);

Call:

Edittext.content := itoa (Add (atoi (Edittext2.content),
 atoi (Edittext3.content)));

Meaning:

input: two numbers

output: sum is returned

Declaration:

function c void GetAddress (string, string output, string output);

Call:

GetAddress (Edittext1.content, Edittext2.content, Edittext3.content);

Meaning:

input: e.g. name

output: e.g. address (street and city)

A.06.03.b 87

88 ISA DialogManager

11 Built-in Functions
The IDM has standard functions to determine the length of a string and to convert number strings and
character strings. Thus, you do not have to define these functions yourself.

These built-in functions can be included into the action part of a rule.

11.1 append()
With this function a new value can be appended to a collection (data types hash, list, matrix,
refvec and vector) or a string once or several times.

In general, the data type of the (optional) new value has to be a scalar and match the value type of the
collection.

The number of repetitions for the appending (Count parameter) has to be >= 0.

In case of an error, the function call is aborted with a fail.

Definition

anyalue append
(

anyvalue ListValue input,
anyvalue NewValue input

{ , integer Count := 1 input }
{ , enum Dir := dir_row input }

)

Parameters

anyvalue ListValue input
This parameter specifies the collection or string where a value shall be appended.

anyvalue NewValue input
This parameter defines the new value to be added. The value must match the value type of the col-
lection.

integer Count := 1 input
This optional parameter defines the number of times a new value (respectively how many rows or
columns) shall be appended. Values >= 0 are allowed, with no appending being performed for 0.
By default, the new value is appended once.

enum Dir := dir_row input
For collections of data type matrix, this optional parameter controls whether new rows (dir_row) or
new columns (dir_column) are added.

Return value

The function returns the modified collection respectively the modified string.

Particularities

hash
Since this collection data type does not have a defined index range, appending takes place after
the last integer index. Thus a hash with an indexing of 1,2,3… is assumed. The last set index of
data type integer is determined and then it is appended after it.

matrix
Appending to a matrix always happens by rows or columns. This is controlled by the Dir para-
meter. By default (dir_row) new rows are added. If dir_column is given, new columns are added.

refvec
Appending null objects is not allowed. If the object ID already exists, it is repositioned to the last
position.

string
The new value is appended to the end of the string.

Default Values
To determine the index position for the new values, default values are also taken into account
except for a hash collection.

Examples

Multiple appending to a string

print append("hi", " ho", 3);

Output

"hi ho ho ho"

Multiple appending to a list collection

variable list L := [4711, "cologne"];
print append(L, true, 2);

Output

[4711,"cologne",true,true]

Appending two rows to a matrix

variable matrix M := [[0,0]=>"?", [1,1]=>"a", [1,2]=>"b",
[2,2]=>"c", [3,1]=>"end"];

print append(M, "new", 2);

A.06.03.b 89

90 ISA DialogManager

Output

[[1,1]=>"a",[1,2]=>"b",[2,1]=>"?",[2,2]=>"c",[3,1]=>"end",[3,2]=>"?",
[4,1]=>"new",[4,2]=>"new",[5,1]=>"new",[5,2]=>"new"]

Appending to a hash with mixed indexing

variable hash H := [false=>.xleft, 31=>.width, 33=>.ytop, "x"=>1];
print append(H, .height);

Output

[false=>.xleft,31=>.width,33=>.ytop,34=>.height,"x"=>1]

Appending to a vector list

variable vector[integer] V := [9, 8, 7];
print append(V, 6);

Output

[9,8,7,6]

Availability

Since IDM version A.06.02.g

See also

Built-in function insert()

11.2 applyformat()
With this function, a string can be converted by applying a format to it.

The return value is the same string that is displayed by an edittext when it uses the same format and
has the given string as its contents.

Definition

string applyformat
(

string FormatString input | object FormatResource input ,
string String input

)

A further definition of the functions is as follows:

string applyformat
(

object FormatFunc input,
string FormatString input,
string String input

)

Parameters

string FormatString input
In this parameter the format string with the help of which the string is to be formatted is indicated.

object FormatResource input
In this parameter, you declare the format resource with the help of which the string is to be format-
ted.

object FormatFunc input
In this parameter the format function which is to format the string is indicated.

string String input
In this parameter the string to be formatted is indicated.

Return value

The formatted string is returned as a result.

Example

applyfomat("NN-NN-NN", "121295");

Output

12-12-95

A.06.03.b 91

92 ISA DialogManager

11.3 atoi()
This function converts an optionally signed number string to a decimal number (ascii to integer). The
following is valid:

One sign + | -

Digits 0…9

Space as fill-in at each position

Let us e.g. assume that 5 is to be added to number 123 in an editable field. For this purpose, the
strings "123" and "5" are interpreted as numbers 123 and 5. The result is 128.

Definition

integer atoi
(

string IntString input
)

Parameters

string IntString input
In this parameter the string to be changed into a number is indicated.

Return value

The value in which the string was converted.

Remark

This function call ends with an error which can be caught by the function fail(), when the indicated
string does not contain any number or other characters.

Example

Sum := atoi(Edittext1.content) + atoi(Edittext2.content);

11.4 beep()
With this function you can create a tone. According to the used window system, you can specify by
parameters in which form and how long the tone is to be created.

Definition

void beep
(

{ enum Mode input }
)

void beep
(

integer Volume input,
integer Duration input,
integer Frequency input

)

Parameters

enumMode input
With this parameter, you can select a tone by using the following symbols:

beep_error
Window system specific sound when an error has occurred.

beep_note
Window system specific sound for an information.

beep_ok
Window system specific sound for a confirmation.

beep_question
Window system specific sound for a prompt to the user.

beep_warning
Window system specific sound for a warning.

The molding of the tones or if the tones differentiate at all depends very much on the used window
system.

integer Volume input
This parameter specifies the volume in which the tone is to be created. The definition is based on
the usual X Windows system.
The value range is between -100 and 100. Value 0 defines the default volume. For negative val-
ues the volume varies in percentage between “inaudible” (-100) and the default volume. For pos-
itive values the volume varies in percentage between the default volume and the maximal possible
volume (= 100).
Note: Although this parameter must be specified under Microsoft Windows, it is ignored. The
volume set in the system is used.

A.06.03.b 93

94 ISA DialogManager

integer Duration input
With this parameter, you can define the tone's duration in milliseconds (range between 0 and
60.000). Value 0 defines the default duration.
Note: Under Microsoft Windows, a default tone is generated with the value 0.

integer Frequency input
The tone's frequency (range between 0 and 20,000 Hz) can be defined with this parameter.
Value 0 defines the default frequency.
Note:Under Microsoft Windows, the value range is 37 - 32767 Hz. For other values, a standard
tone is generated.

Warning

If and how these parameter are considered when creating a tone depends very much on the used win-
dow system and possibly of the used hardware, too. The behavior when creating different tones very
quickly one after each other is also very much system-dependent.

This function is not meant to create tunes of tones but to draw the end-user's attention to specific situ-
ations with the help of single tones.

When this function is called, the ISA Dialog Manager tries to create the tone according to the para-
meters as far as is possible on the used system.

Remarks

If the function is created without parameter, it creates a single tone.

The parameters Volume, Duration and Frequency have to be declared in the given sequence. Para-
meters which were not used can be omitted at the end.

Examples

beep();
beep(beep_warning);
beep(90, 10000);
beep(0, 0, 1200);

11.5 closequery()
This function closes a dialogbox (a window with the attribute .dialogbox set to true) by setting the .vis-
ible attribute to false. Furthermore, this function sets a return value for the dialogbox.

Definition

void closequery
(

anyvalue RetVal input
)

Parameters

anyvalue RetVal input
This parameter specifies the return value that the function querybox() shall return.

Notes

The function closequery() should only be used, when the dialogbox has been opened with the func-
tion querybox().

The parameter ShipEvent of the querybox() function controls, whether a changed event for .visible is
triggered for the dialogbox.

Example

dialog D

window Box
{

.dialogbox true;

.visible false;

.title "Enter password";

edittext E
{

.format "S";
}

pushbutton P
{

.text "OK";

on select
{

closequery(E.content);
}

}

A.06.03.b 95

96 ISA DialogManager

}

window WnLogin
{

child pushbutton PbLogin
{

.text "Login";

on select
{

if (querybox(Box) <> "password") then
exit();

endif
}

}
}

11.6 concat()
The concat() function concatenates several strings into one string. During concatenation, a separator
string can be inserted between the strings or the strings can be appended to each other repeatedly.

Definition

If the first parameter is a string, this string is always inserted between two strings to be concatenated.

string concat
(

string Separator input,
anyvalue Value1 input

{ , anyvalue Value2 input
...
{ , anyvalue Value15 input } }

)

If the first parameter is an integer value, it defines how often the concatenation of the strings is
repeated.

string concat
(

integer Repeat input,
anyvalue Value1 input

{ , anyvalue Value2 input
...
{ , anyvalue Value15 input } }

)

Parameters

string Separator input
This parameter contains a delimiter string that is inserted between two strings during con-
catenation.
Separator cannot be used together with Repeat.

integer Repeat input
This parameter defines how often the concatenation of the strings shall be repeated. First, a string
is created from the passed Value parameters, then this string is appended to each other as often
as specified in Repeat. If Repeat <= 0, an empty string is returned.
Repeat cannot be used together with Separator.

anyvalue Value1 input

anyvalue Value2 input
…
anyvalue Value15 input

In these (optional) parameters, the values that shall be concatenated to a string are passed.

A.06.03.b 97

98 ISA DialogManager

Scalar values are converted to strings for concatenation. If the parameters contain collections,
then first the values contained therein are concatenated (without default values) and then the para-
meters are concatenated to each other. The approach is the same as calling sprintf("%s",
<Value>).

Return value

A string in which the passed values have been concatenated.

Examples

Concatenation of three values with a delimiter

text TxTres "Tres";
...
print concat(",", 1, "two", TxTres);

Output

"1,two,Tres"

Repeated concatenation

print concat(3, "|", [".", ".."]);

Output

"|...|...|..."

11.7 countof()
This function returns the size of a collection. This is usually the highest index value.

Typically, countof() and itemcount() return the same result for values of the data types refvec,
vector, and list. However, itemcount() offers the more generic use, whereas countof() is better
suited for structured, type-adapted use.

Definition

anyvalue countof
(

anyvalue Value input
)

Parameters

anyvalue Value input
This parameter specifies the value for which the indexing type or the highest index value shall be
determined.

Return value

nothing
The passed value is scalar.

1… 231

Highest index of the passed list (data types list, vector, refvec).
[0 … 65535,0 … 65535]

Highest index of the passed matrix.
anyvalue

Data type of the index of the passed associative array (data type hash).

Example

dialog D

on dialog start
{

variable matrix Matrix := [
[0,0] => "-?-",
[1,1] => "germany",
[1,2] => "berlin",
[2,1] => "france"
/* [2,2] => inherited from default [0,0] */];

variable integer Row, Col;
variable anyvalue Count, Idx;

/* print the Matrix values [0,0] [0,1] ... [2,2] */
Count := countof(Matrix);

A.06.03.b 99

100 ISA DialogManager

for Row:=0 to first(Count) do
for Col:=0 to second(Count) do

Idx := [Row,Col];
print sprintf("%s : %s", Idx, Matrix[Idx]);

endfor
endfor
exit();

}

See also

Built-in functions itemcount(), valueat()

Method index

Attribute count

C function DM_ValueCount

11.8 create()
New objects can be created in the IDM during runtime with the function create(). The function returns
the new generated object as result.

Definition

object create
(

object Class input,
object Parent input

{ , object Dialog input }
{ , integer Type := 3 input }
{ , boolean CreateInvisible := false input }

)

Parameters

object Class input
This parameter indicates the object from which a new instance is to be created. Thus, the object
may be a default or a model.

object Parent input
This parameter indicates the object parent.

object Dialog input
The optional parameter indicates the dialog to which the object is to belong.

integer Type := 3 input
This parameter (optional) indicates whether a default, a model or an object is to be created:

1
Default

2
Model

3
object

If this parameter is not declared, an object will be generated automatically.

boolean CreateInvisible := false input
With this optional parameter you can define whether the object is to be created invisibly or as it
was defined in the model.

true
The object is always created invisibly.

false
The visibility is taken from the model or default.

A.06.03.b 101

102 ISA DialogManager

Return value

objectId
Identifier of the newly created object.

null
Null-ID - since the object could not be created.

Example

dialog CREATE

variable object OBJ_Create := null;
variable integer Y := 50;

default window
{
}

default pushbutton
{
}

window W1
{

.title "creating objects";

.visible true;

child pushbutton DO_create;
{

.xleft 10;

.ytop 10;

.text "create";
}

}

on DO_create select
{

!! Creating object and specifying it as child of W1
OBJ_Create := create (pushbutton, W1);
!! Checking if the object has been created
if OBJ_Create <> null then

!! Setting coordinates
OBJ_Create.ytop := Y;
Y := Y + 30;

endif
}

See also

Method :create()

C function DM_CreateObject in manual “C Interface - Functions”

COBOL function DMcob_CreateObject in manual “COBOL Interface”

A.06.03.b 103

104 ISA DialogManager

11.9 delete()
This function can be used to delete one or more values from a collection (data types hash, list, matrix,
refvec and vector) at a given position. The subsequent values are shifted forward. The data type
string is also supported to remove characters from a string.

The values are deleted at the specified position. The position must be >= 1, i.e. it is not possible to
delete default values at the indices [0] or [0,0] with this function. The largest possible position is the
current countof(ListValue).

The number of values to be deleted is determined by the Count parameter and should be >= 0.

In case of an error, the function call is aborted with a fail.

Also considered an error is the attempt to delete more values respectively rows or columns than actu-
ally exist.

Definition

anyalue delete
(

anyvalue ListValue input
integer Pos input

{ , integer Count := 1 input }
{ , enum Dir := dir_row input }

)

Parameters

anyvalue ListValue input
This parameter specifies the collection or string where values shall be deleted.

integer Pos input
In this parameter, the index position is defined at which inclusively deleting begins. Values >= 1
are permitted. For matrix collections, depending on the Dir parameter, Pos represents either a row
position (dir_row) or a column position (dir_column).

integer Count := 1 input
This optional parameter indicates the number of values (respectively rows or columns for a matrix)
to be deleted. Values >= 0 are allowed, with no deleting being performed for 0. The number should
not exceed the possible position range when deleting.

enum Dir := dir_row input
This optional parameter defines the orientation of the index position, which is important for a mat-
rix. The default value dir_row means that rows are deleted in the matrix. With dir_column columns
are deleted.

Return value

The function returns the modified collection respectively the modified string.

Particularities

hash
Since this collection data type does not have a defined index range, deleting takes place based on
the integer indices. Thus a hash with an indexing of 1,2,3… is assumed. There are no limitations
concerning the largest possible index position.

matrix
Deleting in a matrix always happens by rows or columns. This is controlled by the Dir parameter.
By default (dir_row) rows are deleted. If dir_column is specified, columns are deleted. This also
means that the position refers to a row in the first case and to a column in the second. The matrix
is reduced accordingly.

string
Here the position refers to the character position in the string, i.e. the string is treated as an array
of characters.

Examples

Multiple deletion of values from a list

variable list L := [17, "x", window, .xleft, null];
print delete(L, 2, 3);

Output

[17,null]

Deleting a column from a matrix

variable matrix M := [[0,0]=>"?", [1,1]=>"a1", [1,2]=>"b1",
[2,2]=>"b2", [2,3]=>"c2"];

M := delete(M, 2, dir_column);
print M;
print countof(M);

Output

[[1,1]=>"a1",[1,2]=>"?",[2,1]=>"?",[2,2]=>"c2"]
[2,2]

Removing two characters from a string

print delete("hello", 3, 2);

Output

"heo"

Deleting items from a hash with integer indexing

A.06.03.b 105

106 ISA DialogManager

variable hash H := [2=>.xleft, 31=>.width, 33=>.ytop];
H := delete(H, 30, 3);
print H;

Output

[2=>.xleft,30=>.ytop]

Deleting from a vector list

variable vector[boolean] V := [true, false, false, false, true];
print delete(V, 2, 3);

Output

[true,true]

Deleting the first two items from a refvec list

variable refvec R := [PbApply, PbCancel, PbRevert];
print delete(R, 1, 2);

Output

[pushbutton D.PbRevert]

Availability

Since IDM version A.06.02.g

See also

Built-in function insert()

11.10 destroy()
By means of this function any object or model in a dialog can be deleted. All children of this object are
also deleted.

