
XML INTERFACE

A.06.03.b

This manual depicts the interface for processing XML
(Extensible Markup Language) data with the ISA Dialog Man-
ager. It elucidates the objects available for it and their attrib-
utes and methods.

ISA Informationssysteme GmbH

Meisenweg 33

70771 Leinfelden-Echterdingen

Germany

Microsoft, Windows, Windows 2000 bzw. NT, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows 11 are registered trademarks of Microsoft Corporation

UNIX, X Window System, OSF/Motif, and Motif are registered trademarks of The Open Group

HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Micro Focus, Net Express, Server Express, and Visual COBOL are trademarks or registered trade-
marks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom, United States and other
countries

Qt is a registered trademark of The Qt Company Ltd. and/or its subsidiaries

Eclipse is a registered trademark of Eclipse Foundation, Inc.

TextPad is a registered trademark of Helios Software Solutions

All other trademarks are the property of their respective owners.

© 1987 – 2024; ISA Informationssysteme GmbH, Leinfelden-Echterdingen, Germany

NotationConventions
DM will be used as a synonym for Dialog Manager.

The notion of UNIX in general comprises all supported UNIX derivates, otherwise it will be explicitly
stated.

< > to be substituted by the corresponding value

color keyword

.bgc attribute

{ } optional (0 or once)

[] optional (0 or n-times)

<A> | either <A> or

Description Mode

All keywords are bold and underlined, e.g.

variable integer function

Indexing of Attributes

Syntax for indexed attributes:

[I]

[I,J] meaning [row, column]

Identifiers

Identifiers have to begin with an uppercase letter or an underline ('_'). The following characters may
be uppercase or lowercase letters, digits, or underlines.

Hyphens ('-') are not permitted as characters for specifying identifiers.

The maximal length of an identifier is 31 characters.

Description of the permitted identifiers in the Backus-Naur form (BNF)

<identifier> ::= <first character>{<character>}

<first character> ::= _ | <uppercase>

<character> ::= _ | <lowercase> | <uppercase> | <digit>

A.06.03.b 3

4 ISA DialogManager

<digit> ::= 1 | 2 | 3 | … 9 | 0

<lowercase> ::= a | b | c | … x | y | z

<uppercase> ::= A | B | C | … X | Y | Z

Table of Contents

Notation Conventions 3

Table of Contents 5

1 XML Support 7

1.1 XML Support on Microsoft Windows 7
1.2 XML Support on Unix 7
1.3 Differences Between the Windows and Unix Implementations 8

2 Use of XML with the Datamodel 9
2.0.1 Example 10
2.0.2 Index Value dopt_cache_data of the Attribute dataoptions 12

3 The XML Document (document) 13

3.1 Attributes 14
3.2 Object-specific Attributes 15
3.3 Object-specific Methods 16

4 The XML Cursor (doccursor) 18

4.1 Attributes 19
4.2 Object-specific Attributes 20
4.3 Object-specific Methods 23
4.4 Pattern for the Methods :match() and :select() 24

5 The transformer Object 26

5.1 Attributes 28
5.2 Object-specific Attributes 29
5.3 Object-specific Methods 30
5.4 Example 31

6 The mapping Object 35

6.1 Attributes 35
6.2 Object-specific Attributes 36
6.3 Pattern for .name 36
6.4 Object-specific Methods 37

A.06.03.b 5

Index 39

6 ISA DialogManager

1 XML Support
IDM XML support allows for the processing of XML Documents in the Rule Language. The main com-
ponents include the new object classes document and doccursor, which are described in the fol-
lowing sections.

The functionality of XML transformation builds on the XML interface and consists of the objects trans-
former and mapping. It serves for transformation of XML files to IDM objects and attributes and vice
versa.

XML and the “Document Object Model” (DOM), which defines an object model and an interface for the
access of XML Documents, are standards of the World Wide Web Consortium (W3C). The spe-
cifications are available on the W3C website (www.w3c.org/XML, www.w3c.org/DOM).

1.1 XML Support on Microsoft Windows
Microsoft XML Core Services (MSXML) Version 3.0 or higher is required.

1.2 XML Support on Unix
The XML interface is available from IDM version A.05.02.d for Unix platforms that support libxml2 and
libxslt.

These are the platforms:

Solaris (version 7 and above)

HP-UX 11.0 11.23 (32-bit)

AIX 5.1

Redhat6.1, Redhat8

RHEL4 i386 & x86_64

Suse 9.1

Please note that version 2.7.2 (HP-UX: 2.7.3) or higher of the libxml2 libraries has to be installed on
the system. To use Transformer objects the libxslt library 1.1.24 has to be available. The libraries
don’t have to be explicitly linked but they should be in the library search path (depending on the plat-
form LD_LIBRARY_PATH, SHLIB_PATH, LIBPATH) or directly linked while building an IDM applic-
ation. The attributes .idispatch and .ixmldomdocument2 return the xmlDocPtr and xmlNodePtr
respectively xmlAttrPtr depending on the linked libxml2 library. Setting these attributes is not allowed.

A.06.03.b 7

http://www.w3c.org/XML
http://www.w3c.org/DOM/

8 ISA DialogManager

1.3 Differences Between the Windows and Unix Implementations
1. The processing instruction xml is not treated as an distinct node of the DOM by libxml2. This has

influence on the path, the traversing with :select as well as saving the documents.

2. The handling of spaces may be different. The libxml2 library is used with keepBlanksDefault = 0 to
avoid unnecessary text nodes caused by node indentation or line breaks. Through this a behavior
as similar as possible to the Windows implementation is achieved.

3. When reading out the attribute .text and saving a formatted document there are small differences
between MSXML and libxml2 regarding indentation, line breaks and spaces.