Definition

boolean destroy
(

object Object input
{ , boolean DoIt := true input }

)

Parameters

object Object input
In this parameter the object to be deleted is specified.

boolean DoIt := true input
This optional parameter controls how the relevant object is to be deleted. If this parameter is spe-
cified as true, the object is deleted and all rule parts using this object are changed so that the cor-
responding commands are removed. If the object to be deleted is a model and if the second
parameter is false, the model will only be deleted if it is not used by any other object. If true is given
here, the model is deleted and all objects using this model refer to the next superordinate model or
default.

Return value

true
The object could be deleted.

false
The object could not be deleted.

destroy() invokes the :clean() method of the object to be destroyed.

Example

dialog Destroy

default window
{
}

default pushbutton
{
}

window W1

A.06.03.b 107

108 ISA DialogManager

{
child pushbutton P1
{
}

}

on dialog start
{

destroy (P1, true);
}

See also

Method :destroy()

C function DM_Destroy in manual “C Interface - Functions”

COBOL function DMcob_Destroy in manual “COBOL Interface”

11.11 dumpstate()
With this function IDM status information is written into the log respectively trace file or a specified file.

The dumpstate is a status information of IDM-relevant information in order to simplify error analysis
within an IDM application.

The content of the dumpstate is divided into different sections that are variable and that are adapted
to the error situation. In addition, the dumpstate is influenced by the errors that have previously
occurred. For example, an unsuccessful memory allocation leads to information concerning the
memory usage by the IDM in the next dumpstate output. If no IDM objects or identifiers can be cre-
ated, then the utilization of IDM objects and identifiers is dumped.

The dumpstate information is always encased between “*** DUMP STATE BEGIN ***” and “*** DUMP
STATE END ***” and can have the following segments:

PROCESS: Process and thread number, date/time.

ERRORS: Complete content of the error codes set.

CALLSTACK: Contains rules, IDM interface functions and application functions directly called by
the IDM.

THISEVENTS and EVENT QUEUE: Currently processed thisevent objects and their values as
well as events that are still in the queue.

USAGE: The number of created objects, modules and identifiers and the size of the memory that
is used by the rule interpreter and for string transfer.

MEMORY: Memory usage as far as it can be detected by the IDM.

SLOTS: Hints about IDM objects that have not been correctly released.

VISIBLE OBJECTS: A list of the visible objects and their respective values.

In order to keep the output to a minimum, this is usually displayed in a shortened form. Generally, IDM
strings (in "…") are always shortened to a maximum of 40 characters. Their entire length is attached in
[]. Byte size information is given in kilo, mega or gigabytes (k/m/g).

Definition

Since IDM version A.05.02.g:

void dumpstate
(

{ anyvalue Filename input
{ , enum State := dump_error input } }

)

void dumpstate
(

{ { anyvalue Filename input, }
enum State := dump_error input }

)

A.06.03.b 109

110 ISA DialogManager

Up to IDM version A.05.02.f4:

void dumpstate
(

enum State input
)

Parameters

anyvalue Filename input
File to which the status information is written (optional parameter, available since IDM version
A.05.02.g).
Default value: When the parameter is missing, the status information is output to the trace or log
file.
Up to and including IDM version A.05.02.f4 the output is always written into the trace or log file.

enum State := dump_error input
This parameter influences the sections of the status information that are output (optional para-
meter).
Since IDM version A.05.02.g this parameter is optional. When it is missing, the default value
dump_error applies.

Value range

dump_all
All sections are written out in an abbreviated form.
This corresponds to the output in case of a FATAL ERROR.

dump_error
The sections ERRORS, CALLSTACK and EVENTS are written out in an abbreviated form.
This is the normal output in the case of EVAL ERRORS.

dump_events
The sections THISEVENTS and EVENT QUEUE are written out in full.

dump_full
All sections are written out in full.

dump_locked
The section SLOTS is written out in full. In addition, for locked objects their attribute values
are written out.

dump_memory
The section MEMORY is written out in full.

dump_none
No action (nothing is written out).

dump_process
The section PROCESS is written out in full.

dump_short
All sections (excluding SLOTS) are written out in an abbreviated form.

dump_slots
The section SLOTS is written out in full.

dump_stack
The section CALLSTACK is written out in full.

dump_usage
The section USAGE is written out in full.

dump_uservisible
The section VISIBLE OBJECTS is written out in full for all visible top-level objects including
their children, the pre-defined and user-defined attributes.

dump_visible
The section VISIBLE OBJECTS is completely written out.

The output of the dumpstate also can be triggered with the interface function DM_DumpState, as well
as through the command line options -IDMdumpstate and -IDMdumpstateseverity <string>.

Example

dialog D

window Wi
{

.title "dumpstate()-example";

edittext Et
{

.content "66";

.xauto 0;

on deselect_enter
{

variable string Content := this.content;

if fail(Pg.curvalue := atoi(Content)) then
print "Conversion errror!";
dumpstate(dump_error);

endif
}

}

pushbutton Pb
{

.ytop 33;

.text "dump objects";

on select
{

dumpstate(dump_visible);
}

}

A.06.03.b 111

112 ISA DialogManager

progressbar Pg
{

.yauto -1;

.xauto 0;
}

on close
{

exit();
}

}

Availability

IDM versions A.05.01.g3, A.05.01.h, since A.05.02.e

See also

Chapter “Dumpstate (Status Information)” in manual “Development Environment”

11.12 exchange()
With this function two values of a collection (data types hash, list, matrix, refvec and vector) can be
swapped. The data type string is also supported to swap individual characters within a string.

The two position values (Pos1 and Pos2) specify the index positions whose values are exchanged.
The positions must be >= 1 and must not exceed the possible number of items in the collection.

In case of an error, the function call is aborted with a fail.

Definition

anyalue exchange
(

anyvalue ListValue input,
integer Pos1 input,
integer Pos2 input

{ , enum Dir := dir_row input }
)

Parameters

anyvalue ListValue input
This parameter specifies the collection or string where values shall be exchanged.

integer Pos1 input
This parameter specifies the first index position whose value is swapped with that of the second
index position (Pos2). Values >= 1 are permitted. For matrix collections, depending on the Dir
parameter, Pos1 represents either a row position (dir_row) or a column position (dir_column).

integer Pos2 input
This parameter specifies the second index position whose value is swapped with that of the first
index position (Pos1). Values >= 1 are permitted. For matrix collections, depending on the Dir
parameter, Pos2 represents either a row position (dir_row) or a column position (dir_column).

enum Dir := dir_row input
This optional parameter defines the orientation of the index position, which is important for a mat-
rix. The default value dir_row means that rows are swapped in the matrix. With dir_column
columns are swapped.

Return value

The function returns the modified collection respectively the modified string.

Particularities

hash
Since this collection data type does not have a defined index range, exchanging takes place
based on the integer indices. Thus a hash with an indexing of 1,2,3… is assumed.

A.06.03.b 113

114 ISA DialogManager

matrix
Swapping in a matrix always happens by rows or columns. This is controlled by the Dir parameter.
By default (dir_row) entire rows are swapped. If dir_column is specified, entire columns are
swapped. This also means that the position refers to a row in the first case and to a column in the
second.

string
Here the position refers to the character position in the string, i.e. the string is treated as an array
of characters.

Default Values
The collection data types list, hash and matrix allow default values. The exchange of such inher-
ited values at valid positions is carried out consistently.

Examples

Exchanging values in a list

variable list L := ["a", "c", "b", "d"];
print exchange(L, 2, 3);

Output

["a","b","c","d"]

Swapping two rows of a matrix

variable matrix M := [[0,0]=>"?", [1,1]=>"a", [1,2]=>"b",
[2,2]=>"end", [3,1]=>"c"];

M := exchange(M, 2, 3);
print M;

Output

[[1,1]=>"a",[1,2]=>"b",[2,1]=>"c",[2,2]=>"?",[3,1]=>"?",[3,2]=>"end"]

Swapping two characters in a string

print exchange("X-Y", 1, 3);

Output

"Y-X"

Exchanging two items in a hash with integer indexing

variable hash H := [2=>.xleft, 31=>.width, 33=>.ytop];
print exchange(H, 31, 32);

Output

[2=>.xleft,32=>.width,33=>.ytop]

Exchanging values in a vector list

variable vector[boolean] V := [true, false];
print exchange(V, 1, 2);

Output

[false,true]

Swapping the last two items of a refvec list

variable refvec R := [PbApply, PbCancel, PbRevert];
print exchange(R, 2, 3);

Output

[PbApply,PbRevert,PbCancel]

Availability

Since IDM version A.06.02.g

A.06.03.b 115

116 ISA DialogManager

11.13 execute()
With this function an additional program can be started from the dialog script. Depending on the used
operating system different types of programs to be started are supported.

Definition

boolean execute
(

string Command input
{ , string Arguments input }
{ , boolean Synchronous := false input }
{ , enum ExeType := exenormal input }
{ , enum WindowType := showwindow input }
{ object Object input

, integer Event input
{ , anyvalue ReplyData input } }

)

Parameters

string Command input
In this parameter the name of the program to be executed and its path are given. The path can be
defined in the usual way according to the operation system; relative paths are also valid. In addi-
tion the path can be defined in the usual IDM way by using environment variables.
If this function is used on Microsoft Windows you can specify a special Windows command
instead. In this case Microsoft Windows will start the program of the relevant document and will
execute the indicated command, provided that the program supports this command.
Microsoft Windows currently supports the following commands: “open”, “print” and “explore”.
Please refer to the Microsoft Windows manual, function ShellExecute() for all commands cur-
rently valid. If you want to start the program depending on the document, you have to specify
execommand for the parameter ExeType.

string Arguments input
This parameter is optional. In this parameter you can give arguments for the program to be star-
ted.

boolean Synchronous := false input
This optional parameter defines whether the program is to be started synchronously or asyn-
chronously to the current program. If using the synchronous start the IDM will wait until the started
program has been ended. During this time no processing is possible in the IDM.

Note
We do not recommend the synchronous option, as you cannot go on processing the current pro-
gram. In this case all events will be queued until processing is continued.

enum ExeType := exenormal input
This optional parameter specifies the type of the program to be executed. This parameter is eval-
uated on the operation system Microsoft Windows.

Value range

exenormal
The program is a “normal” program.

exeshell
The indicated program can be started within a shell only, e.g. a copy command. This is why
a shell will be started before the actual program.

execommand (IDM FOR WINDOWS only)
The specified program is a command which is to be executed by the program relevant to
the document. In this case it is not possible to query the return value of the program. In addi-
tion the Synchronous parameter will be ignored (see parameter Command).

enumWindowType := showwindow input
This optional parameter specifies the window type of the program that has been started. This para-
meter is valid for the operation system Microsoft Windows.

Value range

hidewindow
The start window of the program to be started is to be hidden, as usually only one com-
mand is to be executed.

maxwindow
The start window of the program to be started is to be opened but not activated.

minwindow
The start window of the program to be started is to be opened as icon.

showinactive
The start window of the program to be started is to be opened as icon.

showwindow
The start window of the program to be started will be the active window.

Attention
The started application does not necessarily need to observe this parameter.
If the ExeType parameter has a value exeshell, the command interpreter is started maximized, not
the application that the command interpreter starts.

objectObject input
In this optional parameter you can specify an object to be sent to an external event once the pro-
gram to be started has been ended. If this parameter is used the following parameter Event must
also be specified.

integer Event input
This parameter must be specified only if the parameter Object is being used. This parameter
defines the number of the external event which is to be sent to the relevant object after ending the
program.

A.06.03.b 117

118 ISA DialogManager

anyvalue ReplyData input
This optional parameter is allowed only if an object for an external event has been given. In this
parameter any value is specified. This value will be passed on to the rule after having ended the
program.

Return value

true
The program could be started.

false
The program could not be started.

Reaction to Program Exit

To react to the program exit the IDM offers the possibility to send an external event containing the exit
code of the program and a user-defined value. The rule to react to the program exit will thus have two
parameters. In the first integer parameter the exit code of the program will be given; the second one is
an anyvalue parameter in which the value given on calling execute() is passed on.

Utilization of Parameters

The utilization of the individual parameters depends very much on the platform, as the following table
illustrates:

Synchronous ExeType WindowType External Event

Windows is supported is supported is supported is supported (not
with ExeType =
execommand)

Motif is ignored is ignored is ignored is supported

On Windows the return value of the command is not waited for with ExeType = execommand.

On Windows a maximum of 32 dialog processes can be reacted to.

Note on Quotation Marks

Enclosing the Command parameter in quotation marks is not necessary, but it is required for the other
parameters.

On MICROSOFT WINDOWS, the Command parameter is automatically enclosed in double quotation
marks for convenience if this parameter contains spaces but no double quotation marks. Additionaly,
the ExeType parameter must be set to the value exenormal or exeshell here.

Furthermore, commands composed of the Command and Arguments parameters are automatically
quoted if the Command parameter begins with double quotation marks (already indicated or auto-
matically added) and the ExeType parameter has the value exeshell.

If this behavior is not desired, the Command parameter can be left empty (null or "") and the actual
command to be executed – in this case mandatorily – can be passed in the Arguments parameter.

Example

dialog Exe

on dialog start
{

variable boolean Started;

!! start idm without waiting and event
Started := execute("idm", "-IDMversion");
print "idm started";
print Started;

!! start with event
Started := execute("idm", "-IDMversion", this, 100, "testmessage");
print "External event 100 should appear";
print Started;

!! start with options for the startwindow
!! idm ignores this option
Started := execute ("idm", "-IDMversion", hidewindow, this, 100);
print "Window should not appear";
print Started;

!! start idm synchronous
Started := execute ("idm", "-IDMversion", true);
print "Synchronous start";
print Started;

!! example with searchsymbol
Started := execute ("IDM_PATH:idm", "-IDMversion");
print "Started with searchsymbol";
print Started;

}

on dialog extevent 100 (integer Exitcode, anyvalue Message)
{

print "Returnvalue: " + itoa(Exitcode) + " " + Message;
}

A.06.03.b 119

120 ISA DialogManager

11.14 exit()
This function can be used for a controlled exiting of all dialogs. All running dialogs are terminated,
their on dialog finish rules are called. Afterward, the IDM event loop is quit. The dialogs, however, are
not deleted.

Definition

void exit
(

{ boolean StopDialog := true input }
)

Parameters

boolean StopDialog := true input
If this parameter is set to true (default), the behaviour described above occurs. If false is passed,
however, the event loop is terminated without the dialog being closed, which also means that the
finish rule of the dialog is not executed.

Example

on END_Button select
{

exit();
}

Important

A rule is not exited immediately with the exit() function, but is processed to the end. If the rule is to be
exited immediately, a return has to be given after the exit() call.

on END_Button select
{

exit();
print "Still running";

}

on END_Button select
{

exit();
return;
print "Not running anymore";

}

See also

Built-in function stop()

Chapter “Return of Values”

A.06.03.b 121

122 ISA DialogManager

11.15 fail()
This function serves to check the correct execution of a function. If the function call in fail() returns an
error, this functions can avoid that this error will be logged in the error file. The application itself can
then react to this error.

Definition

boolean fail
(

anyvalue Expression input
)

Parameters

anyvalue Expression input
This parameter can contain an arbitrary expression which uses an internal function of the ISA Dia-
log Manager.

Return value

true
On calling the included function an error has occurred.

false
The function has been executed correctly.

Catching and Passing of Errors

The following applies to checking and catching errors with fail() and passing them on with pass and
throw:

From redefined :get() and :set() methods as well as from user-defined rules, methods and sim-
ulation rules, errors are passed to the caller.

Errors from the methods :init(), :clean(), :setclip() and :action() are not passed to the caller.

Example

A typical use of this function is as follows.

if (fail(atoi(TextVariable)))
then

Value := -1; /* error */
else

Value := atoi(TextVariable); /* normal */
endif

The preceding example sets the variable value to -1 if the transformation of TextVariable to an integer
value was not successful.

An error occurs e.g. if TextVariable contained "123abc45". Normally TextVariable contains
"12398745".

The function fail() returns the boolean expression true, if the contained function, e.g. atoi (Tex-
tVariable), could not be executed. If the function was executed, fail() returns the value false.

A.06.03.b 123

124 ISA DialogManager

11.16 find()
This function searches for a specified value in a list of values and returns the first found index where
this search value can be found.

The search never includes the default element (e.g. index [0] or [0,0]).

By specifying a start and end index, the search can be restricted. The valid values are:

No value specified.

integer value in the range 1… field size (but must be > 0) for collections with data types vector,
refvec, list or hash.

index value in the range from [1,1] to [rowcount,colcount] where rowcount and colcount must also
be > 0.

Valid index of a hash.

When searching for strings it is also possible to search case-insensitive or for the first occurrence as
prefix.

Since the indices of hashes are not subject to any order, only an integer value in the range 1… item-
count() should be specified as index, which indicates the position of the start or end element.

For two-dimensional arrays (similar to the :find() method for .content[] at the tablefield), specifying
an index range [Sy,Sx] to [Ey,Ex] restricts the search scope to the range [min(Sy,Ey),min(Sx,Ex)] …
[max(Sy,Ey),max(Sx,Ex)]. Thus the restriction to rows and columns is easily possible.

Definition

anyvalue find
(

anyvalue ListValue input,
anyvalue Value input

{ , anyvalue StartIndex input
{ , anyvalue EndIndex input } }
{ , boolean CaseSensitive := false input }
{ , enum MatchType := match_exact input }

)

Parameters

anyvalue ListValue input
In this parameter, a list value is expected in which to search.

anyvalue Value input
The value specified in this parameter is searched for. Only values are compared whose types are
“equal” or can be converted (a text is converted to a string for this purpose).

anyvalue StartIndex input
This optional parameter specifies the start index from which to search for the value in the col-
lection. If no value is specified here, 1 is assumed for one-dimensional and [1,1] for two-

dimensional collections.

anyvalue EndIndex input
This optional parameter specifies the end index up to which the collection shall be searched for
the value. This argument is only permitted if a start index has also been specified.

boolean CaseSensitive := false input
This optional parameter only applies to string values and defines whether the search should be
case-sensitive or not. The default value is false.

enumMatchType := match_exact input
This optional parameter only applies to string values and defines how to search for strings.

Value range

match_begin
Finds the first string that starts with the search string.

match_exact
Finds the first string that exactly matches the string that is searched for.

match_first
Finds the string whose beginning has the largest match with the search string. If there is a
string that matches the search string exactly, its index will be returned.

match_substr
Finds the first string that contains the string that is searched for.

Return value

0
Item was not found in the passed list (data types list, vector, refvec).

[0,0]
Item was not found in the passed matrix.

nothing
Item was not found in the passed associative array (data type hash).

otherwise
Index of the item in the passed collection. The value returned has the index data type of the col-
lection passed.

Fault behavior

The function call fails if the ListValue parameter is not a collection, the index ranges are outside the
valid range, or another invalid parameter value exists.

Remark

If the StartIndex and EndIndex parameters have a data type other than integer when searching in
hashes, the position of the start and end elements is calculated from the specified indexes. In this
respect, searching in hashes with the find() function differs from searching in associative arrays with
the :find() method.

A.06.03.b 125

126 ISA DialogManager

Example

dialog D

on dialog start
{

variable hash Hash := [
"030" => "berlin",
"0711" => "stuttgart",
"089" => "munich"];

variable matrix Matrix := [
[1,1] => "area code", [1,2] => "call number",
[2,1] => 089, [2,2] => 713400,
[3,1] => 0711, [3,2] => 805439];

variable anyvalue Idx;

Idx := find(Hash, "stuttgart");
if Idx <> nothing then

print "Found: stuttgart => " + Idx;
Idx := find(Matrix, atoi(Idx), [2,1], [3,1]);
if Idx <> [0,0] then

print "Call: " + Matrix[first(Idx),2];
endif

endif
exit();

}

See also

Built-in function sort()

Method :find()

11.17 first()
The function serves to query the first value of an index.

Definition

integer first
(

index Idx input
)

Parameters

index Idx input
In this parameter, you can declare the index value of which the first part, usually the row part, is to
be inquired.

Return value

The first of the two values contained in the index.

Example

on Table select
{

variable integer Row := 0;

!! Querying the row part of the active cell.
Row := first(Table.activeitem);

}

See also

Built-in function second()

A.06.03.b 127

128 ISA DialogManager

11.18 getvalue()
With this function, you can inquire attributes of objects.

You can find the attributes available for the relevant object type in the “Object Reference”.

Definition

anyvalue getvalue
(

object Obj input,
attribute Attr input

{ , integer IntIdx input | index IdxIdx input }
)

Parameters

object Obj input
This parameter indicates the object whose attribute you want to inquire.

attribute Attr input
This parameter indicates the object attribute you want to inquire.

integer IntIdx input
index IdxIdx input

With this optional parameter you can declare the index of the requested attribute. You have to
declare an integer value if the requested attribute is one-dimensional (e.g. with a listbox or a pop-
text). You have to declare an index value if the requested attribute is two-dimensional.

Return value

Value of the requested attribute.

Examples

Querying the content in the field 1,1 of a tablefield

getvalue(Tablefield, .content, [1,1]);

Querying the content of an edittext

getvalue(Edittext, .content);

With this function you can also change attributes via variables, e.g.

rule void Set(attribute A)
{

setvalue(Win1, A, true);
Pb1.sensitive := getvalue(Win2, A);

}

See also

Method :get()

C function DM_GetValue in manual “C Interface - Functions”

A.06.03.b 129

130 ISA DialogManager

11.19 getvector()
This function may be used to obtain the entire value of vector or matrix attributes (both user-defined
and predefined), i.e. a list of all indexed values, or a section thereof, in a vector.

Definition

vector getvector
(

object Object input,
attribute Attribute input

{ , anyvalue FirstIndex input
{ , anyvalue LastIndex input } }

)

Parameters

object Object input
This parameter defines the object whose attribute values shall be queried.

attribute Attribute input
This parameter defines the attribute to be queried.

anyvalue FirstIndex input
This optional parameter defines the start index as of which the element values are retrieved. For
one-dimensional array attributes an integer value should be specified, for two-dimensional arrays
an index value. The default value for one-dimensional array attributes is the integer value 1, for
two-dimensional arrays the index value [1,1].

anyvalue LastIndex input
This optional parameter specifies the end index up to which the values from the attribute are taken
into the resulting value list. Again, an integer value is expected for one-dimensional array attrib-
utes and an index value for two-dimensional arrays. If no LastIndex parameter is specified, all val-
ues up to the end of the array are included. The LastIndex value should be after the FirstIndex
value.

Return value

The indexed values determined from the object attribute are returned as a value list with type vector.

Fault behavior

The function call fails for an invalid object or attribute or for an invalid index range.

Example

dialog D
{

string Extra[integer];
.Extra[1] := "Anna";

.Extra[2] := "William";
}

window Wi
{

.title "Names";

listbox Lb
{

.xauto 0; .yauto 0;

.content[1] "..NAMES..";

.content[2] "Irene";

.content[3] "David";

.content[4] "Henry";
}

on close { exit(); }
}

on dialog start {
variable vector Names;

Names := join(getvector(Lb, .content, 2), getvector(D,.Extra));
setvector(Lb, .content, sort(Names), 2);

}

See also

Built-in function setvector()

C functions DM_GetVectorValue(), DM_SetVectorValue()

A.06.03.b 131

132 ISA DialogManager

11.20 indexat()
This function returns the index of a collection at a specific position. The allowed positions are 1… item-
count() and thus allow a loop through all indexed values.

For values of type list, refvec and vector, the position is identical to the actual index. For a hash value,
there is no defined order of the indexes returned. For matrix values, the increasing positions are
mapped in a sequence where all (column) values of a row are arranged in ascending order.

The function returns an error (fail) if the position is outside the allowed range or if the Value para-
meter is not a collection.

Definition

anyvalue indexat
(

anyvalue Value input,
integer Pos input

)

Parameters

anyvalue Value input
This parameter specifies the value list from which the index shall be queried.

integer Pos input
Position for which the index value shall be determined.

Return value

Index value at the position passed as parameter.

Example

dialog D

on dialog start
{

variable matrix Matrix := [
[0,0] => "-?-",
[1,1] => "germany",
[1,2] => "berlin",
[2,1] => "france"];

variable integer Pos;

/* print the Matrix elements [1,1] [1,2] ... [2,2] */
for Pos:=1 to itemcount(Matrix) do

print sprintf("%s : %s", indexat(Matrix, Pos), valueat(Matrix, Pos));
endfor
exit();

}

See also

Built-in functions itemcount(), keys(), valueat()

Method index

C function DM_ValueIndex()

A.06.03.b 133

134 ISA DialogManager

11.21 inherited()
This function checks whether the value is inherited. true is returned, if the attribute value to be read
out last was inherited by a model; otherwise, false is returned.

Definition

boolean inherited
(
)

Return value

true
The attribute value which was inquired last has been inherited.

false
The attribute value which was inquired last has not been inherited.

Example

Inquiry of the contents of an input field and checking afterward if this value has been inherited from the
underlying model.

print Edittext.content;
print inherited();
// true if the content was inherited from the Model or Default.

11.22 insert()
With this function a new value can be inserted into a collection (data types hash, list, matrix,
refvec and vector) or a string once or several times.

The new values are inserted before the specified position. The position must be >= 1, i.e. it is not pos-
sible to insert default values at the indices [0] or [0,0] with this function. The largest possible position is
1 higher than the current countof(ListValue) to enable appending to an existing collection.

In general, the data type of the (optional) new value has to be a scalar and match the value type of the
collection.

The number of repetitions for the inserting (Count parameter) has to be >= 0.

In case of an error, the function call is aborted with a fail.

Definition

anyalue insert
(

anyvalue ListValue input,
integer Pos input

{ , integer Count := 1 input }
{ , enum Dir := dir_row input }
{ , anyvalue NewValue input }

)

Parameters

anyvalue ListValue input
This parameter specifies the collection or string where a value shall be inserted.

integer Pos input
In this parameter, the index position is defined before which the insertion occurs. Values >= 1 are
permitted. For matrix collections, depending on the Dir parameter, Pos represents either a row
position (dir_row) or a column position (dir_column).

integer Count := 1 input
This optional parameter defines the number of times a new value (respectively how many rows or
columns) shall be inserted. Values >= 0 are allowed, with no insertion being performed for 0.

enum Dir := dir_row input
This optional parameter defines the orientation of the index position, which is important for a mat-
rix. The default value dir_row means that rows are inserted in the matrix. With dir_column columns
are inserted.

anyvalue NewValue input
This optional parameter defines the new value to be inserted. The value must match the value
type of the collection.

A.06.03.b 135

136 ISA DialogManager

Return value

The function returns the modified collection respectively the modified string.

Particularities

hash
Since this collection data type does not have a defined index range, inserting takes place based
on the integer indices. Thus a hash with an indexing of 1,2,3… is assumed. There are no lim-
itations concerning the largest possible index position.

matrix
Inserting into a matrix always happens by rows or columns. This is controlled by the Dir para-
meter. By default (dir_row) new rows are inserted. If dir_column is given, new columns are inser-
ted. This also means that the position refers to a row in the first case and to a column in the
second.

refvec
Inserting null objects is not allowed. Multiple insertion is also not supported, since the same object
ID may only be contained once. If the object ID already exists, it is repositioned.

string
Here the position refers to the character position in the string, i.e. the string is treated as an array
of characters.

Default Values
In general it is useful to give a new value when inserting. If this is omitted, it depends on the col-
lection type which values will be at the inserted positions. The collection types list, hash and matrix
allow default values, so that the default values appear at the inserted positions when inserting
without a new value.

Examples

Multiple insertion of the string "X" into a list

variable list L := ["a", "b", "c"];
print insert(L, 1, 2, "X");

Output

["X","X","a","b","c"]

Appending a row to the end of a matrix

variable matrix M := [[0,0]=>"?", [1,1]=>"a1", [1,2]=>"b1",
[2,1]=>"a2", [2,2]=>"b2"];

M := insert(M, 3, "NEW");
print M;

Output

[[1,1]=>"a1",[1,2]=>"b1",[2,1]=>"a2",[2,2]=>"b2",[3,1]=>"NEW",
[3,2]=>"NEW"]

Inserting a new 1st column without value

M := insert(M, 1, dir_column);
print M;

Output

[[1,1]=>"?", [1,2]=>"a1",[1,3]=>"b1",[2,1]=>"?",[2,2]=>"a2",[2,3]=>"b2",
[3,1]=>"?",[3,2]=>"NEW",[3,3]=>"NEW"]

Inserting "ll" into a string

print insert("heo", 3, 2, "l");

Output

"hello"

Inserting into a hash with integer indexing

variable hash H := [2=>.xleft, 33=>.ytop];
H := insert(H, 10, .width);
print H;

Output

[2=>.xleft,10=>.width,34=>.ytop]

Inserting into a vector list

variable vector[boolean] V := [true, true];
print insert(V, 2, 3, false);

Output

[true,false,false,false,true]

Inserting an already existing refvec item at another position

variable refvec R := [PbApply, PbCancel, PbRevert];
print insert(R, 1, PbRevert);

Output

[pushbutton D.PbRevert,pushbutton D.PbApply,pushbutton D.PbCancel]

A.06.03.b 137

138 ISA DialogManager

Availability

Since IDM version A.06.02.g

See also

Built-in functions append(), delete()

11.23 itemcount()
This function returns the number of indexed values in a collection. The default value(s) are excluded
from that number. Together with indexat() and valueat() it is thus easy to loop through any collection.

Typically, countof() and itemcount() return the same result for values of the data types refvec,
vector, and list. However, itemcount() offers the more generic use, whereas countof() is better
suited for structured, type-adapted use.

Definition

integer itemcount
(

anyvalue Value input
)

Parameters

anyvalue Value input
This parameter specifies the value for which the number shall be determined.

Return value

0
The passed value is scalar or an empty collection.

1… 231

Number of values in the collection without the default values.

Example

dialog D

on dialog start
{

variable matrix Matrix := [
[0,0] => "-?-",
[1,1] => "germany",
[1,2] => "berlin",
[2,1] => "france"
/* [2,2] => inherited from default [0,0] */];

variable integer I;
variable anyvalue Idx;

/* print the Matrix values [1,1] [1,2] ... [2,2] */
for I:=1 to itemcount(Matrix) do

Idx := indexat(Matrix, I);
print sprintf("%s : %s", Idx, Matrix[Idx]);

endfor
exit();

A.06.03.b 139

140 ISA DialogManager

}

Output

"[1,1] : germany"
"[1,2] : berlin"
"[2,1] : france"
"[2,2] : -?-"

See also

Built-in functions countof(), indexat(), valueat()

Method index

Attribute itemcount

C function DM_ValueCount()

11.24 itoa()
This function converts a number to a string (integer to ascii).

Definition

string itoa
(

integer IntValue input
)

Parameters

integer IntValue input
In this parameter the figure which is to be turned into a string is indicated.