2 Use of XMLwith the Datamodel
Availability

Since IDM version A.06.01.b

XML may be used as a Data Model, where node texts and node attributes can contain the data – usu-
ally strings. An XML Document is linked to a View through a doccursor. For this purpose, Data Model
attributes and selection patterns for nodes of the XML Document are defined at the doccursor. Fur-
ther it can be defined whether the Data Model attribute is linked to the content or an attribute value of
the node. For operations that change the XML Document, the data changes are forwarded to all Data
Model attributes.

The doccursor has the following attributes to use it as a Data Model:

Table 1: Datamodel attributes of the doccursor

Attribute Meaning

.dataselect Defines a Data Model attribute with associated selection pattern.

.dataselectattr Maps a Data Model attribute to an attribute of the selected nodes.

.dataselecttype Data type conversion of a Data Model attribute.

.dataselectcount Defines the cardinality of a Data Model attribute.

.dataoptions Controls caching via the index dopt_cache_data.

The .dataselect attribute is of crucial importance here. It defines the Data Model attributes of the doc-
cursor and their linking to nodes of the XML Document using selection patterns. The syntax of the
selection patterns is the same as the pattern definitions for the :select method. The selection pattern
of a .dataselect attribute without index – that is, without a Data Model attribute – is applied before the
selection patterns of all Data Model attributes. This enables relative selection patterns for the Data
Model attributes originating from the nodes preselected by the .dataselect attribute without index. At
the same time, this reduces the effort required to collect the data.

When collecting the data for a Data Model attribute, it is looped through the document using the selec-
tion pattern. Either the node content is fetched using the .text attribute of the doccursor or the value
of the node attribute defined by .dataselectattr.

For the Data Model attributes defined with .dataselect, data type and cardinality may be altered using
the attributes .dataselecttype and .dataselectcount. By default, the Data Model attributes contain vec-
tors with string values (data type vector[string]). With the . dataselecttype attribute a data type (e.g.
integer, boolean) can be defined to convert the values into. The cardinality (vector or scalar) of Data

A.06.03.b 9

10 ISA DialogManager

Model attributes can be controlled via the attribute .dataselectcount. If the data type of the Data Model
attribute is a collection or its cardinality is the data type integer, then the Data Model attribute contains
a vector, otherwise only a scalar with the first value.

Once retrieved values of a Data Model attribute are cached until either the XML Document or the Data
Model attributes of the doccursor change. This caching can be prevented by setting .dataoptions
[dopt_cache_data] = false at the doccursor.

Saving data in an XML Document happens in a similar way with reversed operations. However, nodes
cannot be created or deleted automatically in the XML Document.

Notes

Collecting the data can be an “expensive” operation, since the selection pattern must be searched
in the whole XML Document. The effort may be reduced by limiting the search to preselected sub-
trees by using a .dataselect attribute without index.

A doccursor used as a Data Model should not be used for other purposes, as it typically changes
its selection path constantly.

2.0.1 Example
A list of Nobel laureates shall be read from the following XML file and displayed in a table:

<?xml version="1.0"?>
<nobelprizes>

<category id="p">Physics</category>
<category id="c">Chemistry</category>
<winner year="1" category="p">Wilhelm Conrad Röntgen</winner>
<winner year="11" category="c">Marie Curie</winner>
<winner year="18" category="p">Max Planck</winner>
<winner year="70" category="c">Luis Leloir</winner>

</nobelprizes>

The names of the laureates are taken from the content of the XML nodes “winner” and stored in the
Data Model attribute “.Winner”. The years of the award can be found in the “year” attribute of the XML
nodes and are counted in the file from 1900. They are converted to integer and read as vector into the
Data Model attribute “.Year”. In the overwritten :represent method, the years are completed to four-
digit numbers for display.

dialog D

document Doc
{

doccursor DocCur
{

.dataselect[.Winner] "..winner";

.dataselect[.Year] "..winner";

.dataselectattr[.Year] "year";

.dataselecttype[.Year] integer;

.dataselectcount[.Year] integer;
}

}

window Wi
{

.title "Nobel prize winners";

.width 300; .height 220;

tablefield Tf
{

.xauto 0; .yauto 0;

.datamodel DocCur;

.colcount 2; .rowcount 1;

.rowheader 1; .colheader 1;

.rowheight[0] 25;

.colwidth[0] 180; .colwidth[1] 60;

.content[1,1] "Year";

.content[1,2] "Winner";

.dataget[.field] .Winner;

.dataget[.userdata] .Year;

.dataindex[.userdata] [0,1];

:represent()
{

variable integer I;
if Attribute=.userdata then

for I := 1 to itemcount(Value) do
Value[I] := 1900 + (Value[I] % 100);

endfor
setvector(this, .content, Value,[2,1],

[1 + itemcount(Value),1]);
return;

endif
pass this:super();

}
}

on close { exit(); }
}

on start
{

Doc:load("nobelprizes.xml");
}

A.06.03.b 11

12 ISA DialogManager

This dialog produces the following window:

Figure 1: Table with XML data used as Data Model

2.0.2 Index Value dopt_cache_data of the Attribute dataoptions

Attribute Index Default Component Meaning

dopt_cache_data true Model This index value is only available for the
doccursor.

true
The data selected by the doccursor is
buffered for further accesses
(“caching”).

false
With each access, the doccursor
selects the data anew from the XML
Document.

3 The XMLDocument (document)
The document object is the container for an XML Document. An XML Document is saved as a DOM
tree. This DOM tree can be traversed with the help of a doccursor, which must be a child of the doc-
ument object.

Definition

{ export | reexport } { model } document { <Identifier> }
{

[<atribute definition>]
[<method definition>]

}

Events

None

Children

doccursor

document

record

transformer

Parents

application

canvas

checkbox

dialog

doccursor

document

edittext

groupbox

image

import

layoutbox

listbox

menubox

A.06.03.b 13

14 ISA DialogManager

menuitem

menusep

messagebox

module

notebook

notepage

poptext

pushbutton

radiobutton

record

rectangle

scrollbar

spinbox

splitbox

statictext

statusbar

tablefield

timer

toolbar

transformer

treeview

window

Menu

None

Methods

:load()

:save()

:transform()

:validate()

3.1 Attributes
doccursor[I]

document[I]

external

external[I]

firstrecord

idispatch

ixmldomdocument2

label

lastrecord

model

parent

real_version[enum]

record[I]

recordcount

scope

transformer[I]

userdata

version[enum]

xml

3.2 Object-specific Attributes
doccursor[I]

It is possible to access the XML Cursor of the XML Document through the doccursor attribute. The
attribute is indexed with the object index (similar to child).

idispatch

The Idispatch COM interface pointer in XML Documents can be accessed through the idispatch
attribute under Microsoft Windows.

In the Rule Language the attribute can only be assigned to the same attribute of a different IDM
object. Please note, in the programming interface a COM object will remain valid only as long as it
remains in use in the ISA Dialog Manager. For this reason it is important to increase the reference
counter of an application (COM Method: IUnknown->AddRef) . When the object is no longer
needed, the counter must be decreased again (COM Method: IUnknown->Release). In any case,
it is not allowed to decrease the counter more than it is increased. If this happens, the COM object
will be released. The ISA Dialog Manager cannot recognize this situation, which will lead to a sys-

A.06.03.b 15

16 ISA DialogManager

tem crash. The ISA Dialog Manager may also crash when the given pointer does not point to a
COM interface.

This attribute is not passed down because it refers to a runtime characteristic.

ixmldomdocument2

The IXMLDOMDocument2 COM interface pointer in XML Documents can be accessed through
the ixmldomdocument2 attribute under Microsoft Windows.

In the Rule Language the attribute can only be assigned to the same attribute of a different IDM
object. Please note, in the programming interface a COM object will remain valid only as long as it
remains in use in the ISA Dialog Manager. For this reason it is important to increase the reference
counter of an application (COM method: IUnknown->AddRef). When the object is no longer
needed, then the counter must be decreased again (COM Method: IUnknown->Release). In any
case, it is not allowed to decrease the counter more than it is increased. If this happens, the COM
object will be released. The ISA Dialog Manager cannot recognize this situation, which will lead to
a system crash. The ISA Dialog Manager may also crash when the given pointer does not point to
a COM interface.

This attribute is not passed down because it refers to a runtime characteristic.

xml

The string representation of XML Documents can be accessed with this attribute. When a new
value is set, the saved DOM tree is deleted and a new DOM tree is built from the newly set value.
All existing XML Cursors become invalid. When an XML Cursor is invalid, the attribute .mapped
has the value false.

3.3 Object-specific Methods
:load()

This loads an XML Document from the given file or URL. The saved DOM tree is deleted, and a
new DOM tree is built. All existing XML Cursors become invalid. When an XML Cursor is invalid,
the attribute .mapped has the value false.

:save()

Saves the XML Document to a file or URL.

:transform()

Transforms the XML Document with the given scheme. When the target is an XML Document, the
saved DOM tree is deleted and a new tree is built. All existing XML Cursors become invalid. When
an XML Cursor is invalid, the attribute .mapped has the value false.

Alternatively, the target of the transformation can be a text or file. If the result of the transformation
is no legal XML format, then it needs to be directly converted into a text or file, as the result cannot
be assigned to an XML Document. This is true, for example, for conversions to HTML.

:validate()

This checks if the XML Document conforms to the document type given in the XML Document. If it
does not have a document type, an error will occur.

A.06.03.b 17

18 ISA DialogManager

4 The XMLCursor (doccursor)
The doccursor object is always a child of an XML Document. It refers to a node in the DOM tree,
which is saved in the XML Document (the parent).

There are methods to set the reference to a different node of the DOM tree. In other words this means
that the XML Cursor can be moved in the DOM tree through methods. It will remain a child of the XML
Document of course.

Definition

{ export | reexport } { model } doccursor { <Identifier> }
{

[<atribute definition>]
[<method definition>]

}

Besides the “normal” ISA Dialog Manager attributes, the XML Cursor attribute contains additional
attributes which make it possible to access properties such as name, value or other attributes of the
DOM nodes. Because these are runtime attributes, they cannot be passed down. In addition, many of
these attributes can only be read because the corresponding properties of the DOM nodes cannot be
changed.

The XML Cursor is initially invalid, but as soon as it is accessed for the first time it will be automatically
positioned to the root of the DOM tree. Note that this also happens when the XML Cursor gets invalid
through an action. The attribute .mapped shows if the XML Cursor is valid or not.

Events

None

Children

document

record

transformer

Parents

document

Menu

None

Methods

:add()

:delete()

:match()

:reparent()

:select()

:transform()

4.1 Attributes
attribute[I]

attribute[string]

data

dataselect[attribute]

dataselectattr[attribute]

dataselectcount[attribute]

dataselecttype[attribute]

document[I]

external

external[I]

firstrecord

idispatch

ixmldomnode

ixmldomnodelist

label

lastrecord

mapped

model

name

nodetype

parent

path

publicid

record[I]

recordcount

scope

A.06.03.b 19

20 ISA DialogManager

specified

systemid

target

text

transformer[I]

userdata

value

xml

4.2 Object-specific Attributes
attribute[I]
attribute[string]

Depending on the indexing, the attribute “attribute” serves for querying the name or the value of a
DOM nodes’ attributes .

If the index is a number, the name of the corresponding attribute of a DOM node will be delivered.
Take note that attributes of DOM nodes usually are unsorted.