Return value

As a result the function issues the figure which has been turned into a string.

Example

Filling an input field with a figure.

Edittext.content := itoa(5);

A.06.03.b 141

142 ISA DialogManager

11.25 join()
This function creates a new value list from the specified parameters. The type of the value list is
determined by the first call parameter. If this is a collection or a collection data type (list, vector, refvec,
hash, matrix), the resulting value list has the same type. A data type as the first parameter value never
is included in the result list. If the specified parameters are collections, only the values (without default
values) are used. Scalar values are added to the resulting value list.

The order of the values in the resulting value list will correspond to the order of the parameters and for
collections to their “natural” order (see indexat()).

Indexing is usually done by incrementing the last index value or the number of values (see countof()
and itemcount()). That is, the values in the result list usually get an indexing by 1, 2, 3, … or [1,1],
[1,2], [1,3], ….

If the result list type and the parameter value are both a hash, the index of the hash values is adopted.
Added scalar parameters will get the increased itemcount() value of the result list as index.

When using refvec as the result list type, it should be noted that an error (fail) occurs if a value is not
of the data type object.

Definition

anyvalue join
(

anyvalue Value input
{ , anyvalue Par2 input }
...
{ , anyvalue Par16 input }

)

Parameters

anyvalue Value input
This parameter specifies the value on which the function is applied. The parameter is also used to
determine the type for the result list.

anyvalue Par2 input
…
anyvalue Par16 input

Additional optional parameters on which the function is applied.

Return value

A collection containing all values from the passed parameters. If the first parameter is a collection
data type or a collection, the returned collection has this data type. A data type as the first parameter
is not included in the returned collection.

Änderung ab IDM-Version A.06.01.b bei der Übergabe des Datentyps string als
ersten Parameter

Modification as of IDM Version A.06.01.b When Passing the Data Type string as First
Parameter

Wird der Funktion join() als erstes Argument der Datentyp string übergeben, dann werden die nachfol-
genden Argumente in den Datentyp string konvertiert und anschließend verkettet. Sind die nachfol-
genden Argumente Sammlungen, werden zunächst deren Werte in der natürlichen Reihenfolge des
Index zu einem String verkettet.

If the data type string is passed as first argument to the function join(), the subsequent arguments are
converted to the data type string and then concatenated. If the subsequent arguments are collections,
first their values are concatenated to a string in the natural order of the index.

Falls das erste Argument ein Datentyp, aber weder string noch ein Sammlungsdatentyp ist, gibt join()
einen Fehler zurück.

If the first argument is a data type that is neither string nor a collection data type, join() returns an
error.

Example

dialog D

on dialog start
{

variable hash DomainHash := [
".de" =>" germany",
".us" => "usa",
".fr" => "france",
".uk" => "united kingdom"];

variable list Countries;
variable hash Domains;

/* join the values to a list */
Countries := join(list, DomainHash, "norway", "spain");
/* join the values and keys into a hash */
Domains := join(DomainHash, [".us" => "united states of america"]);

print Countries;
print Domains;

exit();
}

A.06.03.b 143

144 ISA DialogManager

Output

["norway","spain","germany","usa","france","united kingdom"]
[".de"=>"germany",".us"=>"united states of america",".fr"=>"france",
".uk"=>"united kingdom"]

See also

Built-in function keys()

C function DM_ValueChange()

11.26 keys()
This function returns a list of all index values in a collection. The indexes of the default values are not
included in the list. If a scalar is specified as parameter, an empty list is returned.

Definition

list keys
(

anyvalue Value input
)

Parameters

anyvalue Value input
This parameter specifies the value on which the function is applied.

Return value

A list containing all indexes of a collection.

Example

dialog D

on dialog start
{

variable matrix Matrix := [
[0,0] => "-?-",
[1,1] => "germany",
[1,2] => "berlin",
[2,1] => "france"];

variable anyvalue Idx;

/* print the Matrix elements [1,1] [1,2] ... [2,2] */
foreach Idx in keys(Matrix) do

print sprintf("%s : %s", Idx, Matrix[Idx]);
endfor
exit();

}

See also

Built-in functions countof(), indexat(), itemcount(), values()

Chapter “foreach Loop”

A.06.03.b 145

146 ISA DialogManager

11.27 length()
This function returns the length of a string.

Definition

integer length
(

string Str input
)

Parameters

string Str input
In this parameter the string whose length is to be inquired is indicated.

Return value

As a result this function returns the string length.

Example

The following line is given in the DM program:

WnMain.title := "Example";

Then by

Len := length (WnMain.title);
print Len;

or by

Len := length ("Example");
print Len;

the value of the “Len” is 7.

11.28 load()
With this function, a dialog is loaded, but not yet started.

Definition

object load
(

string Filename input
)

Parameters

string Filename input
In this parameter the file name of the dialog to be loaded is indicated. This indication can be
made via the usual mechanism in the IDM
<environment variable>:<filename>
to make the loading process as flexible as possible. The environment variable will be inter-
preted as path in which the indicated file is to be searched for.

Return value

DialogID
Here the ID of the newly loaded dialog has been returned.

null
The dialog could not be loaded.

Example

Loading a dialog and starting the newly loaded dialog.

variable object Dialog := null;

Dialog := load("SearchPath:Test.dlg");
!! checking whether dialog could be loaded
if Dialog <> null then

!! starting the dialog
run (Dialog);

endif

See also

Built-in function run()

C function DM_LoadDialog in manual “C Interface - Functions”

A.06.03.b 147

148 ISA DialogManager

11.29 loadprofile()
This function reads in the values of the configurable record instances (.configurable = true) and
global variables (declared with config) of a dialog or module from a configuration file (profile).

Definition

boolean loadprofile
(

string Filename input
{ , object Module := null input }

)

Parameters

string Filename input
This parameter defines the file name of the configuration file. A file path can be specified which
may also contain an environment variable.

objectModule := null input
This optional parameter contains the identifier of the dialog or module whose record and variable
values are to be read in from the file.
With Module = null, the module ID of the current rule is used.

Return value

true
Reading in the values from the configuration file has been successful.

false
The values could not be read in.
This may be due to errors accessing the file or an invalid module ID.

Availability

Since IDM version A.06.02.g

See also

Built-in function saveprofile()

C function DM_LoadProfile()

11.30 max()
This function returns the largest integer value found in all its call parameters.

The call parameters may be scalar integer values or collections (vector, list, matrix, hash). For the lat-
ter, the indexed elements (without the default values) are used to determine the maximum value.

Definition

integer max
(

anyvalue Par1 input
{ , anyvalue Par2 input }
...
{ , anyvalue Par16 input }

)

Parameters

anyvalue Par1 input

anyvalue Par2 input
…
anyvalue Par16 input

These parameters specify the values on which the function is applied.

Return value

The largest integer value to be found will be returned.

Fault behavior

The function call fails if the arguments do not contain a scalar integer value or if arguments or their ele-
ments contain a value that is not an integer value.

Example

dialog D

on dialog start
{

variable list List := [17, 3, 23, 5];

print max(List, 24, 4); /* print 24 */
exit();

}

See also

Built-in function min()

A.06.03.b 149

150 ISA DialogManager

11.31 min()
This function returns the smallest integer value found in all its call parameters.

The call parameters may be scalar integer values or collections (vector, list, matrix, hash). For the lat-
ter, the indexed elements (without the default values) are used to determine the minimum value.

Definition

integer min
(

anyvalue Par1 input
{ , anyvalue Par2 input }
...
{ , anyvalue Par16 input }

)

Parameters

anyvalue Par1 input

anyvalue Par2 input
…
anyvalue Par16 input

These parameters specify the values on which the function is applied.

Return value

The smallest integer value to be found will be returned.

Fault behavior

The function call fails if the arguments do not contain a scalar integer value or if arguments or their ele-
ments contain a value that is not an integer value.

Example

dialog D

on dialog start
{

variable list List := [17, 3, 23, 5];

print min(List, 24, 4); /* print 3 */
exit();

}

See also

Built-in function max()

11.32 parsepath()
With this function an object can be requested with the help of the object name.

Definition

object parsepath
(

string ObjectName input
{ , object Parent := null input }
{ , object Dialog := null input }
{ , integer Index := 0 input }

)

Parameters

string ObjectName input
This parameter indicates the name of the searched object.
The value specified in the ObjectName parameter represents a search path starting from the
object specified in the Parent parameter. An empty string in the parameter ObjectName ("") cor-
responds to an empty search path.

object Parent := null input
This optional parameter denotes the parent of the searched object. If this parameter is indicated,
the given object will be searched for below the object. If the null object is specified for this para-
meter, the object will be searched for in the indicated dialog or in the current dialog. If resources
are searched for, this parameter has to be specified by the null object.
If functions in applications are to be searched, the application has to be given.

object Dialog := null input
This optional parameter denotes the dialog of the searched object. If this parameter is not spe-
cified, the object will be searched for in the current dialog. If an object is to be searched in the mod-
ule, the corresponding module must be specified in this parameter.

integer Index := 0 input
If Index is greater than 0, then all children in the child children of the object are searched for that
match the corresponding ObjectName. The index > 0 tells the function what number of occur-
rences of ObjectName to search for. If no child exists for this index, then null is returned.

Return value

ObjektID
The searched object will be returned.

null
The specified object could not be found or the object name is not unique.
This means that there is either none or more than one object with the specified name.

A.06.03.b 151

152 ISA DialogManager

Examples

Search for the color “RED” in the current dialog

Obj := parsepath("RED");

Search for the rule “Test” in the module “M1”

Obj := parsepath("Test", null, M1);

Search for the pushbutton “OK” in the window “W1”

Obj := parsepath("OK", W1);

Search for the function “ApplFunc” in the application “A1”

Obj := parsepath("ApplFunc", A1);

Search for the I-th occurrence of “SubR” in the window “W”

dialog D
window W
{

record R
{

record SubR {}
}
child groupbox G
{

record SubR {}
}
rule void DoSomething()
{

variable integer I := 1;
variable object O := D;
while (O) do

O := parsepath("SubR", this, null, I);
if O <> null then

I := I + 1;
print O;

endif
endwhile

}
}
on dialog start
{

W:DoSomething();
}

See also

C function DM_ParsePath in manual “C Interface - Functions”

A.06.03.b 153

154 ISA DialogManager

11.33 print()
This function provides the screen output of any values defined in the dialog during the test of the dia-
log development.

Note

On calling this function the braces may be omitted.

Definition

void print
(

anyvalue PrintValue input
)

Parameters

anyvalue PrintValue input
In this parameter the value which is to be printed out is indicated.

Example

The following lines are given in the DM program:

WnMain.title := "XYZ";
Counter := 650;

Then with the statements

print WnMain.title;
print Counter;

the folllowing is output in the error file:

WnMain.title = "XYZ"
Counter = 650

11.34 querybox()
With the built-in function querybox() messageboxes and dialogboxes (windows with the .dialogbox
attribute set to true) can be opened. The processing of rules in the ISA Dialog Manager is interrupted
until the messagebox or dialogbox has been closed.

Definition

anyvalue querybox
(

object Messagebox input
{ , object Parent input }
{ , boolean ShipEvent := true input }

)

Parameters

object Messagebox input
In this parameter the messagebox or dialogbox to be opened is passed to the function.

object Parent input
This optional parameter indicates the parent object above which the messagebox is to be opened.
This parameter may be a window as well as a null-ID. The messagebox will be displayed centered
on the parent window, if the window system allows it. Otherwise the position will be determined by
the window system itself (e.g. screen center).
The parameter is ignored for dialogboxes.

boolean ShipEvent := true input
This parameter controls, whether a changed event for .visible is triggered for the dialogbox. When
the parameter is set to true (default), an event is triggered. With false, the event is canceled.

Return value

Messageboxes

button_abort
The messagebox was closed using the “Abort” button.

button_cancel
The messagebox was closed using the “Cancel” button.

button_ignore
The messagebox was closed using the “Ignore” button.

button_no
The messagebox was closed using the “No” button.

button_ok
The messagebox was closed using the “OK” button.

button_retry
The messagebox was closed using the “Retry” button.

A.06.03.b 155

156 ISA DialogManager

button_yes
The messagebox was closed using the “Yes” button.

nobutton
The messagebox has not been opened due to an error.

Dialogboxes

For dialogboxes, the return value is set through the closequery() function.

Example

Opens a messagebox and queries which one of the provided pushbuttons the user has selected.

!! Program waits until the user has chosen a pushbutton
if button_ok = querybox(MyMessagewindow) then

!! User wants the action to be executed

11.35 queryhelp()
Without argument or with null as an argument this function will switch the IDM into context help mode,
where the next mouse click on an object triggers a help event on this object.

If an object ID is passed with the call, the function triggers a help event for that object.

Definition

void queryhelp
(

{ object Id := null input }
)

Parameters

object Id := null input
In this optional parameter an object can be passed for which a help event shall be triggered.

Availability

Since IDM version A.06.02.g

A.06.03.b 157

158 ISA DialogManager

11.36 random()
This function generates an integral random number.

Definition

integer random
(

integer Range := 100 input
)

Parameters

integer Range := 100 input
This parameter specifies the upper limit for the random number. The generated number will be
less than this limit.

Return value

The function returns an integral number r with 0 <= r < Range.

Example

!! returns an integer value in the range 0-4
random(5);

11.37 regex()
With this function a Regular Expression can be applied to a string or a list of strings.

In order to provide a maximum of functionality, the IDM dynamically integrates the free PCRE library.
This enables pattern expressions analog to PERL. If you use this function in your product, you should
pay attention to the license terms and documentation of PCRE (www.pcre.org). With regard to link-
ing, chapter “PCRE Library for Support of Regular Expressions” should be observed. ISA recom-
mends a PCRE library version 8.* for proper working. The PCRE functions are used for pattern
matching and capturing of string parts. The IDM then handles evaluation and replacement.

Syntactically the following Regular Expressions are accepted by the IDM to enable the operations
“matching” and “substitution”:

matching

m/<pattern>/<modifiers>

substitution

s/<pattern>/<replacement>/<modifiers>

The following <modifiers> are supported for configuring the operation:

s single-line string (PCRE_DOTALL)

m multi-line (PCRE_MULTILINE)

i ignore case (PCRE_CASELESS)

g global search – pattern matching is repeated

x extended (PCRE_EXTENDED)

f first line (PCRE_FIRSTLINE)

W unicode (wide) character classes (PCRE_UCP)

X extra (PCRE_EXTRA)

U ungreedy (PCRE_UNGREEDY)

The parentheses indicate how the modifiers are passed to PCRE. This means that they are not pro-
cessed by the IDM, but by the PCRE library.

The modifiers “o” and “e” are skipped without error message.

The actual application of <pattern> and <replacement> then happens through the PCRE library. More
details and information on the Regular Expressions may therefore be found in the documentation of
the PCRE library used.

The IDM also allows to split the parts <pattern> and <replacement> of the Regular Expression into
two separate parameters, but in this case no <modifiers> are possible. Usually, the operation

A.06.03.b 159

http://www.pcre.org/

160 ISA DialogManager

determines the type of results returned. However, this can be controlled by an Action parameter, e.g.
to return only the number of matches found, to achieve filtering or to get the values of the <pattern>
variables.

These are the available actions with their corresponding evaluations:

Table 2: Actions, return types and evaluations of the regex function

Action
Return

Type
Evaluation

regex_
eval

boolean
string
list[string]

Depending on the operation it is either returned whether at least one of
the strings matches the Regular Expression (matching operation true or
false).
Or in case of substitution the replaced string(s) will be returned, if the pat-
tern matches, otherwise the original string.

regex_
match

boolean
list[string]

Performs a check of the pattern only and returns true if the pattern
matches, otherwise false. For a string list, only strings that match the pat-
tern will be included in the result list.

regex_
unmatch

boolean
list[string]

Performs a check of the pattern only and returns false if the pattern
matches, otherwise true. For a string list, only strings that do not match
the pattern will be included in the result list.

regex_
count

integer Counts the number of matches found in the string or string list. For each
string, a maximum of +1 is counted, so that the result is 0 or 1 when
applied to a single string and a value in the range 0… itemcount() when
applied to a string list.

regex_loc-
ate

integer
list
[integer]

Returns the character position of the first match when applied to a single
string. For a string list, the index positions in the list where the pattern
matches are returned.