If the index is a string, then the index is regarded as a name of an attribute and the value of this
attribute is returned. An assignment to an attribute indexed with a string creates a corresponding
attribute for the DOM node. The assignment of an empty string deletes the corresponding attribute
of the DOM node.

This attribute is not passed down because it refers to a runtime characteristic.

data

Is for setting and retrieving the data within a DOM node. The attribute is only available when the
node type is either nodetype_cdata_section or nodetype_processing_instruction.

This attribute is not passed down because it refers to a runtime characteristic.

idispatch

The IDispatch COM interface pointer of the XML Cursor can be accessed through the attribute
idispatch under Microsoft Windows.

In the Rule Language the attribute can only be assigned to the same attribute of a different IDM
object. Be aware, that in the programming interface the COM object is only valid during the time
when it is in use by the ISA Dialog Manager. Therefore, an application should increase its ref-
erence counter (COM Method: IUnknown->AddRef). When the object is no longer needed, the
counter should be decreased (COM Method: IUnknown->Release). Please note, the counter can-
not be decreased more often than it is increased. Otherwise, the COM object will be released. The
ISA Dialog Manager cannot recognize this situation and this will lead to a system crash.

This attribute is not passed down because it refers to a runtime characteristic.

ixmldomnode

The IXMLDOMNode COM interface pointer of the XML Cursor can be accessed through the ixm-
ldomnode attribute under Microsoft Windows.

In the Rule Language the attribute can only be assigned to the same attribute of a different IDM
object. Be aware, that in the programming interface the COM object is only valid while it is in use
by the ISA Dialog Manager. Therefore, an application should increase its reference counter (COM
Method: IUnknown->AddRef). When the object is no longer needed, the counter should be set
back again, or decreased (COM Method: IUnknown->Release). Please note, the counter cannot
be decreased more often than it is increased. Otherwise, the COM object will be released. The
ISA Dialog Manager cannot recognize this situation and this will lead to a system crash.

This attribute is not passed down because it refers to a runtime characteristic.

ixmldomnodelist

The IXMLDOMNodeList COM interface pointer of the XML Cursor can be accessed through the
ixmldomnodelist attribute under Microsoft Windows. The direct children of the XML Cursor can be
accessed through the interface pointer.

In the Rule Language the attribute can only be assigned to the same attribute of a different IDM
object. Be aware, that in the programming interface the COM object is only valid while it is in use
by the ISA Dialog Manager. Therefore, an application should increase its reference counter (COM
Method: IUnknown->AddRef).). When the object is no longer needed, the counter should be
decreased (COM Method: IUnknown->Release). Please note, the counter cannot be decreased
more often than it is increased. Otherwise, the COM object will be released. The ISA Dialog Man-
ager cannot recognize this situation and this will lead to a system crash.

This attribute is not passed down because it refers to a runtime characteristic.

mapped

Is true when the XML Cursor points to a node in the DOM tree. Please take note that an XML
Cursor, which does not reference any node in the DOM tree, is automatically positioned on the
root of the DOM tree when any object-specific attribute is accessed or when an object-specific
method is invoked.

This attribute is not passed down because it refers to a runtime characteristic.

name

Refers to the name or tag of the DOM node.

This attribute is not passed down because it refers to a runtime characteristic.

nodetype

This serves for querying the type of DOM node.

This attribute is not passed down because it refers to a runtime characteristic.

A.06.03.b 21

22 ISA DialogManager

path

Delivers a string representation for the position of the XML Cursor in the DOM tree. The select
method can be called with this string in order to position an XML Cursor to the nodes in the DOM
tree.

If the value of the path attribute is stored somewhere else (i.e. in the userdata attribute), then it is
important to know that these stored values will not be adjusted when the structure of the DOM tree
changes. When the select method is invoked with the stored value afterward, the XML Cursor will
point to an incorrect DOM node.

This attribute is not passed down because it refers to a runtime characteristic.

publicid

Is the public identifier of the DOM node. The attribute is only available, when the node type is
either nodetype_entity or nodetype_notation.

This attribute is not passed down because it refers to a runtime characteristic.

specified

This reveals if an attribute of a DOM node was explicitly given, or if it was inherited from a standard
value. The attribute is always true except for the node type nodetype_attribute.

This attribute is not passed down because it refers to a runtime characteristic.

systemid

Is the system identifier of DOM nodes. This attribute is only available when the node type is either
nodetype_entity or nodetype_notation.

This attribute is not passed down because it refers to a runtime characteristic.

target

Is the name of the instruction for a DOM node. The value is the same as the value of the name
attribute. This attribute is only available when the node type is nodetype_processing_instruction.

This attribute is not passed down because it refers to a runtime characteristic.

text

Is the value of all sub-nodes within a DOM node. A string is delivered which represents the text of
all sub-nodes. This attribute is mainly helpful when only the text of an XML element is needed, as it
is not required to navigate to the child nodes containing the actual text.

Please note that setting this attribute automatically deletes all child nodes and inserts a new text
node.

This attribute is not passed down because it refers to a runtime characteristic.

value

Is the value of a DOM node. This attribute is only available when the node type is nodetype_attrib-
ute, nodetype_text, nodetype_cdata_section, nodetype_processing_instruction or nodetype_

comment.

This attribute is not passed down because it refers to a runtime characteristic.

xml

String representation of a DOM node and all of its child nodes.

This attribute is not passed down because it refers to a runtime characteristic.

4.3 Object-specific Methods
:add()

Inserts a child node as the last node to the current DOM node. The XML Cursor is then set to the
new element.

:delete()

Deletes the DOM node and all of its child nodes. The XML Cursor is then positioned to the father
node. The XML Cursors, which point to the deleted DOM nodes in the sub-tree, become invalid.
The attribute .mapped has the value false for invalid XML Cursors.