The IDM supports application of the regex function on any collection data type (list, hash, matrix, vec-
tor). However, a generated return list is always of the type list without a special indexing of the source
list beiing adopted. Before the Regular Expression is applied, values that are not of the data type
string are converted into a string like it happens with print <Value>; for instance.

Definition

anyvalue regex
(

anyvalue StringOrList input,
string Pattern input

{ , string Replace input }
{ , enum Action := regex_eval input }

)

Parameters

anyvalue StringOrList input
This parameter contains the string or the list of strings that the Regular Expression is applied on.

string Pattern input
This parameter contains either the Regular Expression or the pattern string (<pattern>) if the reg-
ular expression is split into <pattern> and <replacement>.

string Replace input
This optional parameter should hold the replacement string (<replacement>) if the Regular Expres-
sion is split into <pattern> and <replacement> for the function call.

enum Action := regex_eval input
This optional parameter controls the results evaluation. These are the available actions:

regex_eval (default)
Evaluation of the Regular Expression (matching or substituition).

regex_match
Filtering for strings that match the pattern.

regex_unmatch
Filtering for strings that do not match the pattern.

regex_count
Number of matches found (+1 for each search string).

regex_vars
Returns the contents of all variables defined by the search pattern.

regex_locate
Returns the character position or index position of the match found.

Return value

Return value and type depend on the evaluation action and are explained in “Table 2” (above).

Examples

1. Test for digits in a string

print regex("Is 127 a number?", "\\d+");

Output

true

2. Replace all decimal numbers with an “N”

print regex("42 is greater than 10", "s/(\d+)/N/g");

Output

"N is greater than N"

A.06.03.b 161

162 ISA DialogManager

3. Output only strings that match the pattern

print regex("127,5", "^\\d+,\\d+$", regex_match);
print regex("1275", "^\\d+,\\d+$", regex_match);
print regex(["3,7", "17,5", "0", "21,03"], "^\\d+,\\d+$", regex_match);

Output

"127,5"
""
["3,7","17,5","21,03"]

4. Applying multiple Regular Expressions on a list

list only values that contain a word

count the number of words

surround each item with “>> <<”

list all birth years

variable list BirthDays := ["12-13-1973", "Amy", "1-7-1965", "Tom"];
print regex(BirthDays, "^\\w+$", regex_match);
print regex(BirthDays, "^\\w+$", regex_count);
print regex(BirthDays, "s/(.*)/>> $1 <</", regex_match);
print regex(BirthDays, "s/\\d+-\\d+-(\\d+)/$1/", regex_match);

Output

["Amy","Tom"]
2
[">> 12-13-1973 <<",">> Amy <<",">> 1-7-1965 <<",">> Tom <<"]
["1973","1965"]

5. List the variable values contained in a Regular Expression

print regex("+2500 dollars or more", "(\\d+)\\s+(\\w+)", regex_vars);

Output

["2500 dollars","2500","dollars"]

6. List the access indexes for the found matches in a list or string

variable list Locales := ["de_DE.UTF8", "C.UTF-8", "de_AT.utf8",
"en_AU.utf8", "en_ZM", "POSIX", "de_CH.uf8"];

print regex(Locales, "/^de_/", regex_locate);
print regex("Hello World", "/W/", regex_locate);

Output

[1,3,7]
7

7. Utilizing automatic conversion of values in a list into string values

record Rec4711 {}
print regex([123, winsys_x11, "Bond 007", opt_w2kprefsize_compat,
Rec4711],

"s/\\d+/N/g");

Output

["N","winsys_xN","Bond N","opt_wNkprefsize_compat","RecN"]

Availability

Since IDM version A.06.02.g

PCRE Library for Support of Regular Expressions

To use Regular Expressions through the built-in function regex() or as a format in IDM, the free library
PCRE (Perl Compatible Regular Expression, see also www.pcre.org) is required. Therefore, when
using this feature in a product, the license terms of PCRE should be respected.

The IDM needs a PCRE library version 3 or higher with enabled Unicode support and the “standard”
PCRE interface. The PCRE2 interface introduced with PCRE version 10 is not yet supported. The
latest stable version 8.* of the PCRE library is recommended. Typically, most current Linux dis-
tributions are already equipped with the PCRE library by default or provide a trouble-free later install-
ation. For the use on Windows, apart from compiling the library on your own, it may also be
convenient to download a precompiled library, e.g. from www.pcre.org or www.airesoft.co.uk.

Important

Depending on the version, a varying feature set and error status of the PCRE library is always to be
expected. Please note that ISA cannot give any warranty for the PCRE library and its functions.

The PCRE library is usually linked dynamically by searching for the functions pcre_compile, pcre_
study, pcre_exec, pcre_version and pcre_free. The IDM passes strings in UTF8 encoding, hence
the linked PCRE library should also have UTF8 support.

The following linking types and associated search orders are permitted by the IDM:

A.06.03.b 163

http://www.pcre.org/
http://www.pcre.org/
http://www.airesoft.co.uk/

164 ISA DialogManager

Table 3: Linking types and search orders for the PCRE library

Linking Type Windows Unix/Linux1

E Function search directly in the executable

A Application-oriented
(relative to the path of the application)

pcre3.dll
dll\pcre3.dll
pcre.dll
dll\pcre.dll

pcre.(so|sl)
lib/pcre.(so|sl)
../lib/pcre.
(so|sl)2

S System-specific library search
(e.g. using the path variables PATH or LD_LIBRARY_
PATH)

pcre3.dll
pcre.dll

pcre.(so|sl)

When building an application with the IDM libraries, it is attempted to link in the order E – A – S. Thus,
the easiest way to provide your own IDM application with Regular Expression support is to place the
dynamic PCRE library next to the executable. Otherwise, the library existing in the system will be
used.

The IDM applications supplied by ISA for development and simulation (IDM, RIDM*, IDMED and
Debugger) already have the PCRE library built in statically and use the search A – E – S for binding,
so that the use of an external PCRE library is possible as well.

If a static linking is also wanted for your own IDM application, the following should be noted: If the
application is linked without referencing the PCRE functions, it must be pulled in completely (typical
linker options are e.g. --whole-archive, +forceload or /opt:notref) and it has to be ensured that the
PCRE functions are found by the system-specific function pointer search (this may require to export
the functions of the application). However, ISA recommends linking via an external library (DLL,
Shared Library), in order to facilitate an exchange of the PCRE version in your own product dis-
tribution.

The order for linking the PCRE library can be controlled by the application programmer through the
interface function DM_Control or DM_ControlEx with the action DMF_PCREBinding.

1Depending on the respective platform, the extension “.so” or “.sl” is used for the file name.
2The search via ../lib/ will only take place if the application resides in a directory with the name “bin”.

11.38 run()
With this function, a dialog can be started.

Definition

void run
(

object Dialog input
)

Parameters

object Dialog input
In this parameter the dialog to be started is specified.

Example

Loading a dialog and starting the newly loaded dialog.

variable object Dialog := null;

Dialog := load("SearchPath:Test.dlg");
!! checking whether dialog could be loaded
if Dialog <> null then

!! starting the dialog
run (Dialog);

endif

See also

Built-in function load()

C function DM_StartDialog in manual “C Interface - Functions”

A.06.03.b 165

166 ISA DialogManager

11.39 save()
With this function an object can be saved. This will only be done, if the relevant dialog is loaded in
ASCII-form. If the dialog is loaded from a binary file, the command will not be executed and the func-
tion returns false.

Definition

boolean save
(

object SaveObj input
{ , string Filename input }

)

Parameters

object SaveObj input
In this parameter the object to be saved is specified.

string Filename input
In this optional parameter the name of the file is specified in which the object and its children will
be saved. If this parameter is not specified, the object will be saved in the log file.

Return value

true
The object has been saved in the specified file.

false
An error has occurred during saving.

Note

This function only works in the development version of the ISA Dialog Manager. In the runtime version
the return value is always false.

Example

An object is to be examined with regard to its attributes. To do so, it will be saved in the log file.

save (this);

11.40 saveprofile()
This function writes the current values of all configurable record instances (.configurable = true) and
global variables (declared with config) of a dialog or module into a configuration file (profile), from
which they can be reloaded using the function loadprofile().

For records, only values that are not inherited are written into the file by default. In order to also write
the inherited values into the file, the parameter All needs to be set to true.

Only values from the indicated dialog or module are saved. Records and variables imported from
other modules are omitted.

Definition

boolean saveprofile
(

string Filename input
{ , object Module := null input }
{ , string Comment := "" input }
{ , boolean All := false input }

)

Parameters

string Filename input
This parameter defines the file name of the configuration file. A file path can be specified which
may also contain an environment variable.

objectModule := null input
This optional parameter contains the identifier of the dialog or module whose record and variable
values are to be written into the file.
With Module = null, the module ID of the current rule is used.

string Comment := "" input
In this optional parameter a text can be specified, which is written as a comment into the con-
figuration file.

boolean All := false input
If this optional parameter is set to true, the inherited values are also written to the configuration file.
With the default value false, only are saved that are not inherited.

Return value

true
Saving the values in the configuration file has been successful.

false
The values could not be saved.
This may be due to errors accessing the file or an invalid module ID.

A.06.03.b 167

168 ISA DialogManager

Availability

Since IDM version A.06.02.g

See also

Built-in function loadprofile()

C function DM_SaveProfile()

11.41 second()
The function serves to query the second value of an index.

Definition

integer second
(

index Idx input
)

Parameters

index Idx input
This parameter denotes the index from which the second part, usually the column part, is to be
extracted.

Return value

As a result of this function the second of the two values specified in the index is returned.

A typical application of this function is for example the query for the second index value (indicating the
column number) of the attribute .focus in the tablefield.

Example

In the dialog a tablefield with vertical dynamic direction has been defined. On a mouse click the selec-
ted row and column are to be calculated.

on Table select
{

variable integer Row;
variable integer Column;

Row := first(thisevent.index);
Column := second(thisevent.index);

}

See also

Built-in function first()

A.06.03.b 169

170 ISA DialogManager

11.42 sendevent()
You can send external events in rules to other objects by using the function sendevent(). For map-
ping serves the EventID parameter, which may be assigned a number as well as any arbitrary value
(e.g. a previously defined message resource). On the object given in the Object parameter a respect-
ive external event must be defined.

Definition

void sendevent
(

object Object input,
anyvalue EventID input

{ , anyvalue Arg1 input }
...

{ , anyvalue Arg14 input }
)

Parameters

object Object input
Object to which the external event is sent.

anyvalue EventID input
Unique identifier of the event.

anyvalue Arg1 input
…
anyvalue Arg14 input

Parameters of the external event.

Remarks

When objects, e.g. message resources, are used for the EventID parameter, these objects must not
be destroyed before the asynchronous processing of the event. Otherwise the event cannot be
mapped anymore.

Furthermore it has to be kept in mind, that the used event (see also chapter “External Events”)
requires at most 14 parameters as imposed through the 16 parameter limit of the Rule Language,
more parameters cannot be passed by the sendevent() function (the first two parameters are already
occupied by the object and the event).

Please avoid any kind of cycles in messages. This may cause endless loops.

Example

dialog ExampleDialog

on dialog start

{
sendevent(ExampleDialog, 42, "Answer");

}

on dialog extevent 42 (string Question)
{

print Question;
exit();

}

See also

Built-in function sendmethod()

C functions DM_QueueExtEvent() and DM_SendEvent() in manual “C Interface - Functions”

A.06.03.b 171

172 ISA DialogManager

11.43 sendmethod()
This function puts a method call into the event queue to be executed asynchronously from the event
loop (DM_EventLoop). It is therefore a convenience function for sending an external event with
sendevent() and calling the method in the event rule for that external event.

sendmethod() supports a maximum of 14 arguments for the method call and cannot be used for
methods with output parameters.

Return values from methods cannot be processed.

Definition

void sendmethod
(

object Object input,
method Method input

{ , anyvalue Arg1 input
...
, anyvalue Arg14 input }

)

Parameters

object Object input
Object whose method shall be invoked asynchronously.

method Method input
Identifier of the method to invoke.

anyvalue Arg1 input
…
anyvalue Arg14 input

Arguments that are passed to the method.

Availability

Since IDM version A.06.02.g

See also

Built-in function sendevent()

C function DM_SendMethod()

11.44 setinherit()
With this function you can reset the attributes of objects to the value of the relevant Models or
Defaults.

You can find the attributes available for the relevant object type in the “Object Reference”.

Definition

void setinherit
(

object Obj input,
attribute Attr input

{ , integer IntIdx input | index IdxIdx input }
{ , boolean SendEvent := true input }

)

Parameters

object Obj input
This first parameter describes the object whose attribute you want to reset.

attribute Attr input
This second parameter describes the attribute you want to reset on the object.

integer IntIdx input
index IdxIdx input

This optional parameter may be either an integer value or an index value. It has to be specified, if a
vectorial attribute is to be reset to the value stored in the model. If a one-dimensional attribute is to
be reset, then a number has to be specified. If a two-dimensional attribute is to be reset, an index
has to be specified.

boolean SendEvent := true input
By means of this optional parameter you can control whether the IDM is to trigger the rule pro-
cessing by successful resetting of the attribute or not. The parameter has to be specified as false,
if no events are to be sent. If events are to be sent, the parameter has to be specified as true or it
has to be omitted.

Examples

Resetting the contents of field 1,1 in a tablefield without triggering rules

setinherit (Tablefield, .content, [1,1], false);

Resetting the contents of an input field along with triggering rules

setinherit(Edittext, .content);

A.06.03.b 173

174 ISA DialogManager

11.45 setvalue()
With this function, you can change attributes of objects.

You can find the attributes available for the relevant object type in the “Object Reference”.

Using setvalue() you can change these values without triggering a changed event. This is useful if
within a rule a lot of values are to be changed at once with loop constructs. Otherwise you take the risk
to overflow the internal setvalue event queue.

Definition

boolean setvalue
(

object Obj input,
attribute Attr input,
anyvalue NewVal input

{ , integer IntIdx input | index IdxIdx input }
{ , boolean SendEvent := true input }

)

Parameters

object Obj input
This parameter describes the object whose attribute you want to use.

attribute Attr input
This parameter describes the object attribute which you want to change.

anyvalue NewVal input
In this parameter the value to be adopted by the attribute is specified.

integer IntIdx input
index IdxIdx input

This optional parameter may be either an integer or an index value. It has to be set if a vectorial
attribute has to be specified. If a one-dimensional attribute is to be set, a figure has to be specified.
If a two-dimensional attribute is to be set, an index has to be specified.

boolean SendEvent := true input
By means of this optional parameter you can control whether the ISA Dialog Manager is to trigger
the rule execution by the successful setting of the attribute. The parameter has to be specified as
false, if no events are to be sent. If events are to be sent, the parameter has to be specified as true
or has to be omitted.

Return value

true
Setting the attribute has been carried out successfully.

false
The attribute could not be set.

Examples

Setting field 1,1 in a table

setvalue(Tablefield, .content, true, [1,1]);

With this function you can also change attributes via variables, e.g.

rule void Set(attribute A)
{

setvalue(Win1, A, true);
Pb1.sensitive := getvalue(Win2, A);

}

See also

Method :set()

C function DM_SetValue in manual “C Interface - Functions”

A.06.03.b 175

176 ISA DialogManager

11.46 setvector()
This function may be used to modify vector attributes (predefined or user-defined). It is possible to
assign new values to the attribute as a whole or to only a continuous portion of it.

Definition

boolean setvector
(

object Object input,
attribute Attribute input,
vector NewValue input

{ , anyvalue FirstIndex input
{ , anyvalue LastIndex input } }
{ , boolean SendEvent := true input }

)

Parameters

object Object input
This parameter defines the object whose attribute values shall be modified.

attribute Attribute input
This parameter defines the attribute to be set.

vector Value input
This parameter specifies the value list that will be assigned to the vector attribute.

anyvalue FirstIndex input
This optional parameter defines the start index as of which the element values are modified. For
one-dimensional array attributes an integer value should be specified, for two-dimensional arrays
an index value. The default value for one-dimensional array attributes is the integer value 1, for
two-dimensional arrays the index value [1,1].

anyvalue LastIndex input
This optional parameter specifies the end index up to which the values of the attribute are are mod-
ified through the values from the value list. Again, an integer value is expected for one-dimen-
sional array attributes and an index value for two-dimensional arrays. The LastIndex value should
be after the FirstIndex value.
If no LastIndex parameter is specified (default value nothing), the size of the Value vector defines
the number up to which the vector attribute is modified. The subsequent element values of the
attribute are then truncated.

boolean SendEvent := true input
This optional parameter controls whether setting the attribute should trigger an attribute-changed
event. The default value is true, which causes the changed event to be sent for the attribute. If the
parameter value is false, no event is sent.

Return value

true
Attribute has been modified.

false
Modification of the attribute could not be completed.

Fault behavior

The function call fails for an invalid object or attribute, for an invalid index range or if setting is not pos-
sible e.g. due to a mismatch between attribute type and value type.

Example

dialog D

window Wi
{

.title "Cities";

.width 300;

tablefield TfCities
{

.xauto 0; .yauto 0;

.rowheight[0] 25; .colwidth[0] 80;

.rowcount 1; .colcount 2;

.rowheader 1;

.direction 2;
}

on close { exit(); }
}

on dialog start
{

variable hash Capitals := [
"germany" => "berlin",
"france" => "paris",
"england" => "london"];

// fill the title row
setvector(TfCities, .content, ["Country", "City"]);
// fill the country and city column
setvector(TfCities, .field, keys(Capitals), [1,1],

[itemcount(Capitals),1]);
setvector(TfCities, .field, values(Capitals), [1,2]);

}

A.06.03.b 177

178 ISA DialogManager

See also

Built-in function getvector()

C functions DM_GetVectorValue(), DM_SetVectorValue()

11.47 sort()
This function returns a sorted copy of a given list value. Only the values are sorted, not the indexes.
Therefore, a sorting of values is also possible for associative arrays (hash data type).

Sorting is carried out grouped by the data types of the value elements, ascending by the ordinal of the
data types and values. When sorting texts or strings, comparison is always done using the string data
type, which is more suitable for sorting.

Sorting can be controlled like this:

With the Reverse parameter the sort sequence can be inverted.

Through the SortType parameter the sort sequence of strings and texts can be influenced.

Definition

anyvalue sort
(

anyvalue ListValue input
{ , boolean Reverse := false input }
{ , enum SortType := sort_binary input }

)

Parameters

anyvalue ListValue input
This parameter specifies the list value to be sorted.

boolean Reverse := false input
If this optional parameter is set to true, sorting is carried out in descending order. The default value
is false, which corresponds to an ascending sort.

enum SortType := sort_binary input
This optional parameter only applies to item values that have the data type string or are tem-
porarily converted to a string for sorting.

Value range

sort_binary (default)
Sorting based on the Unicode character code.

sort_linguistic
Sorting based on the language and region settings (locale) of the system.
Depending on the system settings and the set code page, upper and lower case as well as
umlauts are taken into account.
Since this sort requires code page conversions, it is slower than sort_binary.
For Unix or Linux we recommend using the UTF8 locale.

See also
Documentation of locale, LC_CTYPE, LC_COLLATE, strcoll for your operating system.

A.06.03.b 179

180 ISA DialogManager

Return value

Sorted collection of the same data type as the passed collection.

Fault behavior

The function call fails if the ListValue parameter is not a collection or another parameter has an invalid
value.

Example

// UTF8
dialog D

on dialog start
{

variable list List := ["Äcker", "Bande", "Bäcker", "binden",
"Bund", "Aachen", "an"];

variable string S;

foreach S in sort(List, sort_linguistic) do
print S;

endfor
exit();

}

/* returns: Aachen Äcker an Bäcker Bande binden Bund */

See also

Built-in functions find(), keys(), values()

11.48 split()
With the split() function, a string can be split at delimiters into a list of substrings. If no delimiters are
specified, the string is separated into single characters.

Definition

list split
(

string Separators input,
string String input

)

Parameters

string Separators input
This parameter specifies the delimiters where the String parameter is split. The delimiters will not
be contained in the result list.
If Separators contains a string, each character from that string is used as a delimiter. If in String
two delimiters follow each other directly, an empty string will be included in the result list at this pos-
ition.
If Separators is an empty string, the String parameter will be split into a list of single characters.

string String input
In this parameter, the string to be split is passed.

Return value

A list of substrings.

Examples

Separation into single characters

print split("", "Roy");

Output

["R","o","y"]

Separation at different delimiters

print split(",.;", "1,23,4.5;;6,478-9");

Output

["1","23","4","5","","6","478-9"]

A.06.03.b 181

182 ISA DialogManager

11.49 sprintf()
This function is used to format a string according to a given format string. It is similar to the functions
available in the C library.

Definition

string sprintf
(

string Format input,
anyvalue Argument1 input

{ , anyvalue Argument2 input }
...

{ , anyvalue Argument15 input }
)

Parameters

string Format input
Format describes the formatting of the output string. The individual formats follow, to a large
extent, the notation in ANSI-C. However, some restrictions are necessary. The IDM is not able to
check whether the format string is correct. Incorrect specifications in the arguments for the func-
tion cause errors.
The data types of the ISA Dialog Managers will be output exclusively via “%s” (plus possible
formats). The data types integer and pointer are exceptions; they are output via numerical format
types. The possible values for the ISA Dialog Manager are described below in the section “Syntax
of the Format String”.

anyvalue Argument1 input

anyvalue Argument2 input
…
anyvalue Argument15 input

These (optional) parameters have to be specified according to the format string.
They are used for the corresponding format characters in the output string.

Return value

The return value is a string corresponding to the input format Format. In case of errors an empty string
will be returned.

Syntax of the Format String

The first character in a format is “%”. The following term describes the syntax for a format of the IDM
sprintf():

%[argument$] [flags] [width] [.precision] type
%[argument$] [flags] [width] [.precision] ([singular],[plural])

The individual elements of the term are defined as follows:

argument

This parameter controls the order of the given parameters. The given arguments usually keep
their order. However it is also possible to use any argument (i.e. not following the given order),
provided that the relevant argument is accessed via its position (number). It is thus possible to use
parameters several times.

Example

text DateFormat "Date"
{

0: "%02d.%02d.%04d"; // German
1: "%2$02d/%1$02d/%3$04d"; // British

}
...
sprintf(DateFormat,7,9,1965);
// variant 0:"07.09.1965"
// variant 1:"09/07/1965"

flags

IDM supports the following flags: +, -, 0, #

The flags + and - define whether the string is to be formatted left-aligned (-) or right-aligned (+), i.e.
whether necessary blanks are to be inserted at the beginning or at the end of the string.

It is also possible to specify 0 for the output of numbers. The strings will thus be filled with zeros. If
is specified, the hexadecimal number format will be 0x or 0X.

width

This parameter controls the minimal number of characters to be output. If less characters than spe-
cified are output, blanks will be inserted at the beginning or at the end of the string. This is con-
trolled by the “%s” parameter. If the string is longer than the specified field length all characters will
be output.

This parameter may also contain a star (*). This means that the following argument in the argu-
ment list will be used to define the output size.

Examples

sprintf("%0*x",4,255) is interpreted as sprintf("%04x",255)

sprintf("%s %*s","Hallo",40,"Welt") is interpreted as sprintf("%s %40s","Hallo","Welt")

.precision

This parameter controls the length of a string to be output. The first character is always a dot “.”
and will lead, in contrast to the parameter width, to a clipping of the string.

A.06.03.b 183

184 ISA DialogManager

Examples

sprintf("%.5s", "123456789") // Result "12345"
sprintf("%.*s", 2, "1234") // Result "12"

type

This parameter defines the type of the relevant argument. The following types are possible in the
IDM:

Type Output Format

d number with prefix

u number without prefix

b number in binary format

o number in octal format

x number in hexadecimal format, using “abcdef”

X number in hexadecimal format, using “ABCDEF”

c output of a character

s output of a string

For the use in IDM the formats for strings (%s) and numbers (%d, %u, %x, %o) have been expan-
ded. The behavior is described in the following table. [numeric] is used instead of d, x, X, b or u.

Data Type Control via % Result

void %s
%[numeric]

empty string
ERROR

string %s
otherwise

input string
ERROR

text %s
%[numeric

relevant string
textid in number format

object %s
%[numeric

name of object
DM_ID in number format

pointer %s
%[numeric

ERROR
address of pointers in number format

Data Type Control via % Result

event %s
%[numeric

name of event
number of event in number format

enum %s
%[numeric

name of enumeration
number of enumeration in number format

attribute %s
%[numeric

%name of attribute
number of attribute in number format

method %s
%[numeric

name of method
number of method in number format

integer %s
%[numeric

ERROR
number in number format

index %s
%[numeric

both values of index
ERROR

boolean %s
%[numeric

output of true or false as string
output of 0 (false) or 1 in number format

class %s
%[numeric

name of class
internal number of class in number format

datatype %s
%[numeric

data type as string
data type in number format

Pluralism

This parameter is used to control an output that depends on the value of the argument. You can
select the given singular value or plural value. The values must always be indicated in square
brackets, separated by “|”. The given value for the relevant part of the string in the parameter
range determines the value to be displayed.

The following is valid:

1
singular value

<> 1
plural value

Example

sprintf("%d %[house|houses]", 1); // "1 house"
sprintf("%d %[house|houses]", 2); // "2 houses"
sprintf("%d %[house|houses]", 0); // "0 houses"

A.06.03.b 185

186 ISA DialogManager

Summary Examples

!! output of a hexadecimal number in a statictext.
dialog HexOut

window W
{

child statictext HexOutput { }
}

on dialog start
{

variable integer Answer := 42;
variable string S;
S := sprintf("This is a hex number: %X", Answer);
W.HexOutput.text := S;

}

!! Output of a date in a statictext.
!! Variants are used to support country-specific features
!! (order of day, month and year).
dialog VariantDate
text DateFormat "DateFormat"
{

0: "%02d.%02d.%04d";
1: "%2$02d/%1$02d/3$04d";

}

window W
{

child statictext Date{ }
}

on dialog start
{

variable integer Day := 7;
variable integer Month := 9;
variable integer Year := 1965;
variable string S;
S := sprintf(DateFormat,Day,Month,Year);
!! language variant 0: S = "07.09.1965"
!! language variant 1: S = "09/07/1965"
W.Date.text := S;

}

!! Example for the use of singular and plural values.
dialog SingularPlural

on dialog start
{

sprintf("%d %[house|houses]", 1); // "1 house"
sprintf("%d %[house|houses]", 2); // "2 houses"
sprintf("%d %[house|houses]", 0); // "0 houses"

print sprintf("%3d file%[|s] copied", 1);
// Result: 1 file copied
print sprintf("%3d file%[|s] copied", 34);
// Result: 34 files copied
print sprintf("%3d file%[|s] copied", 0);
// Result: 0 files copied

}

!! This dialog shows specific features of sprintf() in the IDM.
dialog DMInterna

window W1 { }

on dialog start
{

print sprintf("Attribute %s has number %1$d", W1.visible);
// Result: Attribute .visible has number 1

print sprintf("Window %s has DM_ID %d", W1, W1);
// Result: Window W1 has DM_ID 5

print sprintf("Index %s", [1,2]);
// Result: Index [1,2]

}

A.06.03.b 187

188 ISA DialogManager

11.50 stop()
With this function you can stop a dialog. If this has been the last running dialog, the event loop will be
exited. If no dialog is specified, the current dialog will be terminated. If only one single dialog is
executed, stop() will have the same effect as exit().

Definition

void stop
(

object Dialog input
{ , boolean Destroy := false input }

)

Parameters

object Dialog input
In this parameter the dialog to be stopped has to be specified.

boolean Destroy := false input
If this optional parameter has the value true, the dialog will be deleted after the execution of the fin-
ish rules.

See also

Built-in function exit()

C function DM_StopDialog in manual “C Interface - Functions”

11.51 strcmp()
With this function, you can check whether two strings are identical. To do so, you can control via the
parameters how many characters are to be compared at most and if upper/lower cases are to be dis-
tinguished or not.

Definition

integer strcmp
(

string String1 input,
string String2 input

{ , integer Length input }
{ , boolean IgnoreCase := false input }

)

Parameters

string String1 input
In this parameter the first of the strings to be compared is specified.

string String2 input
In this parameter the second of the strings to be compared is specified.

integer Length input
If this optional parameter is specified, you can define how many characters are to be compared at
most in both strings.

boolean IgnoreCase := false input
If this optional parameter is specified by the value true, no distinction will be made between upper
case and lower case letters.

Rückgabewert

The function result can have the following values (always considered under the specified conditions
like the length of the comparison or the distinction between upper and lower case letters):

-1
String1 lexically comes before String2

0
both strings are identical

1
String1 lexically comes after String2

Examples

Comparing two strings up to length 4

strcmp ("ABCDefgh", "ABCDfghijk", 4);
// Result: 0

A.06.03.b 189

190 ISA DialogManager

Comparing without considering upper case and lower case

strcmp("ABCDEF", "abcdef", true);
// Result: 0

11.52 stringpos()
This function is used to check if a string also occurs in another string.

Definition

integer stringpos
(

string String input,
string Pattern input

{ , integer StartIdx := 1 input }
)

Parameters

string String input
In this parameter that string is specified in which a given pattern is to be searched.

string Pattern input
In this parameter the searched string will be specified.

integer StartIdx := 1 input
In this optional parameter you can specify from where in the given String the Pattern is to be
searched for. If this parameter is missing, the Pattern will be searched from the beginning of the
String.

Return value

0
The searched string does not occur in this string.

> 0
The searched string does occur in this string and the start index will be returned as result.
If the searched string does occur several times, the position of the first occurrence will be
returned.
If the searched string is an empty string, the return value will be 1.

Example

In an input field the pattern “EUR” is to be searched.

on Edittext charinput
{

variable integer Idx;

Idx := stringpos(this.content, "EUR");
if Idx > 0 then

print "Found";
endif

}

A.06.03.b 191

192 ISA DialogManager

11.53 strreplace()
The strreplace() function replaces substrings in a string with one or more substitute strings. The parts
to be replaced may be defined either as a position with an optional length indication, a string, or a list
of strings.