When the value of the path attributes is stored elsewhere (i.e. in userdata attribute), then it is
important to know that these stored values will not be adjusted when the structure of the DOM tree
changes. When the select method is invoked with the stored value afterward, the XML Cursor will
point to an incorrect DOM node.

:match()

Tests if the DOM node satisfies the given pattern (see chapter “Pattern for the Methods :match()
and :select()”).

:reparent()

Reallocates the DOM node with all of its child nodes.

When the value of the path attributes is stored elsewhere (i.e. in userdata attribute), then it is
important to know that these stored values will not be adjusted when the structure of the DOM tree
changes. When the select method is invoked with the stored value afterward, the XML Cursor will
point to an incorrect DOM node.

:select()

Moves the XML Cursor in the given direction or moves the XML Cursor to the first DOM node that
matches the given pattern (see chapter “Pattern for the Methods :match() and :select()”).

:transform()

Transforms the XML Cursor with the given scheme. When the target is an XML Document, the
saved DOM tree is deleted, and a new tree is built. All existing XML Cursors become invalid. The
attribute .mapped has the value false for invalid XML Cursors.

A.06.03.b 23

24 ISA DialogManager

Alternatively, the target can be a text or file. If the result of the transformation is no legal XML
format, then it needs to be directly converted into a text or file, as the result cannot be assigned to
an XML Document. This is true, for example, for conversions to HTML.

4.4 Pattern for the Methods :match() and :select()
A pattern is very similar to a ISA Dialog Manager identifier. The pattern represents a path of element
names. The path starts at the root of the tree. Each hierarchical level is compared to the cor-
responding part of the path. Here it is possible to define certain characteristics of the father such as
existence of an attribute or the position within the children.

Basically all characters except ., [, ",], <, >, =, \, tab, space and line break can be used in the pattern.
If one of the characters mentioned above, without the page break, shall be used, then it has to be
escaped with a \ before the character. Between double quotes ("), that is within a string, the following
symbols are also allowed: ., [,], <, >, =, tab and line break. Please note that in the dialog script the
symbol \ within a string already is an escape symbol. Due to this it is important to use \\ in a dialog
script whenever a \ is needed. Also in a dialog script \" has to be used whenever the character " is
needed.

{ <Name> [[.<Attr>{<Op>"<Value>"}]] {[<Idx>]} }
[.<Name> [[.<Attr>{<Op>"<Value>"}]] {[<Idx>]}]

<Name>

Is compared to the name attribute of the XML Cursor. The XML Cursor must possess the node
type nodetype_element. Alternatively, the character * can be used. In this case the name attribute
will not be taken into consideration.

The name of an XML element starts with a letter or an underline. It may contain letters, digits,
hyphens, underlines and dots. The exact definition of an XML element name can be found in the
XML specifications (www.w3c.org/XML).

<Attr>

The DOM node that points to the XML Cursor must possess the given attribute.

The name of an XML attribute starts with a letter or an underline. It may contain letters, digits,
hyphens, underlines and dots. The exact definition of an XML attribute name can be found in the
XML specifications (www.w3c.org/XML).

<Op>

Is a comparison operator which compares the attribute given in <Attr> with <Value>. It can be
tested for equality = and inequality <>.

<Value>

Is the value to which the <Attr> is compared.

http://www.w3c.org/XML
http://www.w3c.org/XML

<Idx>

The DOM node must be at this position within the child nodes of the same parent. The first child
has position 1.

<Idx> consists only of figures (0 – 9), which are interpreted as number.

Particularities

.

When the pattern start with a dot, it is relative to the current DOM node. This means that the path
begins at the current DOM node.

..

Two consecutive dots define, that an arbitrary number of hierarchy levels may be skipped.

[<Idx>]

An index without any further information selects the DOM node at this position. In this case, the
type of DOM node is insignificant. Thus each DOM node can be uniquely referenced by an expres-
sion like {[<Idx>][.[<Idx>]]} (path attribute).

Additions for Microsoft Windows

XPath can also be used as pattern syntax. Here, the pattern must start with either / or ./. The use of
XPath patterns is not supported on all platforms and therefore not portable.

A.06.03.b 25

26 ISA DialogManager

5 The transformerObject
The transformer object allows for traversing an XML Document or an IDM hierarchy, whereby during
the traversing semantic actions can be carried out on particular nodes. Through this it is easy to imple-
ment a transformation of data. For example, XML data can be transferred into IDM objects or vice
versa, XML Documents can be generated from the data contained in IDM objects. Because semantic
actions are described through user-defined code, the transformations can have many different forms.

Definition

{ export | reexport } { model } transformer { <Identifier> }
{

[<atribute definition>]
[<method definition>]

}

The following means are available to the IDM programmer regarding the definition of transformations.

A transformation is started by invocation of the apply method of a transformer object. The source
and the target of the transformation are passed as parameters, (i.e. a doccursor object as source
and an IDM object as target, which either collects the data or delegates it elsewhere).

It is normally desired that during each transformation a certain amount of nodes, regardless if
these are IDM objects or nodes of an XML tree, are run through in a certain sequence. The apply
method implements such a sequence by beginning with a start node (source) and calling the trans-
former’s select_next method, which determines the successor of the actual node, in a loop. The
sequence ends when the select_next method returns 0. The default implementation of the select_
next method defines a pre-order sequence. The IDM programmer is able to intervene at two dif-
ferent points in this process. First of all, the apply method can be overwritten in order to set the
start node or to change the abort condition. Secondly, the select_next method can be overwritten
and therefore the entire sequence in which the nodes are visited can be redefined.