Definition

In the first form, the Index parameter specifies the position of the substring that shall be replaced by
the substitute string Replace within String. The optional Length parameter defines how many char-
acters will be replaced.

string strreplace
(

string String input,
integer Index input,
string Replace input

{ , integer Length input }
)

In the second form, each occurrence of Match in String is replaced by the substitute string Replace.
The optional IgnoreCase parameter determines whether the comparison is case-sensitive.

string strreplace
(

string String input,
string Match input,
string Replace input

{ , boolean IgnoreCase := false input }
)

In the third form of strreplace(), in String all substrings from the MatchList collection are replaced by
the single substitute string in ReplaceListOrString or the corresponding substitute string from the list
ReplaceListOrString. The optional IgnoreCase parameter determines whether the comparison is
case-sensitive.

string strreplace
(

string String input,
anyvalue MatchList input,
anyvalue ReplaceListOrString input

{ , boolean IgnoreCase := false input }
)

Parameters

string String input
In this parameter, the string is passed where substrings shall be replaced.

integer Index input
This parameter determines the position where the substring to be replaced begins within String. If
Index is greater than the length of String, the substitute string is appended to String. Index < 1 is
treated like Index = 1.

string Match input
In this parameter, the substring to be replaced within String is passed. If Match is an empty string,
there will be no replacement.

anyvalue MatchList input
In this parameter, a list of substrings is passed that are to be replaced within String. MatchList may
be any collection, but all its values must have the data type string or text.

string Replace input
In this parameter, the substitute string is passed which will replace the substrings in String. The
substrings will be replaced in the order of their occurrence within String. There will be no recursive
substitution.

anyvalue ReplaceListOrString input
This parameter contains a single substitute string or a list of substitute strings. The list may be any
collection, but all its values must have the data type string or text and its length must be equal to
the length of MatchList.
If ReplaceListOrString contains a collection, each occurrence of the substring MatchList[I] is
replaced by the substitute string ReplaceListOrString[I]. The order of substitution is determined by
the order of the substrings in MatchList, replacing the individual substrings in the order they occur
within String.
There will be no recursive substitution, i.e. each part of String will be replaced at most once.

integer Length input
This optional parameter defines the number of characters to be replaced by the substitute string.
Length can only be used together with Index. If Length is not specified, Replace will substitute the
substring beginning at Index to the end of String. For Length <= 0, the substitute string is inserted
without replacing characters.

boolean IgnoreCase := false input
This optional parameter controls whether the comparison of substrings is case-sensitive.

IgnoreCase Meaning

false
(default value)

The comparison of substrings is case-sensitive; upper and lower
case have to be identical.

true Upper and lower ase are ignored when comparing substrings and
do not need to be identical.

Return value

A string in which substrings have been substituted by replacement strings.

A.06.03.b 193

194 ISA DialogManager

Examples

Multiple replacement of the letter "l" by the letter "L"

print strreplace("Hello World", "l", "L");

Output

"HeLLo WorLd"

Replacement of multiple substrings

print strreplace("Anna", ["An", "n"], ["M", "i"]);

Output

"Mia"

Replacement of multiple substrings
Each part of the string "abc" is replaced at most once, i.e."a" by "b", "b" by "c" and "c" by "x". There
is no recursive replacement of "a" by "b" by "c" by "x".

print strreplace("abc", ["a", "b", "c"], ["b", "c", "x"]);

Output

"bcx"

Replacement of multiple substrings by the character ".", case insensitive

print strreplace("Abracadabra Ricinus", ["A", "r", "ICI", "u"], ".",
true);

Output

".b..c.d.b.. ..n.s"

Replacing a part of a string with another string

print strreplace("Bamjok", 3, "ngk", 2);

Output

"Bangkok"

Insert at the beginning of a string

print strreplace("one", 0, "zero ", 0);

Output

"zero one"

Append to the end of a string

print strreplace("one", 4, " two");

Output

"one two"

Append outside the string length

print strreplace("one", 100, "...");

Output

"one..."

A.06.03.b 195

196 ISA DialogManager

11.54 substring()
Parts of strings can be extracted with this function.

Definition

string substring
(

string String input,
integer Index input

{ , integer Length input }
)

Parameters

string String input
In this parameter the string from which a string part is to be copied is specified.

integer Index input
In this parameter the position in the string from which the string part is to be copied is indicated.

Note
This parameter has to be smaller than the length of parameter string and greater than 0 – oth-
erwise, the function is not carried out.

integer Length input
By means of this optional parameter you can control the maximum of characters to be copied from
the string. If this parameter is not specified, everything from the indicated position on to the end of
the string will be copied.

Return value

""
The empty string will be returned if the specifications are incorrect.

copied string
The copied string will be returned as a result.

Examples

Copy from position 4 of a string:

print substring("123456789", 4);
// Output: "456789"

Copy from position 4 of a string, with a length of 3:

print substring("12345", 4, 3);
// Output: "45"

11.55 tolower()
With this function a string can be turned completely into lower case letters.

This function is based on the functions of the relevant operation system. It may happen, for example,
that an umlaut is not treated correctly.

Definition

string tolower
(

string String input
)

Parameters

string String input
In this parameter the string is passed in which all letters are to be turned into lower case letters.

Return value

The result of this function is a string in which all contained letters are lower case letters. The other
characters remain unchanged.

Example

tolower("AbCdEf");
// Result: "abcdef"

A.06.03.b 197

198 ISA DialogManager

11.56 toupper()
With this function a string can be transformed completely into upper-case letters.

This function is based on the functions of the relevant operation system. This is why it can happen that
an umlaut cannot be transformed correctly.

Definition

string toupper
(

string String input
)

Parameters

string String input
In this parameter the string to be turned into capitals is specified.

Return value

The result of this function is a string in which all contained letters are capitals. The other characters
remain unchanged.

Example

toupper("AbCdef1");
// Result: "ABCDEF1"

11.57 trace()
This function can be used for the output of values in a tracefile during the testing process of the dialog
development.

Note

On calling this function the braces may be omitted.

Definition

void trace
(

anyvalue TraceVal input
)

Parameters

anyvalue TraceVal input
In this parameter the value to be output is indicated.

Example

Output of the current object in a rule:

trace this;

A.06.03.b 199

200 ISA DialogManager

11.58 trimstr()
With this function you can delete blanks at the beginning and/or end of a string.

Definition

string trimstr
(

string String input,
boolean Start input,
boolean End input

)

Parameters

string String input
In this parameter that string is indicated in which the blanks are to be deleted at the beginning
and/or end.

boolean Start input
If this parameter is specified as true, all leading blanks will be deleted; otherwise, the leading
blanks remain.

boolean End input
If this parameter is specified as true, all blanks at the end of the string will be deleted; otherwise,
the blanks at the string end remain.

Return value

As a result of this function a string will be returned in which all specified blanks have been deleted.

Examples

Deleting blanks in a string:

trimstr(" 123 ", true, true);
// Result: "123"

trimstr(" 123 ", false, true);
// Result: " 123"

11.59 typeof()
By means of this function you can query or specify the data type of any expression.

Definition

datatype typeof
(

anyvalue ReqVal input
)

Parameters

anyvalue ReqVal input
In this parameter the value whose data type is to be specified is indicated.

Return value

As return values of this function all data types defined by the ISA Dialog Manager can occur.

Examples

Data type of the attribute .xleft

typeof(this.xleft);
// Result: integer

Data type of the attribute .bgc

typeof(this.bgc);
// Result: color

A.06.03.b 201

202 ISA DialogManager

11.60 updatescreen()
With this function you can display all internal SetVal events on the screen.

This function ensures that all internal changes to the attributes are displayed on the screen.

Definition

void updatescreen
(
)

Example

After several allocations to a listbox a function is to be called. First, however, the values are to
become visible.

variable integer I;

for I := 1 to 1000 do
Listbox.content[I] := itoa(I);

endfor
updatescreen();
SomeFunction();

11.61 valueat()
This function returns the indexed value in a collection at the specified position. The allowed positions
are 1… itemcount() and thus allow looping through all indexed values without knowing the actual
index.

The function returns an error (fail) if the position is outside the allowed range or if the Value para-
meter is not a collection.

Definition

anyvalue valueat
(

anyvalue Value input,
integer Pos input

)

Parameters

anyvalue Value input
This parameter specifies the value list from which the indexed value shall be determined.

integer Pos input
Position for which the indexed value shall be determined.

Return value

Value found in the collection at the position passed as a parameter.

Example

dialog D

on dialog start
{

variable matrix Matrix := [
[0,0] => "-?-",
[1,1] => "germany",
[1,2] => "berlin",
[2,1] => "france"];

variable integer Pos;

/* print the Matrix elements [1,1] [1,2] ... [2,2] */
for Pos:=1 to itemcount(Matrix) do

print sprintf("%s : %s", indexat(Matrix, Pos), valueat(Matrix, Pos));
endfor
exit();

}

A.06.03.b 203

204 ISA DialogManager

See also

Built-in functions indexat(), values()

Method index

C functions DM_ValueGet(), DM_ValueIndex()

11.62 values()
This function returns a list of all values in a collection. Default values are not included. Applied to a
scalar value, this is returned as a list.

Definition

anyvalue values
(

anyvalue Value input
)

Parameters

anyvalue Value input
This parameter specifies the value on which the function is applied.

Return value

A list containing all values of a collection without the default values.

For a scalar parameter, a list containing only this parameter is returned.

Example

dialog D

on dialog start
{

variable hash DomainHash := [
".de" => "germany",
".us" => "usa",
".fr" => "france",
".uk" => "united kingdom"];

variable string Country;

/* print all country names from the DomainHash */
foreach Country in values(DomainHash) do

print Country;
endfor
exit();

}

Output

"germany"
"france"
"united kingdom"
"usa"

A.06.03.b 205

206 ISA DialogManager

See also

Built-in functions keys(), valueat()

Method index

C function DM_ValueCount()

12 Formal Syntax of Rules and
Statements

12.1 Operators
Operators can be used to formulate expressions.

Arithmetical operators serve for the calculation of numbers (arithmetical values).

Comparative operators serve for linking arithmetical and logical expressions.

Logical operators link two expressions to form a new expression.

The operators are described in the following.

Arithmetical Operator Meaning

+ addition

- subtraction

* multiplication

/ division

% modulo operator

Comparative Operator Meaning

= equal

<> not equal

>= greater than or equal

<= less than or equal

< less than

> greater than

Logical Operator Meaning

and logical AND

andthen logical AND
evaluated only as far as necessary to determine the result

A.06.03.b 207

208 ISA DialogManager

Logical Operator Meaning

or logical OR

orelse logical OR
evaluated only as far as necessary to determine the result

not logical negation

Miscellaneous Operator Meaning

() priority control, bracket term

:= assignment

::= assignment without triggering event

- algebraic sign

Priority of Operators

() high
not

* / %
+ -
<> >= <= < >
=

and andthen
or orelse
:= ::= low

Example

variable boolean Result;
:
Result := Button_1.active = true and Number = 10;

The variable “Result” will get the value true if “Button_1.active” is true and if at the same time the vari-
able “Number” gets the value 10; otherwise it will get the value false.

12.2 Expression
"Expression" is the generic term for the names of constants, variables, identifiers, function calls,
objects and object attributes.

Numbers and strings are also expressions.

Operators have to be put between expressions.

An expression can have the following elements:

string

variable

function

object

integer value

boolean value

datatype

object class

event

attribute

enum(eration)

index

built-in function

expression

expression attribute

expression attribute index

expression operator expression

negative expression

negated boolean expression

These elements are described in the following.

String

A string can contain all letters of the Latin alphabet as well as most national special characters,
e.g. mutated vowels. A string is usually an arbitrary name to be used in the rule and is indicated by
quotation marks.

Example

"Cancel"
"ISA Dialog Manager"

Variable

If you want to include a variable, specifying the variable name is sufficient. (See chapter "Rules" ->
"Variables".)

Function

If you want to include a function, you first have to state the function name and then the para-
meters. The parameters are given in the form of expressions. (See chapter "Rules" -> "Call of
Application Functions")

A.06.03.b 209

210 ISA DialogManager

Example

Add (a,b);

Object

An object is defined by its object name. The listbox with all existent dialog object names is located
in the upper area of the rule editing window.

Example

OK_Button
MainWindow.Groupbox1.ExitButton

Integer Value

An integer value is an integer between -231 an +231.

Example

30

Boolean Value

A boolean value can have the value true or false.

Example

true
false

Data Type

The following types are valid:

anyvalue

attribute

boolean

class

datatype

enum

event

index

integer

object

string

void

Object Class

The following values are valid:

accelerator

application

canvas

checkbox

color

cursor

dialog

edittext

font

function

groupbox

image

import

listbox

menubox

menuitem

menusep

messagebox

module

notebook

notepage

poptext

pushbutton

radiobutton

rectangle

rule

scrollbar

statictext

tablefield

text

tile

timer

variable

window

A.06.03.b 211

212 ISA DialogManager

Event

The following values are valid:

activate

changed

charinput

close

dbselect

deactivate

deiconify

deselect

deselect_enter

extevent

finish

focus

help

hscroll

iconify

key

modified

move

resize

scroll

select

start

vscroll

Attributes

The identifiers of the attributes described in the “Attribute Reference” are valid.

Example

.visible

Enumeration (enum)

The following values are valid:

noicon, icon_hand, icon_question, icon_exclamation, icon_asterisk, icon_information, icon_
query, icon_warning, icon_error

nobutton, button_ok, button_cancel, button_retry, button_abort, button_ignore, button_yes,
button_no

sel_row, sel_column, sel_area, sel_header, sel_single

store_never, store_onfree, store_onchange

edit_online, edit_offline, edit_locking

winsys_x11, winsys_windows, winsys_pm, winsys_none

toolkit_motif, toolkit_isa, toolkit_windows, toolkit_pm, toolkit_alpha

coltype_bw, coltype_grey, coltype_color

os_dos, os_os2, os_unix, os_vms, os_mpe, os_nt

Index

Syntax

[Integer-Expression , Integer-Expression]

Example

[3, TF1.colheader]

Built-in Function

Built-in functions are functions known to the ISA Dialog Manager as standard. See chapter “Built-
in Functions”.

Expression

An expression can in turn contain another expression.

Example

a+b

Expression Attribute

An expression can be linked to an attribute. The expression has to provide an object.

Example

P1.visible

Expression Attribute Index

An expression can be linked to an indexed attribute. The expression has to provide an object.
One- and two-dimensional indices can be given.

Example

L1.content[17]
T1.active[3,7]

Expression Operator Expression

An expression can be linked to another expression with an arithmetic operator.

A.06.03.b 213

214 ISA DialogManager

Example

B.x := B.x + B.4;

Negative Expression

A negative expression can e.g. be a negative integer.

Example

-7

Negated Expression

The expression can be preceded by the word NOT, so that a switch becomes possible.

Example

Window.visible := not Window.visible;

The exact syntax of the various components of an assignment is listed in the following in Backus-Naur
mode.

Definition

<expression>::=

<string>|

<variable>|

<function>|

<object>|

<integer value>|

<boolean value>|

<data type>|

<object class>|

<event>|

<attribute>|

<enum>|

<index>|

<built-in function>|

(<expression>)|

<expression><operator><expression>|

-<expression>|

not<expression>

<object>::=

<objectpath>{{<relation>}{<objectpath>}}
[<attribute>]

<built-in
function>::=

<built-in>
(<expression>)

<data
type>::=

anyvalue | attribute | boolean | class | datatype | enum | event
| index | integer | object | string | void

<object
class>::=

accelerator | application | ... (see
above)

<event>::=

activate | changed | ... (see
above)

<enum>::=

noicon | icon_hand | ... (see
above)

<index>::=

[<expression>,
<expression>]

<operator>::=

+ |

A.06.03.b 215

216 ISA DialogManager

- |

* |

/ |

% |

< |

<= |

= |

<> |

>= |

> |

and |

or

<objectpath>::=

<objectidentifier>{.<objectidentifier>} |
<variable>

<objectpath>::=

<objectpath> |
this

<relation>::=

.parent |

.window |

.menubox |

.groupbox
|

<string>::=

"<ASCII>"

<ASCII>::=

{<digit>|<letter>|<space>|\<octal number>|<special
character>}

12.3 Statements
In order to form statements, operators and expressions are used.

<statement> ::=

<object> := <expression>;|

<variable> := <expression>;|

if(<expression>)then<statementlist>
[else<statementlist>]

endif|

exit ;|

print<expression> ;|

<function> ;

<statementlist> ::=

<statement>{<statement>}

Syntax (Conditional Program Run)

The syntax of a conditional program run is listed in the following.