After it has been guaranteed that all nodes are visited at least once, then a possibility must exist
for setting the semantic action(s) to be carried out on certain nodes. For this purpose mapping
objects are defined as children of the transformer object. Each of these objects defines a pattern in
its name attribute, which is used to check if the currently visited node should trigger an action or
not. The action is set through the action method of the mapping object that has to be overwritten
by the IDM programmer. This method receives the currently visited node as first parameter, and
the target object coming from the apply method of the transformer object as second parameter.

In order to complete the picture: The transformer object also has an action method. This method is
called for each visited node within the loop of the apply method mentioned above. It is then
checked if the node matches the patterns of the mapping children. The sequence in which this hap-
pens is the same sequence as the mappings have been defined in the parent transformer. The
inherited mapping objects are examined at the very end. If a matching mapping object is found

during the examination, the action method of the transformer calls the action method of the map-
ping object. This method can transfer the data from the current node to the target object. As a
return value, this method can return true. In this case it is assumed that the node has been pro-
cessed completely and no further mapping objects should be examined. Otherwise, the remaining
mappings are examined and their action methods are called until no more mapping objects are left
or the action method of one of the mappings returns true.

Events

None

Children

document

mapping

record

transformer

Parents

application

canvas

checkbox

dialog

doccursor

document

edittext

groupbox

image

import

layoutbox

listbox

mapping

menubox

menuitem

menusep

messagebox

module

notebook

A.06.03.b 27

28 ISA DialogManager

notepage

poptext

pushbutton

radiobutton

record

rectangle

scrollbar

spinbox

splitbox

statictext

statusbar

tablefield

timer

toolbar

transformer

treeview

window

Menu

None

Methods

:action()

:apply()

:select_next()

5.1 Attributes
document[I]

external

external[I]

firstrecord

label

lastrecord

mapping[I]

model

module

parent

record[I]

recordcount

root

scope

userdata

5.2 Object-specific Attributes
mapping[I]

The mapping children can be accessed through the .mapping attribute. The attribute is indexed
with the object index (similar to child). The sequence of the mappings within this vector determines
the sequence in which nodes are compared to particular mappings during a transformation. The
inherited mappings are not taken into this vector. During a transformation, the comparison to
these mappings is done at the very end, i.e. the direct instances have priority. This is different in
comparison to other inherited child objects within IDM, which are inserted at the beginning of the
parent instance’s child vector.

root

After calling the :apply() method the starting point of the transformation will be stored in this attrib-
ute. This makes it possible to decide during a transformation, if the starting point has been
reached again, and if the transformation can be stopped.

The following cases should be distinguished:

When the Src parameter of the apply method is a document or a doccursor, a string is saved in
.root, which describes the corresponding position in the XML tree. The syntax of the string fol-
lows the convention, which is used for the .path attribute of the doccursor object (see doc-
cursor object description). Because of this, comparisons to the .path attributes of doccursors
are very easy.

If the Src parameter of the apply method is an IDM object, this object will be stored in .root.
Consequently, in this case, the data type of the attribute is object.

On the basis of the value in the .root attribute, the action and select_next methods of the trans-
former decide what they have to do (see description of these methods).

At the end of the apply method .root is set to void again.

The default value for the attribute is void.

A.06.03.b 29

30 ISA DialogManager

5.3 Object-specific Methods
:apply()

The transformation is initiated with this method. The default implementation of the algorithm is as
follows:

If the Src parameter is a document or a doccursor object, it is assumed that data from the XML
tree should be transferred to the IDM. In the case of a document object, a temporary doccursor
object will be created which is used for the navigation within the XML tree. In the pseudo-code
below, for the purpose of simplicity it is assumed that a doccursor is passed in Src.

:apply(anyvalue Src, anyvalue Dest)
{

variable object NextObj;

this.root ::= Src.path;
NextObj := Src;
while NextObj <> null do

this:action(Src, Dest);
NextObj := this:select_next(NextObj);

endwhile
this.root ::= null;
return true;

}

If the Src parameter is an IDM object (except for document and doccursor objects), it is
assumed that data from IDM should be transferred to XML or somewhere else. The underlying
code is identical to the code above, except that Src is stored in .root instead of Src.path. For
example:

this.root ::= Src;

The apply method can be overwritten (similar to init).

:action()

This method is used by the apply method of the transformer (see above) to determine if the current
node matches one of the mapping children. If it does, the action method of the mapping object is
called.

The action method can be overwritten (similar to init).

:select_next()

This method is used by the apply method of the transformer for traversing all nodes of an XML tree
or an IDM object hierarchy (see above). The default implementation of this is, that a pre-order
sequence is processed by the repeated calls of the method.

The select_next method can be can be overwritten (similar to init).

5.4 Example
This example can be found in the examples/xml directory.

As XML Document the following file with the name “CD-Katalog.xml” is used:

<?xml version="1.0" ?>
<CATALOG>

<CD>
<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>

</CD>
<CD>

<TITLE>Hide your heart</TITLE>
<ARTIST>Bonnie Tyler</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>

</CD>
<CD>

<TITLE>Maggie May</TITLE>
<ARTIST>Rod Stewart</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Pickwick</COMPANY>
<PRICE>8.50</PRICE>
<YEAR>1990</YEAR>

</CD>
</CATALOG>

The data from this file can, for example, be read out as follows:

dialog D {}

window Wi
{

.title "XML-CD-CATALOG";

on close { exit(); }

child treeview Tv
{

.xauto 0;

.yauto 0;

.style[style_lines] true;

A.06.03.b 31

32 ISA DialogManager

.style[style_buttons] true;

.style[style_root] true;
integer CdIdx := 0;

rule NewCatalog() {
if this.itemcount = 0 then

this.itemcount ::= this.itemcount + 1;
endif
this.content[this.itemcount] := "CD-Catalog";
this.open[this.itemcount] := true;

}

rule AddCD() {
this:insert(this.itemcount+1, 4);
this.CdIdx := this.CdIdx + 1;
this.content[this.itemcount-3] := ""+this.CdIdx+". CD";
this.level[this.itemcount-3] := 2;