If_then_
else::=

<condition
line>

then

<statement>

else

<statement>

endif

<condition
line>

then

A.06.03.b 217

218 ISA DialogManager

<statement>

endif

statement::=

<object> := <expression>; |

<variable> := <expression>; |

if(<expression>)then<statementlist>
[else<statementlist>]

endif |

exit; |

print<expression>;
|

<function>;

statementlist::=

<statement>
{<statement>}

Examples for Statements

window.visible := true;
window2.x := window1.height+window1.x+10;

Metalingual examples for the use of statements in rule definitions:

on Identifier event
if (statement with boolean expression)
{
 Statements;
}
on Identifier event
{
 ...
 if (statement with boolean expression)
 then
 Statements;
 endif
 ...
}
on Identifier event
{
 ...

 if (statement with boolean expression)
 then
 Statements;
 else
 Statements;
 endif
 ...
}

Note

Boolean expressions are formed with logical operators.

Function calls for the application can be used in two ways:

function The function is not called; the last result of the function is used.

function(para-
meter)

The function is called, the result of this call is used. Parameters can be transferred
to the function optionally.

These functions form the interface to your application.

Example

on Variable_A.value changed
{
 print variable_value;
}
on Mainwindow close
{
 exit;
}
on Pushbutton select
{
 AP_Function (this.text);
}

A.06.03.b 219

220 ISA DialogManager

-

- 75

%

% 75

*

* 75

/

/ 75

+

+ 75

<

< 75

<= 75

<> 75

=

= 75

=> 45

>

> 75

>= 75

A

accelerator 14, 41

access restriction 66

action 11

activate 14, 16-19, 21-22

addition 207

after 31-32

algebraic 208

alias 52

and 76, 207

andthen 76, 207

anyvalue 43, 51, 61-62

append() 88

application 15, 28, 60

application finish 28

application function 11, 71

call 87

application start 28

applyformat() 91

assignment 208

without event 208

assignment operator 74

atoi() 92

attribute 41, 43, 61, 77, 209

change 71

attribute value

change 71

attributes 51, 212

Index

A.06.03.b 221

B

Backus-Naur 214

beep() 93

beep_error 93

beep_note 93

beep_ok 93

beep_question 93

beep_warning 93

before 31-32

boolean 43, 51, 61

boolean value 209-210

braces 76

bracket 208

brackets

() 77

[] 76

{} 76

round 77

square 76

built-in function 11, 71, 88, 209, 213

append() 88

applyformat() 91

atoi() 92

beep() 93

closequery() 95

concat() 97

countof() 99

create() 101

delete() 104

destroy() 107

dumpstate() 109

exchange() 113

execute() 116

exit() 120

fail() 122

find() 124

first() 127

getvalue() 128

getvector() 130

indexat() 132

inherited() 134

insert() 135

itemcount() 139

itoa() 141

join() 142

keys() 145

length() 146

load() 147

loadprofile() 148

max() 149

min() 150

parsepath() 151

print() 154

querybox() 155

queryhelp() 157

random() 158

regex() 159

run() 165

save() 166

saveprofile() 167

second() 169

sendevent() 170

sendmethod() 172

222 ISA DialogManager

setinherit() 173

setvalue() 174

setvector() 176

sort() 179

split() 181

sprintf() 182

stop() 188

strcmp() 189

stringpos() 191

strreplace() 192

substring() 196

tolower() 197

toupper() 198

trace() 199

trimstr() 200

typeof 42

typeof() 201

updatescreen() 202

valueat() 203

values() 205

button_abort 155

button_cancel 155

button_ignore 155

button_no 155

button_ok 155

button_retry 155

button_yes 156

C

call of application functions 87

callback function 50, 55, 58

simulation 59

canvas 15

function 50, 87

canvas function 55

canvasfunc 55

case statement 77, 79

changed 14, 27

charinput 14, 16, 18, 21

checkbox 15

child[i] 38

class 43, 51, 61

clipboard 23

close 14, 22

closequery() 95, 156

code page 52

collection dtat type 44

comment 72-73

concat() 97

config 62

configurable 62

configuration file 62

constant 63

contentfunc 50, 57

count 41

countof() 99

create() 101

cut 14, 21, 23

D

data function 50, 56

Data Model 50

data type 43, 50, 61, 210

collections 44

A.06.03.b 223

hash 44

list 44

matrix 44

refvec 44

vector 44

datafunc 56

datatype 43, 51, 61, 209

dbselect 14, 17, 19, 21

deactivate 14, 16-19, 21-22

deiconify 14, 22

delete() 104

deselect 14, 16, 18

deselect_enter 14, 16, 19

destroy() 107

dialog 16

finish 28

start 28

division 207

division (/) 75

DM_LoadProfile 62

DM_QueueExtEvent 29

DM_SendEvent 29

DMF_PCREBinding 164

Drag&Drop 23

dump_all 110

dump_error 110

dump_events 110

dump_full 110

dump_locked 110

dump_memory 110

dump_none 110

dump_process 110

dump_short 110

dump_slots 110

dump_stack 111

dump_usage 111

dump_uservisible 111

dump_visible 111

dumpstate() 109

duration 94

E

edittext 16

else 78

elseif 78

endcase 71

endfor 71

endif 71, 78

endwhile 71

enum 43, 51, 61, 209, 212

enumeration 212

equal (=) 75

error

catching 122

passing 122

event 11, 13, 15, 43, 51, 61, 209, 212

external 13, 29

help 27

internal 13, 27

key 26

system 13, 28

user 13

event line 11, 13, 71

event object \ 41

224 ISA DialogManager

event type 13

event types 13

event[EV] 41

event[I] 41

event_code 41

eventcount 41

example

meta-lingual 218

exchange() 113

execommand 117

execute() 116

exenormal 117

exeshell 117

exit 29

exit() 120

expression 208-209, 213, 217

negated 209, 214

negative 209, 214

syntax (assignment) 214

expression attribute 209, 213

expression attribute index 209, 213

expression operator expression 209, 213

external event 11, 13, 29

extevent 14-22

F

fail() 92, 122

false 43

find() 124

finish 14-16, 18, 28

finish rule 28-29

first() 127

firstchild 38

firstmenu 38

focus 14-21

for loop 81

foreach loop 82

formal syntax 207

format

function 50

resource 57

format function 57

formatfunc 50, 57

forward referencing 40

frequency 94

function 50-51, 60, 77, 209

alias 52

call 219

callback 50, 55

canvas 50, 55

code page 52

format 50, 57

reloading 50, 57

rule 50-51

simulation 58

type 50

G

getvalue() 128

getvector() 130

global variable 61

greater (>) 75

greater or equal (>=) 75

groupbox 16, 38

A.06.03.b 225

H

hash 44

syntax 45

help 14-22, 32

help event 11, 13, 27

hidewindow 117

hierarchical inheritance 27

hscroll 14, 17-18, 21-22

I

iconify 14, 22

identifier 3

if 12, 78

if-elseif-else 77-78

if-then-else 77-78

if-then-else-endif 71

if-then-endif 79

image 17

import 17

use 60

import object 60

index 41, 43, 51, 61, 209, 213

indexat() 132

inheritance 26

hierarchical 27

special 26

inherited() 134

initialization 62

input 36, 52-53

input parameter 36

input value 52

insert() 135

integer 43, 51, 61

integer value 209-210

internal event 11, 13, 27

itemcount() 139

itoa() 141

J

join

string 143

join() 142

K

key 14, 16-22, 32

key event 26

keyboard

event 11, 13

keys() 145

L

lastchild 38

lastmenu 38

length() 146

less (<) 75

less or equal (<=) 75

list 44

syntax 45

listbox 17

load() 147

loadprofile() 148

local 15

local variable 83

226 ISA DialogManager

logical and 76

logical AND 207

logical negation 76, 208

logical operator 75, 207

logical or 76

logical OR 208

loop construct 81

loop run 81

loop start 81

M

match_begin 125

match_exact 125

match_first 125

match_substr 125

matrix 44

max() 149

maxwindow 117

menu[i] 38

menubox 17

menuitem 17

menuseparator 18

messagebox 18

method 43, 51, 61

min() 150

minus (-) 75

minwindow 117

modified 15-16, 19, 21

modue 60

modularization 60

module 18

finish 28

start 28

module functions 60

modulo (%) 75

modulo operator 207

move 15, 22

multiplication 207

N

named rule 35

negated boolean expression 209

negated expression 214

negative expression 209, 214

nobutton 156

not 76, 208

notebook 18

notepage 18

null object 40

O

object 15, 43, 51, 61, 209-210

application 28

callback function 87

class 209-210

class events 11

referencing 37

special

this 37

this 37

user 13

on 13

open 15

A.06.03.b 227

operator 207, 217

- 207-208

% 207

() 208

* 207

/ 207

::= 74, 208

:= 74, 208

+ 207

< 207

<= 207

<> 207

= 207

> 207

>= 207

and 76, 207

andthen 76, 207

arithmetic 207

assignment 74

comparative 207

logical 75, 207

not 76, 208

or 76, 208

orelse 76, 208

priority 208

or 76, 208

orelse 76, 208

otherwise 80

output 36, 52-53

output parameter 36

output value 52

P

parameter 52

input 36

length 52

output 36

parent 38

parsepath() 151

paste 15, 22-23

PCRE library

linking 163

version 163

plus (+) 75

pointer 43, 51, 61

poptext 18

precondition 12

print() 154

priority

operators 208

program block 11-12, 71

program flow 77

programming language

C 50

COBOL 50

pushbutton 19

Q

querybox() 95, 155

queryhelp() 157

Queue 29

228 ISA DialogManager

R

radiobutton 19

random() 158

rectangle 19

reference operator 45

refvec 44, 46

regex() 159

regex_count 161

regex_eval 161

regex_locate 161

regex_match 161

regex_unmatch 161

regex_vars 161

relations 38

reloading function 50, 57

resize 15, 22

return type 35

rule 11, 35

base 11

run() 165

S

save() 166

saveprofile() 167

scroll 15, 17-18, 20-22

scrollbar 19

second() 169

select 15-22

sendevent() 170

sendmethod() 172

setinherit() 173

setup 20

setvalue() 174

setvector() 176

showinactive 117

showwindow 117

signal handler 29

simulation 58

callback function 59

simulation rule 58

size 53

sort() 179

sort_binary 179

sort_linguistic 179

spinbox 20

split() 181

sprintf() 182

start 15-16, 18, 28

start rule 28

statement 71, 217-218

statementlist 218

static 85

static variable 85

initialization 86

statictext 20

status information 109

statusbar 20

stop() 188

strcmp() 189

string 44, 51, 62, 209

stringpos() 191

strreplace() 192

sub-rule 71

A.06.03.b 229

subprogram 35

substring() 196

subtraction 207

switch 77, 79

syntax

conditional program run 217

formal 207

hash 45

list 45

system event 11, 13, 28

T

tablefield 21

then 78

this 37-39

thisevent 41

timer 21

times (*) 75

tolower() 197

tone 93

duration 94

frequency 94

volume 93

toupper() 198

trace() 199

tracing 199

treeview 21

trimstr() 200

true 43

type 41, 53

type checking 65

typeof() 201

U

unequal (<>) 75

updatescreen() 202

use 60

user

event 11

user-initiated event 13

user event 13

V

validity range 65

value 27, 41

value restriction 66

valueat() 203

values() 205

variable 27, 61, 71, 77, 81, 83, 209

configurable 62

constant 63

declaration 61

global 61

initialization 62

local 83

static 85

vector 44

void 51, 62

volume 93

vscroll 15, 17-18, 21-22

W

while loop 83

window 22, 38

230 ISA DialogManager

X

x 41

Y

y 42

A.06.03.b 231

	Notation Conventions
	Table of Contents
	1 Introduction
	2 Events
	2.1 User Events
	2.1.1 Objects and their User Events
	2.1.2 Drag and Drop Events
	2.1.2.1 Cut Event
	2.1.2.2 Paste Event
	2.1.2.3 Examples
	2.1.2.4 Tips & Tricks for Drag & Drop and Clipboard

	2.1.3 User Events with Special Inheritance

	2.2 Internal Events
	2.3 System Events
	2.4 External Events

	3 Rule Processing
	3.1 Normal Rules
	3.2 before Rules
	3.3 after Rules
	3.4 Processing Order

	4 Named Rules (Subprograms)
	5 Special Objects and Object Referencing
	5.1 this
	5.2 Object Referencing
	5.3 null Object
	5.4 Event Object thisevent

	6 Data Types
	6.1 Collection Data Types
	6.1.1 Syntax of Expressions
	6.1.2 List Size and Default Values
	6.1.3 Access and Assignment of Collections
	6.1.4 Automatic Conversion
	6.1.5 Performance
	6.1.6 Local and Global Variable
	6.1.7 Relational Operators
	6.1.8 Uninitialized variables

	7 Functions
	7.1 Function Called in Rules
	7.1.1 Alias Name with Optional Code Page Definition
	7.1.2 Calling Parameters of a Function during Runtime

	7.2 Callback Function
	7.3 Canvas Function
	7.4 Data Function
	7.5 Format Function
	7.6 Reloading Function
	7.7 Simulation of Functions
	7.8 Functions in modularized dialogs

	8 Global Variables
	8.1 Variable Definition
	8.2 Variable Definition with Initialization
	8.3 Configurable Variables
	8.4 Protecting Variables against Changes
	8.5 Attributes of Global Variables that Can Be Changed Dynamically

	9 Validity Range for Better Type Checking
	9.1 Restrictions
	9.2 Access and Value Tests
	9.3 Derivation of the Validity Range
	9.4 Enhancement of the IDM Syntax
	9.5 Attributes in Relation to Validity Ranges

	10 Actions in the Program Block
	10.1 General Structure of a Statement
	10.2 Commenting Instructions
	10.3 Comments
	10.4 Operators in the Rule Language
	10.4.1 Assignment Operators
	10.4.2 Comparison Operators
	10.4.3 Arithmetical Operators
	10.4.4 Logical Operators

	10.5 Brackets in the Rule Language
	10.6 Changing Attribute Values
	10.7 Control of the Program Flow
	10.7.1 if-then-else
	10.7.2 if-elseif-else
	10.7.3 case Statement

	10.8 Loop Constructs
	10.8.1 for Loop
	10.8.2 foreach Loop
	10.8.3 while Loop

	10.9 Calling Named Rules
	10.10 Local Variables
	10.10.1 Normal Local Variables
	10.10.2 Static Variables

	10.11 Return of Values
	10.12 Call of Application Functions

	11 Built-in Functions
	11.1 append()
	11.2 applyformat()
	11.3 atoi()
	11.4 beep()
	11.5 closequery()
	11.6 concat()
	11.7 countof()
	11.8 create()
	11.9 delete()
	11.10 destroy()
	11.11 dumpstate()
	11.12 exchange()
	11.13 execute()
	11.14 exit()
	11.15 fail()
	11.16 find()
	11.17 first()
	11.18 getvalue()
	11.19 getvector()
	11.20 indexat()
	11.21 inherited()
	11.22 insert()
	11.23 itemcount()
	11.24 itoa()
	11.25 join()
	11.26 keys()
	11.27 length()
	11.28 load()
	11.29 loadprofile()
	11.30 max()
	11.31 min()
	11.32 parsepath()
	11.33 print()
	11.34 querybox()
	11.35 queryhelp()
	11.36 random()
	11.37 regex()
	11.38 run()
	11.39 save()
	11.40 saveprofile()
	11.41 second()
	11.42 sendevent()
	11.43 sendmethod()
	11.44 setinherit()
	11.45 setvalue()
	11.46 setvector()
	11.47 sort()
	11.48 split()
	11.49 sprintf()
	11.50 stop()
	11.51 strcmp()
	11.52 stringpos()
	11.53 strreplace()
	11.54 substring()
	11.55 tolower()
	11.56 toupper()
	11.57 trace()
	11.58 trimstr()
	11.59 typeof()
	11.60 updatescreen()
	11.61 valueat()
	11.62 values()

	12 Formal Syntax of Rules and Statements
	12.1 Operators
	12.2 Expression
	12.3 Statements

	Index