}

rule AddTitle(string S input) {
this.content[this.itemcount-2] := "Title: " + S;
this.level[this.itemcount-2] := 3;

}

rule AddArtist(string S input) {
this.content[this.itemcount-1] := "Artist: " + S;
this.level[this.itemcount-1] := 3;

}

rule AddPrice(string S input) {
this.content[this.itemcount] := "Price: " + S;
this.level[this.itemcount] := 3;

}
}

}

transformer Tr
{

!! transformer is for taking over data from an XML Document
!! therefore a doccursor can be expected in Src

child mapping MCatalog {
.name "..CATALOG";

:action() {
Dest:NewCatalog();
return true;

}
}

child mapping MCD {
.name "..CD";

:action() {
Dest:AddCD();
return true;

}
}

child mapping MTitle {
.name "..CD.TITLE";

:action() {
Dest:AddTitle(Src.text);
return true;

}
}

child mapping MArtist {
.name "..CD.ARTIST";

:action() {
Dest:AddArtist(Src.text);
return true;

}
}

child mapping MPrice {
.name "..CD.PRICE";

:action() {
Dest:AddPrice(Src.text);
return true;

}
}

}

document Doc {}

on dialog start
{

Doc:load("CD-Katalog.xml");

Tv.visible := false;

A.06.03.b 33

34 ISA DialogManager

Tr:apply(Doc, Tv);
Tv.visible := true;

}

6 ThemappingObject
The purpose of the mapping object is to define a semantic action, which is called during a trans-
formation for a specific node in an XML tree or in an IDM object hierarchy), when a match between
the mapping object and the node is found. Mapping objects are defined as children of a transformer
object and describe a transformation of data in conjunction with it.

Definition

{ export | reexport } { model } mapping { <Identifier> }
{

[<atribute definition>]
[<method definition>]

}

Events

None

Children

document

record

transformer

Parents

transformer

Menu

None

Methods

:action()

6.1 Attributes
document[I]

external

external[I]

firstrecord

label

lastrecord

A.06.03.b 35

36 ISA DialogManager

name

model

parent

record[I]

recordcount

scope

transformer[I]

userdata

6.2 Object-specific Attributes
name

Here, a pattern is given (similar to an XPath expression) to define the nodes within an XML tree or
an IDM object hierarchy which the mapping object should match. This determines if the :action
method should be called for the node during the transformation or not.

6.3 Pattern for .name
A pattern is very similar to an IDM identifier. The pattern represents a path of element names. The
path starts at the root of the document or IDM object hierarchy (i.e. dialog or module). Each hierarchy
level is compared to the corresponding part of the path. In addition, certain properties of the parent,
such as the existence of an attribute or the position within the children or the parent can be given:

{ <Name> [[.<Attr>{<Op>"<Value>"}]] {[<Idx>]} }
[.<Name> [[.<Attr>{<Op>"<Value>"}]] {[<Idx>]}]

<Name>

XML: Is compared to the name attribute of the cursor. The cursor must have the node type node-
type_element. Alternatively, * can be used. In this case the name attribute is ignored.

IDM: Is compared to the label of an IDM object. Alternatively, * can be used, which means that
every label matches.

<Attr>

XML: The XML node that the cursor points to must have the indicated attribute.

IDM: The IDM object must have the indicated attribute.

<Op>

XML and IDM: Comparison operator which compares the attribute given in <Attr> with <Value>. I
can be tested for equality = and inequality <>.

<Value>

XML and IDM: The value to which <Attr> is compared.

<Idx>

XML: The XML node must be at this position within the child nodes of the same parent.

IDM: The IDM object must be at this position within the children of the same parent. Here, all chil-
dren of hierarchical attributes are regarded as combined.

Particularities

.

XML: If the pattern starts with a dot, it is relative to the current node. This means that the path
begins at the current node.

..

XML and IDM: Two consecutive dots define, that an arbitrary number of hierarchy levels may be
skipped.

[<Idx>]

XML: An index, without any further information, selects the XML node at this position. In this case,
the type of node is insignificant. Thus each DOM node can be uniquely referenced by an expres-
sion like {[<Idx>][.[<Idx>]]} (path attribute).

All comparisons are case sensitive.

Example

The pattern “..CD[.Title = Yellow]” matches all nodes within an XML tree (regardless of their hierarchy
level) that have the tag “CD” and an attribute “.Title” with the value Yellow.

When the same pattern is applied to IDM objects, all objects possessing the label “CD”, and an user-
defined attribute “.Title” with the value Yellow will match.

6.4 Object-specific Methods
:action()

This method is invoked from the :action method of the parent transformer, when a match
between a node in an XML tree or an IDM object hierarchy and the pattern in the .name attribute of
the mapping objects is found. The default implementation of this method does nothing other than
always returning true.

Because this method can be redefined, it is possible for the programmer to determine what should
happen with the data from the node.

A.06.03.b 37

38 ISA DialogManager

*

* 24, 36

.

. 25, 37

.. 25, 37

A

action 30, 36

mapping 37

overwrite 30

add 23

AddRef 15-16, 20-21

apply 26, 30

doccursor 29-30

document 29-30

IDM object 29-30

overwrite 26, 30

Src 29-30

attribute 20, 22, 24, 36

apply 20

attribute 20

data 20

doccursor 15

idispatch 15, 20

index 20

ixmldomdocument2 16

ixmldomnode 21

ixmldomnodelist 21

mapped 16, 21, 23

mapping 29

name 20-22, 24, 26, 36

nodetype 21

path 22-23

publicid 22

root 29

specified 22

standard value 22

systemid 22

target 22

text 8, 22

value 20, 22

xml 16, 23

attribute name 24

C

caching

doccursor 10, 12

cardinality

Data Model attribute 9

child node 22

delete 23

insert 23

child nodes 23

reallocate 23

string representation 23

COM interface pointer 15-16, 20-21

COM method

AddRef 15-16, 20-21

Index

A.06.03.b 39

Release 15-16, 20-21

comparison operator 24, 36

D

data 20

Data Model attribute

cardinality 9

data type 9

data type

Data Model attribute 9

Datamodel

doccursor 9

example 10

XML 9

dataoptions 12

delete 23

doccursor 15, 18

add 23

attribute 20

caching 10, 12

data 20

Datamodel 9

delete 23

idispatch 20

ixmldomnode 21

ixmldomnodelist 21

mapped 21

match 23

name 21

nodetype 21

path 22

publicid 22

reparent 23

select 23

specified 22

systemid 22

target 22

text 22

transform 23

value 22

xml 23

document 13

doccursor 15

idispatch 15

ixmldomdocument2 16

load 16

save 16

transform 16

validate 17

xml 16

document type 17

DOM node 18, 20

attribute 20, 22

data 20

delete 23

identifier 22

index 25

name 21

pattern 23

position 25, 37

reallocate 23

string representation 23

system identifier 22

tag 21

40 ISA DialogManager

transformation 23

type 21

value 22

DOM nodes 18

child node 22

identifier 22

instruction 22

position 37

sub-nodes 22

DOM tree 13, 16, 18, 23

node 21

nodes 18

root 21, 24

dopt_cache_data 10, 12

E

element name 24, 36

escape symbol 24

example

Datamodel 10

H

hierarchy levels

skip 25, 37

I

identifier 3

public 22

idispatch 7, 15, 20

IDM object 36

label 36

position 37

indentation 8

index 25, 37

instruction 22

ixmldomdocument2 7, 16

ixmldomnode 21

ixmldomnodelist 21

K

keepBlanksDefault 8

L

label 36

libxml2 7

libxslt 7

line breaks 8

load 16

M

mapped 16, 18, 21, 23

mapping 29, 35

name 36

pattern 36

mapping object 26

action 26

comparison with node 30

name 26

mapping objects

inherited 26, 29

sequence 29

match 23-24

pattern 24

A.06.03.b 41

method

action 26, 30, 36-37

add 23

apply 26, 30

delete 23

load 16

match 23

reparent 23

save 16

select 8, 22-23

select_next 26, 30

transform 16, 23

validate 17

MSXML 7

N

name 21-22, 24, 36

pattern 36

node 18, 21

comparison with mapping 30

node type 20, 22, 24-25, 36-37

nodes 18

nodetype 21

nodetype_attribute 22

nodetype_cdata_section 20, 22

nodetype_comment 22

nodetype_element 24, 36

nodetype_entity 22

nodetype_notation 22

nodetype_processing_instruction 20, 22

nodetype_text 22

O

object

doccursor 18

document 13

mapping 35

object hierarchy 35

P

path 22-24, 36

relative 25, 37

pattern 23, 36

* 24, 36

. 25, 37

.. 25, 37

escape symbol 24

example 37

mapping 36

match 24

name 36

select 24

syntax 24, 36

XPath 25

position 22, 25, 37

string representation 22

pre-order sequence 26, 30

processing instruction 8, 22

public identifier 22

publicid 22

R

reference counter 15-16, 20-21

42 ISA DialogManager

Release 15-16, 20-21

reparent 23

root 21, 29

type 29

S

save 16

select 8, 22-24

pattern 24

select_next 26, 30

default implementation 26, 30

overwrite 26, 30

selection pattern 9

semantic action 26, 35

define 35

spaces 8

treatment 8

specified 22

Src 29-30

string representation 16, 22-23

child nodes 23

sub-node

delete 23

insert 23

reallocate 23

sub-nodes 22

system identifier 22

systemid 22

T

tag 21

target 22

text 22

text node 22

transform 16, 23

transformation 16, 23, 26, 30, 35-36

HTML 16, 24

source 26

starting point 29

target 26

text 16, 24

transformer 26

action 30

apply 30

example 31

mapping 29

root 29

select_next 30

Transformer-Objekt 26

transformer object 7

action 26

apply 26

type 21

V

validate 17

value 22, 24, 37

X

xml 16, 23

XML

Datamodel 9

XML attribute 24

XML Core Services 7

A.06.03.b 43

XML Cursor 16, 18, 23

move 18, 23

name 24, 36

position 22

valid 18

XML Document 13

load 16

save 16

saving 8

string representation 16

transformtion 16

traverse 26

validate 17

XML element 24

XML node

index 37

XML support 7

XML tree 35

xmlAttrPtr 7

xmlDocPtr 7

xmlNodePtr 7

XPath 25

44 ISA DialogManager

	Notation Conventions
	Table of Contents
	1 XML Support
	1.1 XML Support on Microsoft Windows
	1.2 XML Support on Unix
	1.3 Differences Between the Windows and Unix Implementations

	2 Use of XML with the Datamodel
	2.0.1 Example
	2.0.2 Index Value dopt_cache_data of the Attribute dataoptions

	3 The XML Document (document)
	3.1 Attributes
	3.2 Object-specific Attributes
	3.3 Object-specific Methods

	4 The XML Cursor (doccursor)
	4.1 Attributes
	4.2 Object-specific Attributes
	4.3 Object-specific Methods
	4.4 Pattern for the Methods :match() and :select()

	5 The transformer Object
	5.1 Attributes
	5.2 Object-specific Attributes
	5.3 Object-specific Methods
	5.4 Example

	6 The mapping Object
	6.1 Attributes
	6.2 Object-specific Attributes
	6.3 Pattern for .name
	6.4 Object-specific Methods

	Index

